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Effect of the Coulomb interaction on far-infrared absorption in a square-well quantum dot
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We calculate far-infrared-absorption spectra and the absorption coefficient of two electrons confined
in a square-well quantum dot as the strength of the Coulomb interaction between the electrons is
changed. We determine that there are many different types of absorption, some induced by the Coulomb
interaction. This is because electrons are confined by a heterostructure of compound semiconductors, so
a square-well potential allows the electron-electron interaction to affect the far-infrared-absorption spec-
tra. When a side of the quantum dot becomes larger than 50 nm, one or more types of absorption be-
come much more intense than the others. This suggests that a strong correlation between electrons

enhances certain types of absorption.

I. INTRODUCTION

Many-body effects of electrons confined in a zero-
dimensional region, i.e., a quantum dot,' are of much in-
terest. When electrons are confined by a depletion region
of semiconductors, whose confinement can be modeled by
a parabolic potential, many-body effects on heat capacity?
and magnetization®* have been reported.

However, we cannot expect many-body effects on far-
infrared absorption in a quantum dot with this parabolic
confinement.’ This is because the size of the quantum
dot, typically 100 nm, is much less than the wavelength
of photons to be absorbed, typically 100 um, so the dipole
approximation holds to a high degree of accuracy. The
dipole approximation has no many-body effects on far-
infrared-absorption spectra.? It is not possible to observe
how many electrons are in a quantum dot with parabolic
confinement, although we know that the absorption in-
tensity is proportional to the number of electrons.® How-
ever, drastic changes in absorption spectra induced by
the Coulomb interaction are expected in a confining
structure whose shape is slightly different for a parabolic
structure.’

The next stage of research on zero-dimensional
confinement is studying a system in which electrons are
confined by a compound semiconductor heterostructure,
for example, GaAs/Al,Ga,;_,As. Such a confinement
can be modeled by a well-like potential,®°® so we can ex-
pect many-body effects on far-infrared-absorption spec-
troscopy. In this paper, we calculate far-infrared-
absorption spectra and the absorption coefficient of two
electrons confined in a square-well quantum dot as the
strength of the Coulomb interaction between electrons is
changed. We obtained several types of absorption in-
duced by the Coulomb interaction. We will emphasize
the effect of the Coulomb interaction on the absorption
coefficient.

II. METHOD OF CALCULATION

We consider a quantum dot in which electrons are
confined by a heterostructure of compounds semiconduc-
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tors. As this quantum dot is assumed to be a well with
finite depth, we introduce the effective Hamiltonian for
two electrons in a two-dimensional space with an
effective-mass approximation:

A= 3

1
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mrj

(pjteA)+V(r;)
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dme, €, |r—1,| ’

—V, if |x| <L /2 and |y| <L /2

Vix,y)= 0 otherwise , ?
my, if |x| <L /2 and |y| <L /2
m(x,y)= m,, otherwise . v

We assume that an electron in a semiconductor material
can be described by an effective mass m (r) which de-
pends on the kind of semiconductor material. « is intro-
duced to describe the strength of the Coulomb interac-
tion. The shape of a quantum dot is determined by the
one-body potential V' (x,y). A side of the square quantum
dot is denoted by L. The heterostructure is assumed to
be Alj 45Gag ssAs/GaAs, so m;, is taken to be 0.067m,
and m, is taken to be 0.104m,, where m, is the free-
electron mass. V) is taken to be 0.36 eV and ¢, is 10.9 for
GaAs.

In our system, p; and 1/m(r;) do not commute be-
cause the effective mass depends on where the electrons
are. Therefore, the electromagnetic interaction term in
the Hamiltonian (1) within the dipole approximation is
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This expression is reduced into

A, =—i%AW0):
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where H, is H without A(r). When |n ) is the nth eigen-
state of the Hamiltonian H,, and E,, is its eigenenergy, an
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optical transition matrix element from the ground state
|0) to an excited state |n ) can be derived from
(nlﬁeml()):i;;—(En —E,) A(0)-{n|

S r o), ®

=12

so this noncommutativity does not influence the expres-
sion of the matrix elements of A -m Within the dipole ap-
proximation, in which we ignore the spatial dependence
of A(r). If a photon to be absorbed is polarized in the x
direction, the absorption coefficient

2
o> { 0

is proportional to the intensity of absorption from the
ground state to the excited state |n ), if an electron can
transit rapidly from the excited state |n ) to the ground-
state emitting photons. A coefficient for absorption of a
photon polarized in the y direction is the same as in the x
direction because our system has symmetries of x and y.
If I'#0, the optical transition from the ground state |0)
to the excited state |n) is allowed as a two-electron
phenomenon. To sum up, we determine |n ), then calcu-
late I".1°

Let us discuss our method for calculating |n). Before
we construct Hamiltonian matrix elements with the
eigenfunctions of a harmonic oscillator, we define the
scale parameter £ as (x;,y;)=(£X;,£Y;) so as to make X
and Y; dimensionless variables. We use functions
(X|n)=1,(X) as a basis:

r= }<n ‘?xj

2

¥y (X)= A, H,(X)exp | — =

, (8)

where the H,(X)’s are the Hermite polynomials and the
A,’s are the normalization constants. We need quadru-
ple tensorial products of the base functions

<X1,Y1;X2’ Y2|j1,j2;j3,j4>
=9, (X)W, (Y Wy (X)), (Y,) (9)

for the orthogonal basis set because our system includes
two electrons in the two-dimensional space . Matrix ele-
ments of the kinetic term and the one-body potential
term in the Hamiltonian H can be obtained easily using
the error function erf(x)=fgdz exp(—z?). The size of
the quantum dot L appears in the matrix elements of the
potential term, so we introduce ratio {=L /£, which will
be treated as a variational parameter. Matrix elements of
the Coulomb interaction term in H,
S e? L
<11’12?l3’l4| dme, eqr I]l’]2r13’14> ’

can be written as

62 4 im Im
— > 2 Mok M
Ame, €08 =1 | kizosi=0 ™

XS(kl+ll)k2+127k3+l3,k4+l4) (10)
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if we define 7, by ¢,(z)=e '22/22}'( —oMz" and
S(a,b,e,d)= [ dX,dY,dX,dy,
h X§¥ixsyy
VX, —X,)?+(Y,—Y,)?

—(X2+v2+x2472)
Xe 1 1 2 2 s (11)

X

which can be obtained analytically.

Though each matrix element depends on &, exact ener-
gy eigenvalues of the Hamiltonian H, must be indepen-
dent of { because § is not a physical variable. However,
if we numerically diagonalize a Hamiltonian matrix made
of a finite set of base functions, the obtained eigenvalues
will depend on §. Therefore, we treat { as a variational
parameter in our numerical calculations in order to mini-
mize the ground-state energy. We used six bases for each
direction and particle because systems treated in this pa-
per are simpler than coupled quantum dots, whose energy
spectra were calculated using the same numerical method
with eight bases.!!

The orbital wave function ¢é,(r,r,) of the states |n)
must be even or odd when particles are exchanged.
When ¢,(r,,1,) is even, the two-electron eigenstate |®,,,)
has spin 0, as in

|<I>,,0)=%2¢,,(r1,r2)(Tl)-—|lT>). (12)

When ¢,,(r;,1,) is odd, the two-electron eigenstate |®,,; )
has spin 1, as in

|<I>,,,1>=V%¢m(r1,r2><|m>+m>), (13)
|®,,,)=¢,,(r,1,)|11), (14)
1¢)m3):¢m(r1,r2)|ll> . (15)

In their dipole approximation, a spin-flip transition is im-
possible. The ground state should have spin 0, so photon
absorptions in the dipole approximation are due to transi-
tions between states having spin 0. The absorption
coefficient I', as defined above, can be written as

2

(16)

I'= lfdrldf2¢n(r]7r2) ¢0(r1’r2)

2%
J

Note that if ¢,(r,,r,) is an odd state when particles are
exchanged, I' in the above expression is automatically
zero because we have the relation

Jdrdr,g,(1,1)x,¢4(x,,1,)
= [drdr,¢,(0,1)x,80(15, 1)
= [drdr,[—6,(1,1,)]x,8(rp,1,) . 17

III. RESULTS

In a square quantum dot whose side is less than 30 nm,
quantum states of two electrons are very weakly correlat-
ed, and energy levels can be obtained approximately by
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states occupied by two electrons with Pauli’s principle.!?
Therefore, interpretation of two-electron states by
single-particle states is helpful in such a small quantum
dot, and far-infrared-absorption spectra are obtained
from selection rules which govern optical transitions.
These selection rules are determined by the symmetries of
wave functions—absorption is allowed if I'#~0. Let us
denote single-particle energy eigenstates in a two-
dimensional square-well quantum dot by |q0pq Y, so that

P o, ) =(—=1"lg,,) , (18)
P le, ) =(—12l@,,) , (19)

where ﬁx and ﬁy are parity operators in the x and y direc-
tions, respectively, and p and g are non-negative integers.
When a single electron is contained in a square quantum
dot, optical transitions from the ground state to |@;o)
and |@y;) are allowed, and the optical transitions yield
the first least-energy absorptions. The second least-
energy absorptions are due to transitions to |@,;,) and
|go3). When two electrons are contained in a very small
quantum dot, the ground state |<I>0> of two electrons can
be written approximately as

1
|<I>0)~—1/—§<p00(r1)<p00(r2)(|Tl>—|lT M. (20)

The least-energy absorption of two electrons, denoted by
I'y, is due to a transition from the ground state to an ex-
cited state containing the single-electron first excited
state, for example

|®,) ~ 5[ @10(T1)Poo(12) + @oo(T1)P1o(T5)]
X(TLy=[ith. 1)

Another absorption of two electrons, denoted by T, is
due to a transition from the ground state to an excited
state, for example

|<D2>N%[%o(rl)‘Poo(rz)+‘Poo(r1)<P30(r2)}
XTIy =[11)). (22)

If we assume a square quantum dot with an infinite well,
single-particle wave functions can be described as

mp +1)(x —L/2)
L

_2 .
Ppg(X,¥)= Lsm

m(g +1)(y —L/2)
L

Xsin , (23)

where L is a side of the square. The absorption
coefficients of the two noninteracting electrons I'{”) and
'Y can easily be obtained by

2
r0=2 | 2L [t ¢ sin(osin(20) 4)
T 0
4 4
=2|5- L2~6.49X1072L? (25)

and
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These optical transitions can be described as a single-
electron transition between single-particle states. As the
size of a quantum dot becomes large, however, optical
transitions must be described as two-electron phenomena
because electron correlations become important. There-
fore, far-infrared-absorption spectra are determined by
the condition I" >>0.

In Fig. 1, T'; is calculated as L is changed from 20 to
30, 40,..., 100 nm. Without the electron-electron in-
teraction, i.e,. ® =0, I'; increases linearly with an offset as
L? increases. This offset is due to the spreading of wave
functions outside the quantum dot because the square of
the dipole matrix element is proportional to L? if an elec-
tron is confined by an infinite well. Even if a is changed
from zero, i.e., a Coulomb interaction is introduced, the
predominance of I'; remains but the value of I'; becomes
smaller. This tendency becomes more obvious with
larger L. This is because the Coulomb interaction causes
electrons to avoid each other, so an electron must move
in order to absorb a photon. I'; vs the absorption energy
is shown in Fig. 2. We can observe that not only the ab-
sorption coefficient but the absorption energy is
influenced by the Coulomb interaction. However, if we
change the strength of the Coulomb interaction, I'; vs the
absorption energy will be almost on the same curve, as
observed in Fig. 2. (This may be because the Coulomb
repulsion reduces the effective size of electrons.) There-
fore, it is difficult to extract many-body effects from
characteristics of I'; vs the absorption energy.
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FIG. 1. T'; which is proportional to the intensity of the
strongest absorption of two electrons in a square-well quantum
dot. A side of the quantum dot L is changed from 20 to 30,
40, ...,100 nm, and the horizontal axis indicates the square of
L. Open squares are I'; without electron-electron interaction,
and open circles are I'; when the Coulomb interaction is includ-
ed. Open triangles are when a half of the Coulomb interaction
is introduced.
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FIG. 2. I'| vs absorption energy is plotted as L is changed
from 20 to 30, 40,...,100 nm. The absorption energy is
affected by the Coulomb interaction as well as the absorption
coefficient.
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FIG. 3. Absorption energy and I',, T';, and T', relative to T';
for optical transitions between the ground state and higher-
energy states in a square-well quantum dot whose side L is 40
nm. (a) Absorption energy as a function of a. (b) Absorption
coefficient relative to I'; as a function of a. In both figures, I'; is
denoted by solid squares, I'; is denoted by solid triangles, and
I'y is denoted by open circles. I'; and I'; will be zero if
electron-electron interaction is ignored, i.e., a=0. These two
types of absorption are induced by the Coulomb interaction be-
tween electrons.
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Let us turn to absorption between the ground state and
higher-energy states. When L =40 nm, the absorption
energy of I'; is about 10 meV, as shown in Fig. 2. We can
also observe a weaker absorption of about 50 meV, denot-
ed by I',. This absorption exists even if there is no
electron-electron interaction. If we introduce the
Coulomb interaction, we can observe different types of
absorption with energies between I'; and I'y,. The type of
absorption with relatively small energy is denoted by I',,
and the type of relatively large energy is denoted by I3,
as shown in Fig. 3(a). In Fig. 3(b), the absorption
coefficients I',, I'3, and I'y relative to I'; are plotted as
functions of a, where L is fixed to be 40 nm. As a is in-
creased from zero, different absorption types I', and T';,
whose energies are about 30 and 37 meV, appear. These
types of absorption are due to the Coulomb interaction.
As a increases, these types of absorption become
stronger, as does I'y,. The absorption energy of I'; and I',
hardly changes as the strength of the Coulomb interac-
tion changes, but that of I'; changes slightly, as seen in
Fig. 3(a). These changes in absorption energy are small
because electrons are confined in such a small quantum
dot. However, different types of absorption are brought
on by the disruption of the symmetry of wave functions
caused by electron-electron interaction.

When a quantum dot become large, the correlation be-
tween electrons becomes stronger, and two electrons with
opposite spin would sit on opposite ends of the same di-
agonal (as in a Wigner lattice).'> We will analyze absorp-
tion induced by the Coulomb interaction in a larger
quantum dot. As L is changed from 20 to 30, 40, ..., 100
nm, 'y, T';, and ', relative to '}, vs the absorption ener-
gy is shown in Fig. 4, where « is taken to be 1. When L
becomes larger, the behavior of I', /T"| and that of I'; /T,
and I', /T, are very different. The relative coefficients of
I'; and I'y are hardly changed by increasing L. On the
other hand, the relative coefficient of I', increases rapidly
when L is greater than 50 nm. As shown in Fig. 2, IT'; in-
creases as L becomes larger—1I", except I', behave simi-
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FIG. 4. T, I'3, and ', relative to I'y, vs absorption energy as
L is changed from 20 to 30, 40, . .., 100 nm. As L increases, the
absorption energy decreases. When L increases beyond 50 nm,
I', /T increases rapidly, in contrast to I'3/T"; and I'4/T",.
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larly. Because we can expect a strong correlation be-
tween electrons when L is greater than 50 nm, this pecu-
liar behavior of I', suggests that a strong correlation be-
tween electrons resulting in Wigner lattice states
enhances a certain type of photon absorption, i.e., T',.

IV. DISCUSSION AND CONCLUSION

Electrons interact with surrounding electromagnetic
fields through a single-electron interaction term in the
Hamiltonian. Thus the mean properties of electrons are
important for electromagnetic interaction in a free space
if the effective size of electrons is smaller than the wave-
length of the photon to be absorbed. In this system, vari-
ables in the Hamiltonian decompose into center-of-mass
coordinates and relative coordinates. A system of elec-
trons confined by a parabolic potential inherits this kind
of decomposition, so we cannot expect many-body effects
on far-infrared-absorption spectra. However, electrons in
general confinement no longer have such properties.
Therefore, by examining far-infrared absorption, we can
observe many-body effects of electrons confined into man-
made structures.

If we ignore electron-electron interaction, the
Schrédinger equation of two electrons in a two-
dimensional space is identical to that of a single electron
in a four-dimensional space whose eigenfunctions have a
high degree of symmetry. An electron-electron interac-
tion breaks some symmetry of wave functions of nonin-
teracting electrons, so additional types of absorption will
appear. If we apply an external electric field to a quan-
tum dot, the symmetry will be broken in a way different
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from that caused by electron-electron interaction. This is
well known as the Stark effect in quantum structures.’
The concurrence of these two types of symmetry breakers
is of much interest, and far-infrared absorption of in-
teracting electrons in a quantum dot under an external
electric field and its application will be discussed else-
where. !4

We have calculated the absorption coefficient of two
electrons confined in a square-well quantum dot. The ab-
sorption coefficient and the absorption energy are affected
by the Coulomb interaction, and additional types of ab-
sorption are induced. These types of absorption are due
to the breakdown of symmetry of wave functions by the
Coulomb interaction. In a larger quantum dot, we also
observe the enhancement of an intensity of a certain type
of absorption, whose enhancement may be induced by a
strong correlation between electrons. Therefore, we can
expect a rich structure in a far-infrared-absorption spec-
troscopy of interacting electrons confined by a hetero-
structure of compound semiconductors, and this rich
structure will illuminate many-body effects of electrons in
manmade structures.

ACKNOWLEDGMENTS

The author is grateful to K. Nomoto, T. Suzuki, K.
Taira, I. Hase, A. Ishibashi, and Y. Mori for fruitful dis-
cussions. This work was performed under the manage-
ment of FED as a part of the MITI R & D program
(Quantum Functional Device project) supported by
NEDO.

IM. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M.
Moore, and A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).

2P. A. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108
(1990).

3P. A. Maksym and T. Chakraborty, Phys. Rev. B 45, 1947
(1992).

4M. Wagner, U. Merkt, and A. V. Chaplik, Phys. Rev. B 45,
1951 (1992).

5F. M. Peeters, Phys. Rev. B 42, 1486 (1990).

6B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett. 68,
1371 (1992).

D. Pfannkuche and R. R. Gerhardts, Phys. Rev. B 44, 13132
(1991).

8H. Kawai, J. Kaneko, and N. Watanabe, J. Appl. Phys. 58,
1263 (1985).

9G. Bastard, J. A. Brum, and R. Ferreira, in Solid State Physics,
edited by H. Ehrenreich and D. Turnbull (Academic, San
Diego, 1991), Vol. 44.

10T, Chakraborty, V. Halonen, and P. Pietildinen, Phys. Rev. B
43, 14289 (1991).

1IR. Ugajin, T. Suzuki, N. Nomoto, and I. Hase, J. Appl. Phys.
76, 1041 (1994).

12G, W. Bryant, Phys. Rev. Lett. 59, 1140 (1987).

I3p, Voisin, K. Bleuse, C. Bouche, S. Gaillard, C. Alibert, and
A. Regreny, Phys. Rev. Lett. 14, 1639 (1988).

I14R. Ugajin, J. Appl. Phys. (to be published).



