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Exact solutions for barrier D states at high magnetic fields
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Solutions which are exact in the high-magnetic-field limit have recently been reported for a two-
dimensional D problem in which the two electrons and the fixed positive ion are all confined to the x -y

plane. The magnetic field is applied in the z direction. We have generalized this model by allowing the
fixed positive ion to reside on the z axis at a distance g from the x yplan-e; the electrons remain confined
in that plane. We call this configuration a barrier D center. Although exactly four bound D states
exist at (=0, we find that there are ten different states which, at fixed magnetic field, become bound in
various intervals of g values; of these states as many as eight can coexist for the barrier D in certain
ranges of g. Remarkable changes in the symmetry of the barrier D ground-state wave function are
found, the progression of bound ground states being given by M =0 singlet ~M = —1 triplet
~M = —2 singlet ~M = —3 triplet ~M = —5 triplet as g increases from zero at fixed magnetic field.
(M is the orbital z angular momentum quantuin number. ) At sufficiently large values of g all bound
states of the barrier D center disappear. This progression leads to a predicted magnetic vaporization of
barrier D centers.

I. INTRODUCTION

Exact solutions to quantum-mechanical problems are
often of great interest even though they may pertain to
model systems which cannot be very accurately realized
in experiment. An example is the problem of a strictly
two-dimensional D center in the presence of a strong
perpendicular magnetic field. This center consists of a
fixed positive ion and two electrons, all confined to the x-
y plane. In the limit of an infinite magnetic field perpen-
dicular to the plane, the D wave function can be con-
structed exclusively from free-electron %=0 Landau-
level basis functions and exact eigenvalues and eigenvec-
tors can be obtained. '

The D eigenstates can be classified according to the
total orbital angular momentum of the electrons along
the z direction, AM, and the permutation symmetry of the
spatial wave functions upon interchange of electron coor-
dinates (singlet and triplet, corresponding to symmetric
and antisymmetric space wave functions, respectively).
D states are bound if the minimum energy required to
remove one of the two electrons to infinity without Rip-
ping a spin is positive. In that sense, exactly four bound
states are found for the two-dimensional D center in the
infinite field limit. This set of bound states is comprised
of an M=O singlet ground state and three excited triplet
states with M = —1, —2, and —3. In addition there ex-
ists a manifold of unbound but, nevertheless, localized ex-
cited states.

This two-dimensional model can give us qualitatively
important information on the behavior of D centers lo-
cated in the middle of narrow quantum wells. Suppose,
however, that the positive ion, instead of being fixed at
the center of the well, is located near the barrier edge or
inside the barrier. Can bound D centers form in that
case? If so, how strongly bound might such centers be?

To gain some insight into such questions, we have gen-
eralized the two-dimensional D model by retaining elec-

tron confinement in the x-y plane, but moving the posi-
tive ion out of the plane and fixing it a distance g along
the z axis. The two-dimensional model is just the /=0
case of our generalized model. We call the system which
results when g) 0 a "barrier D center. " We shall find
asymptotically exact solutions for the barrier D prob-
lem as functions of g. Before discussing these solutions in
detail, we offer some qualitative comments.

It is clear that as g increases from zero, the attractive
interaction responsible for binding decreases. However,
the binding energy of the D center depends on the
difference between the energy of the D center and that
of the neutral donor (D ) left behind when one electron is
removed from the D ion. Both the total (two-electron)
binding of the D ion and that of the D decrease as g
increases. The pertinent question is which decreases fas-
ter. For this reason one cannot rule out, without exam-
ination, the possibility that the D center could have
more bound states for some nonzero value of g than for
(=0.

It is to be expected that the qualitative nature of the
lowest-lying D states will change with increasing values
of g. Coulomb attraction terms in the D Hamiltonian
decrease in strength as g increases, whereas the electron-
electron repulsion term is independent of g. Thus, at
larger values of g, the repulsion becomes relatively more
important, and the electrons can lower their energy most
effectively by forming highly correlated states in which
they are well separated in position. (Correlation between
electrons is relatively weak in the bound /=0 eigen-
states. ) We shall show by explicit calculation that at the
higher g values strong angular correlation exists between
the electrons in the lower-lying states, correlation which
tends to keep the electrons on opposite sides of the origin
(the origin is taken in this paper, as the projection of the
positive ion on the x-y plane). Strong correlation cannot
occur in states with M=O or —1. Thus, it is not surpris-
ing that D ground-state wave functions at the larger g
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values are associated with values of lMl greater than 1.
In general, states with relatively large values of lMl offer
the possibility of achieving a relatively high degree of
correlation and hence increased spatial separation be-
tween electrons.

From classical considerations, presumably relevant to
our problem at sufficiently large values of g, it would
seem that the achievement of even an extreme degree of
correlation between electrons would not suffice to pro-
duce binding. If we consider the classical electrostatics
problem associated with our model, wherein two elec-
trons, taken as classical point charges in the x-y plane,
are in electrostatic equilibrium with a positive ion of
charge lel, which is at a distance g on the z axis from the
plane, we find that negative work is required to move one
e ectron to infinity and the other to the origin. In this
classical case, we have an extremely highly correlated
electron system, both electrons being equidistant from
the origin and lying on a straight line passing through it.
Nevertheless the system is unbound in the sense of this
paper. In fact, consistent with this discussion, we find no
bound states in our quantum-mechanical problem when g
exceeds a certain critical value.

In the next section, we describe our method of calcula-
tion in brief and present and discuss our results.

II. CALCULATIGNS AND RESULTS

The procedure which we employ here for findin
asymptotically exact eigenvectors and eigenvalues is very
similar to that already described in Ref. 1. We introduce
the barrier D Hamiltonian, H, in donor atomic units
(energies and lengths in units of the bulk donor Rydberg,
R, and Bohr radius, a, respectively),

H =HD(1)+HD(2)+2/lpi —p2l,

and depend essentially upon the quantity e defined by
—

y 1/2g (6)

Recursion relations for evaluating ED(lMl) are given in
Eq. (11).

In Fig. 1, we plot Eii(lMl) vs a for 0 lMl 5. These
energies approach each other as a increases convergin
to a common limiting value of —2/g in the limit a~ ~.
This behavior is very important and is easy to understand
from the geometry of the wave functions. An electron in
the state XM is basically localized in an annular region
centered on the origin and with a mean annular radius,
which increases with increasing lMl. For large values of
a, there is only a relatively small change of Coulomb po-
tential as one moves from the mean annular radius asso-
ciated with state XM to that associated with state X

We
M+1'

e are interested in solutions exact in the limit y~ ~
with a fixed. As in Ref. 1, we introduce D basis func-
tions given by

4 —(M„M2) =Xm (Pi)XM (P2)+XM (Pz)XM (P, ), (7)

where the + sign is for singlet states and the —sign for
triplet states. The wave function displayed in Eq. (7) is a

where M, the quantum number for the z-orbital angular
momentum, is a negative integer or zero. All other eigen-
functions of Hp have eigenvalues equal to 2Xy, where N
is an integer greater than zero. In the limit of infinite
field the eigenfunctions of Eq. (2) given in Eq. (4) are also
eigenfunctions of HD, as described in Ref. 1. The eigen-
values of HD are given by

ED(lMl ) = (x~(p)l —2/(p'+g')' 'Ix~(p) ),

where Hi, (j) is the barrier donor Hamiltonian for elec-
tron j (j= 1 or 2) given by

0.00
0.00 +

0.50 1.00 1.50 2.00 2.50

H (J) —V. + y —+—'0 J .
~ 4F PJ

J

H (g) —H (j)—2/(p +g )'

(2)
-0.50 y

where p - is the displacement of the jth electron from the
origin, y is the angle between p and the x axis, and y is
the conventional dimensionless magnetic-field t h

-1.00

y =4~, /2&, ~, =eB /me .

Here, B is the strength of the uniform applied m tmagne ic
e a ong z and rn is the conduction-band mass. Because

y is subtracted on the right-hand side of Eq. (2) the
nian, 0, islowest eigenvalue of the free-electron Hamiltonia H

0. (This defines our zero of energy. ) The degenerate set
of free-particle wave function with this eigenvalue have
wave functions of the form

-2.00

-2.50

XM(p) =(y' p) exp(iMy)exp( —
yp /4)

1/2
X

[2~(2IMI )))]'" (4)

FIG. 1. Loweest energy, ED(M), of two-dimensional neutral
donor orbitals for each value of M in the infinite field limit The

I /2
abscissa, a, is the distance of the positive ion from th - 1e x-y p ane
multiplied by y . Energies are in units of y' R.
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finding the angle y, 2 between p, and p2 in typical singlet
wave functions. Increases in angular correlation with in-
creasing n are evident in a comparison of the dashed
curves (a=O) and the corresponding solid curves. These
latter are characterized by a relatively large probability of
finding cp&2 in the second or third quadrant, indicating an
increased preference at larger values of a for the elec-
trons to reside on opposite sides of the projection of the
positive ion on the x-y plane. The reason that strong an-
gular correlation is achieved for the lowest-lying states
when a is relatively large is that there is relatively little
attractive-energy advantage for an electron to occupy the
M=O state as compared to a state of higher IMI value,

Oo

SYMMETRIC, M=-2

u=o. 75

Oo

SYMMETRIC, M=-5

u= 1.13

FICx. 4. Polar plots of the probability density of finding an
angle y» between the displacement vectors of the two electrons
in two typical D singlet states. The probability density
represented by a point is proportional to the distance of that
point from the origin. All graphs are plotted using the same
scale to facilitate visual comparisons. The value of a chosen for
each solid curve approximates the displacement of the positive
ion at which maximum binding energy occurs for the state asso-
ciated with that curve.

whereas, by occupying with significant probability the
latter states, the electrons can reduce their mutual repul-
sion by establishing strong angular correlation favoring
values of cp&2 close to ~. At low values of a, on the other
hand, the M=O state is so much lower in energy than any
other level that the lowest-lying states all have at least
one electron in the M=O level, and angular correlation is
inhibited.

Magnetic-field-induced changes in the ground-state
symmetry of D and related systems have been reported
previously. Such eAects have been predicted from varia-
tional calculations in a positronium atom bound to a pro-
ton, and in D ions located near to or inside the bar-
riers of quantum wells. Closer in spirit to the present
work, however, is the recently reported exact numerical
solution of the problem of two electrons in the x-y plane
bound in a harmonic-oscillator potential in the presence
of a magnetic field in the z direction (a model proposed
for the quantum dot problem). '

In the quantum dot model, ' an infinite sequence of
ground states for a fixed dot size but increasing magnetic
field is found. Starting at zero field with an M=O ground
state, the M values attached to the ground-state wave
function decrease without limit in single-unit increments
as the magnetic field increases to infinity. Even values of
M are associated with singlet states, odd values with trip-
let states. Increasing the magnetic field leads to more and
more highly correlated ground-state electronic wave
functions, the electrons tending to lie diametrically op-
posed on opposite sides of the center of the quantum dot
and to press up against the harmonic-oscillator potential
barrier, keeping as far away from each other as possible
without climbing too high on the barrier. The increase of
ground-state IMI values with field at high fields is simply
a consequence of the shrinkage of the cyclotron radius
with increasing field, an e6'ect which would draw the elec-
trons closer to the center (and hence to each other) if not
counteracted by an increase in IMI. All states are bound
since infinite energy is required to remove a quantum-dot
electron to infinity.

Experimental conditions favoring formation of barrier
D ions of the type discussed here are not hard to imag-
ine. Consider a GaAs quantum-well structure with very
wide barriers and undoped narrow wells in which the bar-
riers are selectively Si doped both in the center and near
the barrier-well interface. The center doping would pro-
vide electrons to the well, which, in the absence of doping
near the barrier-well interface, would be unbound (at
large distances from the well, the center doping should
act like a uniform sheet of positive charge). These un-
bound electrons could be trapped by donor ions near the
interface to form barrier D centers. At "high" magnet-
ic fields, the results of this paper should give a good qual-
itative description of the electronic structure of the states
present.

A remarkable feature of the barrier D ions is that un-
der certain conditions, one can expect magnetic "vapori-
zation" of these centers. At /=0 or in bulk semiconduc-
tors, increasing magnetic fields deepen the ground state
of shallow impurities thereby promoting magnetic locali-
zation or "freeze out" of electrons onto impurity sites. In
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contrast, for barrier D states increasing the magnetic
field at appropriate fixed values of g leads to increasing
values of a [see Eq. (6)] and eventual loss of D binding.
In principle, such behavior could be detected by low-
temperature magnetotransport measurements in
quantum-well systems of the type described above.

Regarding variational calculations of barrier D
centers in real quantum wells, the present results suggest
that for the highly correlated states, namely, the M = —2
symmetric state and states with ~M~ )2, Chandrasekar-
type wave functions, which are often used in D calcula-
tions, may give relatively poor energy estimates.
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