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The calculation of the ionization fraction of the ion as a function of the ion atomic number, ion
velocity and target Fermi velocity is the first step in effective-charge theory for heavy-ion stopping.
We show results using the energy stripping criterion for the ionization fraction and give reasons
for its superiority as against the velocity stripping criterion. The second computational step is the
transformation of the ionization fraction into an effective-charge fraction assuming a linear dynamic
dielectric response of the target material. On the basis of the Kaneko shell theory of solid targets we
explain, to what extent the simple free-electron gas model still may work, if the heavy-ion stopping
calculation makes use of the heavy-ion scaling rule and experimental proton stopping data.

I. OVERVIEW

The effective-charge theory for heavy-ion stopping in
solids is a particular form of the dielectric theory of the
electronic part of ion stopping that describes the energy
loss by the electrodynamic force of the charges induced in
the target onto the ion. As an extension of the Lindhard-
Winther theory! of pointlike charges, the fundamental
model was given by Brandt and Kitagawa? (BK) and
became the basis of the calculation of the heavy-ion
electronic stopping by Ziegler, Biersack, and Littmark
(ZBL).3 Selected aspects of these works are reviewed in
Sec. II. Though the determination of the ionization frac-
tion of the ion is the first central step of effective-charge
theory, its theoretical understanding is rather limited.
Section III argues for the energy criterion to explain the
stripping degree of the ion as a function of ion velocity,
ion atomic number, and target Fermi velocity vg. This
work is motivated by the preference given by BK and
ZBL to the competing velocity criterion.

The second step calculates the charges induced in the
target, taking its dynamic dielectric response from a free-
electron gas with the experimental Fermi energy, and
their stopping (Coulomb) force back onto the ion. It
makes clear why the ion with charge Qe is “effectively”
stopped more than a point charge Qe and less than a
bare ion nucleus Zje. Q denotes the ion charge number,
e the elementary charge unit, Z; the ion atomic num-
ber, and ¢ = Q/Z; the ionization fraction. Within linear
response the heavy-ion stopping cross section S(q,v, Z1)
is less than Z2 times the stopping of a proton at the
same velocity v, where hydrogen is assumed to be fully
stripped. A useful description of this deviation is the
definition of the effective-charge fraction +,

S(g,v,21) = (vZ1)® S(g = 1,v, 2, = 1) (1)
(g< v<1).
On the one hand « is predicted by effective-charge the-
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ory; on the other hand it is available from the ratio of ex-
perimental heavy-ion and proton stopping data. Instead
of using the heavy-ion stopping calculated in the second
step, ZBL enter into a third computational step. Only
the theoretical effective-charge fraction «y is retained. The
final heavy-ion stopping at the left-hand side (lhs) of (1)
is computed inserting the experimental proton stopping
into the rhs, now using it as the “heavy-ion scaling rule.”
The experimental proton data introduce and add the in-
dispensable contribution of the target core electrons to
the stopping. Section IV deals with the related question,
why can the target dielectric function modeled by a ho-
mogeneous electron gas still be sufficient to calculate -,
though it represents only the polarization of the top va-
lence band and conduction electrons? We want to give
an answer from the viewpoint of an extended description
of the target electrons. The aim beyond that is to let the
third heuristic scaling step become superfluous. Instead,
the heavy-ion stopping should be determined directly in
a modified second step on the basis of a more realistic
target-electron model.

II. BRANDT-KITAGAWA THEORY
AND ZBL MODIFICATIONS

The BK theory? describes an ion with N = Z; — Q
bound electrons by the radial symmetric particle density

pe(r) = Nexp(—r/A)/(4wA%r) (2)

(A is the ion size parameter). The total energy of the
electrons is built by the sum of the local density ap-
proximation (LDA) of the kinetic energy, the Hartree
approximation to the electron-electron interaction, and
the Coulomb energy of the electrons in the field of the
nuclear charge. A variational coupling factor A was in-
troduced to correct for missing exchange and correlation
terms. With p. from above, the total energy of the bound
electrons reads
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(a = 0.24005, m is the electron mass, % is the reduced
Planck’s constant, SI units throughout). The size param-
eter A was determined to minimize this energy,

A=2a(1-9)* a0/ [2°{1-A1-9)/8}] (@)

(ao is the Bohr radius). We note that factors in corre-
sponding expressions in Refs. 3-5 were erroneous. The
same A is obtained by applying the virial theorem to
the three terms of Egx. A had to be 4/7 to let the
neutral atom of an element have lower energy than its
ions. The binding energy Egk is close to the Thomas-
Fermi (TF) model.® Both lie approximately 20% below
the more accurate Hartree-Fock energies of the Clementi-
Roetti (CR) tables” (Fig. 1). The overestimation of the
binding energies of the electrons in the nuclear field arises
from the singularities of the charge densities at 7 = 0 in
both models.

The electronic stopping cross section S per target
electron was obtained from the generalized Lindhard-
Winther theory of the stopping in a homogeneous elec-
tron gas with electron density n and Lindhard dielectric
function e:®

Z2et

§=-21° (5)
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(L is the stopping number, k is the wave number). The

form factor p,,(k) is the Fourier transform of the to-

tal charge number density, the nuclear part Z;6(r) plus

pe(r). In the BK theory, Eq. (2) yields
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FIG. 1. Scaled ion energies. Thick line: BK energy, Egs.
(3) and (4). Chemical symbols: CR (Ref. 7) energies. Thin
line: TF energy (Eo = 1 Ry =~ 13.6 eV).

pm (k) = pn(k) + pe(k) = Z1 — N/ [1+ (kA)?].  (7)

For small momentum transfer ik, which means soft, dis-
tant collisions, p,,(k) approaches Q — the ion looks like
a charge Qe to the target electrons. At large k, which
means hard, close collisions, p,,(k) approaches Z; and
they feel more of the nuclear charge. The unrealistic
model charge density nearby the ion nucleus influences
only the high-k limit of p,,. There it is suppressed by
the multiplication with the energy loss function o< 1/e,
if the target Fermi velocity vy and wave number kz are
chosen realistically: The imaginary part of 1/¢ is zero for
the Lindhard dielectric function if & > 2kp(v/vr + 1).
The target electrons cannot resolve the inner ion struc-
ture. Therefore the stopping power calculation suffers
less from this weakness of the ion model than the total
electron binding energy.

Given some ionization fraction g, the theory predicts
the stopping cross sections of heavy ions and protons by
(5) and (6) and the effective-charge fraction v by (1) out
of their ratio at equal velocity.

In Secs. ITI A and IV C we shall deduce ionization frac-
tions from effective-charge fractions. The effective-charge
fractions of ZBL (Refs. 3 and 9) will be taken as a reliable
starting point, rather than the results of the BK theory,
because of the larger amount of experimental data. The
following brief discussion enlightens the consequences of
the ZBL modifications of the “inner” variables in the BK
theory.

ZBL simplified a formula for v, already given by BK
as a good approximation in the region S  v:

v=g+3(1 -9 (vo/vr)In[1+ (4Rkr/1.919)2]  (8)

(vo is the Bohr velocity). The ion size parameter A
was generally increased compared with expression (4),
and multiplied with a tabulated factor individual to Z;
[Fig. 2(a)]. At low velocities, when g is small and the
term o 1 — ¢ dominates the rhs of (8), this modification
creates the Z; oscillations of Fig. 3, which are missing in
the BK ion model. ZBL told that the plateaus in A(q)
account for the enhanced K-shell screening, but they are
not really correlated with the number of bound electrons.

Using (8), an increase of the target-electron density
slightly reduces y at constant ion parameters and low
velocities: v(g,A,vF)/0vr < 0, opposite to the BK re-
sults. Therefore, (8) contradicts the comprehension that
an increase of vp places more target electrons near to
the ion nucleus and should increase .2 This unique sign
of this partial derivative is not found in Fig. 3, however,
but the curves of Mg targets cross the curves of Si tar-
gets of the same velocity. The reasons are that (i) the
ion parameter g is not a constant in the ZBL descrip-
tion, but depends on Z; itself, and (ii) in fact (8) is
only used exactly, if the velocity is high enough to let
p > max(v0,0.13Z11/3v0) hold (see below). It should be
kept in mind that (8) was intended to deliver stopping
numbers in conjunction with an universal fit of the ion-
ization fraction g, but neither fit was claimed to hold on
its own.

The ionization fraction was derived from experimen-
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tal data as a fit function of the effective ion velocity
Yr = vp/ (UOZf/ 3), assuming the validity of (8). The re-
sultant ZBL ionization fraction is given in Fig. 4. The
choice of y, as the scaling variable was motivated by the
velocity stripping criterion (Sec. III B). The velocity vari-
able depends on the target Fermi velocity via

v [1+ 3(%)?] ifv > vp,

[N
b
I

9)

2up [1 + %(%)2 - %3(;}’;)4] ifv <wp,

as proposed by Mann and Brandt,*!° but additional lim-
its were set in the ZBL program:

v, = max{vo,ﬁr,0.13v0212/3}. (10)

Unfortunately the ZBL redefinition of the ion size pa-
rameter A did not need to account for a reliable conser-
vation of the electron binding energy, because the energy
does not come into play during our second calculational
step, the calculation of effective-charge fractions. If, for

size parameter * Z, %/,

E/[E,Z,]
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FIG. 2. (a) Ion size parameters. (b) Ion energies if the size
parameters of (a) are inserted into (3). The smooth thick
lines denote the BK ion model with size parameter A, the
thin lines examples from the ZBL parameter A (practically
independent of targets).
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FIG. 3. Effective charges vZ; by the ZBL program for ion
velocities 0.4vo, vo, and 2ve and targets 12Mg and 148Si.

example, A is inserted into the BK energy functional (3),
the binding energies look like in Fig. 2(b) and, e.g., show
an energy minimum for ;3 Ar®% instead of 13Ar°. It is not
even clear whether the ZBL fit of ion parameters implies
some different form of the energy functional. Since the
energy of the “ZBL ion” is neither known nor defined, the
direct comparison of energy criterion predictions (Sec. III
C) with the ZBL ionization fraction is impossible. There-
fore, in Sec. III A we switch to ion models with available
electron binding energies.
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FIG. 4. Thick line: ZBL ionization fraction ¢ vs effective
ion velocity y.. Thin lines: ionization fractions with ZBL
effective charge fractions v but fully integrated BK ion and
Lindhard dielectric function. Vertical lines comprise results
from different velocities v that are mapped onto a common
y- by (10).
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III. ENERGY
AND VELOCITY STRIPPING CRITERIA

A. Deducing ionization fractions: Ion models

Ionization fractions deduced from experimen-
tal effective-charge fractions greatly depend on the ion
model and treatment of the stopping number integral in
(6). The hidden values of g are estimated from measured
v by transformation formulas like (8).

To give an idea of the differences that emerge from
diverse handlings of these transformations, Fig. 4 shows
ionization fractions that reproduce the effective-charge
fractions of ZBL, but result from the calculation of the
electronic stopping cross sections of protons and heavy
ions by numerical integration of the BK ion form factor
(7) and the Lindhard energy loss function. Two effects
contribute to the changes compared with the ZBL ion-
ization fraction. (i) The low-velocity ZBL approximation
(8) always underestimates v compared with the fully in-
tegrated stopping number and generally compensates it
by assuming a larger ¢. (ii) At low velocities, « is addi-
tionally increased by the increased ion size parameter A
[cf. Fig. 2(a)], which demands a lower g for compensation.

A more precise ion model is given by the ion charge
distributions tabulated by Clementi and Roetti, based
on the Hartree-Fock method.”

Figure 5 compares CR with BK electronic stopping
powers from the fully integrated (6) at fixed ionization
fractions. The CR free ion charge densities generate
higher stopping powers at small q. The centers of the
outer CR ion shells with wave functions o< r™~le~¢"
are more distant from the nucleus than the tighter
BK charges, let pass more target electrons through less
shielded ion regions, and increase the stopping. Though
the CR charge densities and energies (cf. Fig. 1) show
definite shell effects, we see no equivalent bunching of
the stopping curves of equal principal quantum number,
because the target one-electron radius is larger than the
inner ion shell radius. This resolution argument has been
given in Sec. II in momentum space. The difference be-

tween the CR and BK electronic stopping thus vanishes
at large Q.

Deducing q from a given effective-charge fraction is re-
stricted to the finite set of integer @ values in the case
of CR ions. The calculated ¢ values, however, stay below
the estimates of the BK ion model (Fig. 4) as a conse-
quence of the different stopping powers, and even below
the ZBL curve at low velocities.

Figure 6 results from a check on the presence of Z;
oscillations of CR ions. The effective-charge vZ; does
not show the distinct minimum at Z; = 10,...,12,
predicted by scattering theory and density functional
calculations,'' 13 but only a weak reduction. Two other
characteristic features of the Z; oscillations are repro-
duced. (i) If v is above the limit for plasmon excitation,
the structures diminish, and (ii) at lower vp they are
more pronounced. The effective-charge treatment can-
not explain Z; oscillations by the filling of open ion shells,
mediated by Friedel’s sum rule. The essential prerequi-
site is absent: Charges induced in the free-electron target
are calculated with incomplete regard to the ion charge.
€ does not comprise a self-consistent electron excitation
spectrum and not the phase space blocking imposed by
the electrons bound to the ion.'* The mutual interaction
between the ion charge and induced charges is merely
described within the Hartree approximation. The struc-
tures obtained here result from their spatial overlap.

B. Velocity criterion

The velocity criterion to explain the dependence of the
ionization fraction q on the ion velocity reads as follows:
Electrons are stripped, if their orbital velocity v, is less
than the ion velocity v.2**717 The BK theory added a fit

parameter b, named stripping parameter,

bve(rq) = v,

and modeled the ion by a neutral TF atom with the elec-
trons outside the cut radius r4 stripped:

0.20

0.05f

FIG. 5. Energy losses
L/(v/vr)? by (5) with projec-
tile ;5P, the Lindhard dielec-
tric function inserted into € and
vp = wvo. Numbers at curves
denote the ion charge numbers
Q. (a) BK ion model. (b) CR
charge densities.

0.00 ' * ! ! !
00 05 10 15 20 25 30 35

v/v0

05 10 1.5 20 25 30 35 40

V/Vo



51 EFFECTIVE-CHARGE THEORY FOR THE ELECTRONIC. .. 111
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FIG. 6. Effective charges vZ; of atoms (charge number 0)
and ions (charge numbers 1 and 3) by (5), using the fully
integrated Lindhard dielectric function for protons and pro-
jectiles. The five stepped upper curves result from inserting
CR ions into pm, whereas the two smooth lower stem from
the BK ion model, (7). Plasmons are excited at v > 1.36v if
VF = vg, at v > 0.986v¢ if vp = 0.7v0.

Q= p(r)d>r.

T>Tq

p(r) represents the electron density of the neutral TF
atom. It was linked to the orbital velocity ve(r) via the
LDA. In terms of the standard reduced variables ® and
z of the TF equation® the BK ionization fraction ¢(v) is
reproduced by the implicit representation

%:bsgwi and q=@—wﬁ, (11)
vo 22/ 3rV z dz

where ®(z) is the solution of the TF equation of the neu-
tral atom. This ionization fraction is shown in Fig. 7
as a function of the variable y = v/(vOZf/3). The ad-
justable stripping parameter b was found to be 1.33 for
best agreement with experiments.

C. Energy criterion

The energy stripping criterion to explain the depen-
dence of the ionization fraction on the ion velocity
was formulated as follows: The total energy E of the
N bound electrons in the target frame of reference is
minimized.!%1® For ion models with integer N or for sta-
tistical ion models this means alternatively

OE(N,v,Zy,...

min{N}: E(N —1) > E(N) or N ) =0.

(12)

The second form is the lowest-order Taylor approxima-
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FIG. 7. Thick line: ionization fraction from energy crite-
rion with total energy Esk + —;—m'uzN, Eq. (14). Crosses:
values by Knipp and Teller (Ref. 20). Thin solid line: ZBL
ionization fraction. Dotted thin line: BK ionization fraction,
Eq. (11).

tion to the first. The total energy E generally comprises
the potential and kinetic energies of the bound electrons.
It may be split into the inner ion energy FE;, measured in
the ion frame of reference, and the center-of-mass part of
the total kinetic energy, measured in the target frame of
reference:

E=E; + %mva. (13)

The energy criterion tests for each N whether the gain
of kinetic energy of an electron that has been stripped
and has come to rest in the target suffices to procure the
increase of the inner energy. The energy ansatz requires
a good separation of two time scales: The ion state must
change slowly compared with the collision time with the
target electrons. Rather independent of the ion atomic
number and velocity, ions change their charge state by
one elementary charge unit within 100-200 fs, whereas
the collision time is about three orders of magnitudes
smaller. This close contact of the ion with the target-
electron “bath” ensures that the inner variable ¢ follows
changes of v with practically no delay and we may relate
E;(q) with the kinetic energy at velocity v.

A basic realization is obtained from the BK ion energy,
E; equal to Ek as defined by Egs. (3) and (4). Insertion
of E into (12) yields

6a(1 - 9%y = [1- 30— 0| [1- Tra - 0] a9

plotted in Fig. 7. Some arguments® that were given to
support the superiority of the velocity criterion do not
hold:

(a) As the mean kinetic energy per bound electron in

the TF or BK ion model is proportional to Zf/3, the
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velocity criterion yields a universal scaling parameter
Y X v/le/ 3. The same scaling results from the energy
criterion applied to ion models with energies of the form
E; < Z;’/ 3 f(q) as well. Equation (14) proves it for the
BK ion.

(b) In the limit of effective one-electron potentials o
1/r, the virial theorem unifies both criteria.!® The work
of Northcliffe!® deals with ions stripped up to the K shell,
where this limit is realized. Therefore it cannot be quoted
to decide which criterion agrees better with experiments.

(c) Knipp and Teller2? calculated ionization fractions
of the TF ion close to our results of the energy criterion on
the BK ion by looking at “electronic velocities within the
ion” (cf. Fig. 7). Their formula is obtained from the en-
ergy criterion starting with dE/dN = (dE/du)/(dN/dy),
where y denotes the TF chemical potential. Their word-
ing “mean square velocity” actually means the kinetic
and binding energies and is misleading in our classifica-
tion.

On the other hand, the correctness of the energy cri-
terion is made clear by the following items:

(i) The energy criterion predicts that ¢ is not propor-
tional to y at small y, contrary to the velocity criterion
(Fig. 7). Instead, the low-velocity approximation of (14)
is ¢ ~ 7Tay?, and the resultant “knee” fits better with the
ZBL gap on the y axis at low energies. This power law
reflects the first ionization energy of the BK ion, which
is proportional to le/ % and set equal to %m'v2 by the
energy criterion.

(ii) The energy criterion is open to improvements con-
cerning the quantum mechanical treatment of the ion en-
ergies — without an equivalent for the velocity criterion.
For example, Fig. 8 gives the plateaus of stability of an
integer number of bound electrons by the discrete ver-

CO Mg
B N Ne Si Ar Cr

T —r7
H F i =.J
! PO A |
—_..: -—

(R T L S

1.0 1.5 2.0 2.5 3.0
y

FIG. 8. Thick lines: ionization fractions by the discrete
version of the energy criterion with E = Ecgr + %mva [Ecr
is the Clementi-Roetti (Ref. 7) ion energy]. Thin smooth line:
ZBL ionization fraction.

sion and the CR ion energies. The gaps on the y axis are
the analog of the delayed rise of g(y) in (i) in the case of
ion models with nonzero first ionization energies and the
discrete version of the criterion. The steep parts arise
from the comparable magnitudes of successive ionization
energies of open K or M shells.

(iii) ZBL demonstrated an improved universal scaling
q(y), if the ion velocity v is replaced by a relative ve-
locity v,, Eq. (9). The energy criterion implies this im-
provement, too. The c.m. kinetic energy of the bound
electrons was written %mva in the target frame of ref-
erence. Actually, the maximum total energy available
to the stripping process must be calculated from the to-
tal kinetic energy in the c.m. system of the colliding
partners. The velocity of the colliding target electrons
defines a statistical frame of reference with velocity dif-
ferences between v — vg and v + vp. The mean of the
squared velocity is increased just as calculated by ZBL.
The thermodynamic point of view describes this term by
the replacement Egx — Eggk + uN, where p is the Fermi
energy of the host material. This shifts the minimum of
Egk with respect to N from ¢ =0 to ¢ =~ 7ap/(E0Zf/3)
and predicts an energy increase of about pZ;, which is,
up to shell effects, in accordance with results from density
functional calculations.?!

(iv) The BK ionization fractions, which were calcu-
lated from the velocity criterion, are closer to the ZBL
values than those from the energy criterion (cf. Fig. 7).
But this gives no reason to claim the superiority of the
velocity criterion, since it was only achieved by the instal-
lation and adjustment of the stripping parameter b. The
following criticism of the energy criterion in the simple
form (12) gives the physical understanding, why a corre-
sponding substitution of mvZN/2 by mv2N/(2b%) must
be introduced on its part in (13). The excess energy
%m'u2 per bound electron compares virtual steady-state
situations with more or fewer electrons stripped, with no
regard to the physical transition process. The energy
criterion must be reinterpreted as a comparison of the
ionization energies with the energies actually transfer-
able during capture or loss processes. Target electrons
lose their kinetic energy by excitation of the bound elec-
trons under the kinematical restrictions of momentum
and energy conservation. This partitioning of the energy
with later radiative or nonradiative deexcitation may ef-
fectively catch electrons though their energy %mv2 ex-
ceeds the suitable energies of free ion orbitals. The same
mechanisms reduce the available energy transferred from
a target electron to a bound electron, which is a candi-
date for being stripped.

In a simple mechanical model the target electron may
collide with a subset of N of the bound electrons, and
the rest of them are treated as spectators, an external
potential. Under the constraint of energy and momentum
conservation the resultant stripping parameter is (1 +
1/N)'/2, thus interpolating between 1 (low velocities, N
large) and 1.41 (high velocities, N = 1). The best fit
to the experimental ¢(y,) is the identification of N with
the number of electrons still bound in the outer shell.
Applied to Fig. 8, this concept flattens the steep parts
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with open K and M shells, since the high-q endings with
nearly empty shells and small NV are transferred more into
the high-v direction than the low-g endings. Summing
up, the reciprocal of the stripping parameter is a degree
of efficiency of the energy transfer between target and
bound electrons.

IV. TARGET DESCRIPTION:
FREE-ELECTRON GAS, SHELLS

A. Kaneko theory

The Kaneko theory?? calculates the total electronic
stopping cross section of one target atom by the sum of
cross sections of free electrons and shells of bound elec-
trons,

S = Z Nghell Sshell

free,bnd

(Nghen is the number of electrons per atom in the shell).
The free-electron cross sections are taken from the Lind-
hard theory; some elemental targets are exclusively com-
posed of bound electron parts (Ngee = 0). The momen-
tum expectation values of electrons in bound shells are
fitted by Gaussian distributions with characteristic wave
numbers §. The equivalent characteristic velocities and
density parameters are ¥ = hg/m and x% = 1/(wgao)-
The dielectric functions e(k,w) are calculated within the
random phase approximation (RPA) independently shell
by shell by insertion of the Gaussian occupation probabil-
ities in momentum space. In local space, the ground state
density continues to be homogeneous for both free and
bound electrons. A local variant, derived from a super-
imposed local plasma approximation, was applied by Xia
et al. to the low-velocity heavy-ion stopping.!?:22 Follow-
ing the linear dielectric response treatment of Lindhard
and Winther,! the stopping cross sections of bound tar-
get electrons are

Z32et
S nd = _‘1—'L nd
bnd 4memu? bnd
8 | pm(z) 2 v/v 1
L = - d Im—du,
bnd 7T3/2x2/(; z’ A z/o u me(z,u) u

with z = k/(29) and u = w/(0k) here.

The Kaneko model predicts rather accurate proton
stoppings. They are slightly above the ZBL values at
v 2 4vg, and slightly below in the region of S o« v. The
latter is a feature well known from the RPA of the di-
electric function of the free-electron gas. The free elec-
trons supply the major part of the proton stopping at low
velocities; therefore the total cross section is underesti-
mated, too. The former, to our belief, is caused to some
extent by an overestimation of the phase space available
to excited target electrons. The present model and di-
electric functions permit the electron excitation by an
arbitrary energy transfer Aw for any shell, which is jus-
tified for the free-electron parts but not for the bound

electrons. We have tested the influence of a simple cor-
rection for the excitation gaps Ep,q of the inner shells
by setting Ime(k,w) = 0 if |Aw| < Epna with consistent
adaptation of Ree by a Kramers-Kronig analysis. Re-
sults from inserting orbital binding energies of isolated
atoms”?* into Eppq show that this suppression of the in-
ner target shell contributions removes the 5-10 % surplus
of the Kaneko proton cross sections compared to the ZBL
database. Though this variant takes even more influence
on the heavy-ion cross sections, we shall present results
obtained from the original model. At low v the changes
cancel partially, at high v massively, if we build the ratio
of cross sections and «y, which we concentrate on.

B. Effective charge and Fermi velocity

The ZBL calculations basically derive heavy-ion stop-
pings by insertion of formula (8) into (1). That means
that the dependence of the cross section on individual
targets is mainly brought in by the experimental proton
stopping data, whereas the effective-charge fractions are
only controlled by the free and valence target electrons
in terms of the Fermi velocity.

The Kaneko model supports this simplifying replace-
ment of y(Z3) by a y(vr): Squared effective-charge frac-
tions from the Kaneko theory for protons and heavy ions
are given in Fig. 9. The stopping numbers L were nu-
merically integrated shell by shell, using (7). Sometimes
two different ¢ values have been chosen to check that our
qualitative observations are independent of the ionization
fraction. The effective-charge fraction - is predicted to be
a rising function of the target Fermi velocity [Fig. 9(b)].
This statistical point of view legitimizes the simplified
ansatz y(vp). The comparison is consciously done with
the Fermi velocities tabulated by ZBL, not with values
derived from the number of free electrons in the Kaneko
theory. The range of validity of (8) is not overestimated
this way. The reason for this correlation between v and
vp is made clear in Fig. 10: The target shells of local-
ized electrons build a much higher percentage of the total
cross section of the heavy ion than of the proton at small
v. Therefore, the cross section S(Z2) is rather smooth
in the case of the heavy ion, but anticorrelated with vg
in the case of the proton. Their quotient and eventually
v in our mixed BK-Kaneko theory must be positively
correlated with vp.

The formula of the L integral lets us also understand
why heavy ions with small ¢ owe a larger part of their
total cross sections to the bound target electrons than
the pointlike protons. The heavy-ion form factor p,,(z)
suppresses the low-z contributions from the u integral,
whereas the constant factor of the proton collects all
alike. At the same time, for loosely bound or free target
electrons the maximum of the u integral, the energy loss
function, is localized at smaller z. Building the product
and integrating over scaled wave numbers z means that
the heavy ion looks screened for small z (small momen-
tum exchange), where the free electrons dominate the
target excitation spectrum. It looks like the full core
charge for large z, where the inner target shells may be
excited.
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Kaneko’s v(Z2) of fixed ionization fractions [Fig. 9(a)]
is a much more varying function than the nearly flat ZBL
results at small and medium velocities. First, this may be
attributed to known imperfections of the BK ion model
at low velocities, e.g., the absence of Z; oscillations, as
discussed in Sec. IIT A. Second, a simultaneous depen-
dence of ¢ on vp, which must be stronger than used in
the ZBL program, would be able to reduce the residual
~ oscillations.

A slight rise of y(Z2) at large ion energies is predicted,
which is correlated with the mean density of all target
electrons, not only the subset that is represented by the
Fermi velocity [Fig. 9(a)]. This indicates the attainment
of a binary encounter level; the ion interacts with tar-
get electrons separately, and the cross section per tar-
get atom becomes proportional to the total number of
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FIG. 9. (a) Squares of effective-charge fractions from the
Kaneko target model (solid-state parameters), the BK ion
model, and constant ionization fractions. (b) One of these sets
versus the ZBL target Fermi velocity instead of the atomic
number. Targets — like solid rare gases or 43Tc — that
have likely had little experimental significance and statisti-
cal weight in the ZBL data basis should be left aside when
drawing conclusions from the figure. The dashed lines only
serve as a guide to the eyes.

electrons per target atom. -y becomes a function of the
mean density of all target electrons at the ion place in
the model. It generalizes the interpretation by BK (Ref.
2) for free-electron targets that vy — ¢ quantifies the point
character of the ion by comparing its size parameter with
the target-electron distance. The ZBL effective charges,
however, do not depend on Z, at large ion velocities. The
nonconformity may suggest that, for example, the mod-
els of effective-charge theory are wrong in placing the ion
on but should place it in the target electrons, pushing
them away. Furthermore, the deviation of the ion path
from a straight line trajectory during the ion-atom colli-
sions may introduce a different effective statistical weight
of the target shell contributions.

C. Effective-charge fractions by
free-electron subshells

Complementary to the previous section, the Kaneko
theory allows for another kind of test whether a restric-
tion to the subset of the free target electrons is possible.

FIG. 10. Individual shell contributions to the total stop-
ping from the Kaneko theory for Z; = 15 (top figure) and
protons (bottom figure) with v = vy and BK form factor.
Upper thick lines denote total cross sections S, lower thick

lines shares of free electrons NfreeSfree, thin lines of selected
S, D, and d shells, andSb,,d.
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This time we keep the target fixed and choose the ion
velocity as the variable. Within the Kaneko theory the
squared effective-charge fractions

2 — S(Zl,qsv)
Z%:8(Z, = 1,9 = 1,v)

are compared with the corresponding ratios of the subset
of free electrons:

¥ (15)

Sfree(ZlaQ) ’U)
Z]?Sfree(zl = 11q = 1’ 'U).

(16)

For a quantitative test, heavy-ion ionization fractions ¢
must be provided first. For example, insertion of the ZBL
ionization fractions into the mixed BK-Kaneko model
leads to heavy-ion stoppings that exceed the ZBL val-
ues more and more if Z; increases. Therefore we varied g
in the BK charge model, until the Kaneko theory repro-
duces the ZBL effective-charge fraction. The resultant
values of (15) and (16) are compared in Fig. 11.

The approximative replacement of the “full target” ra-
tio by the “free-electron subshell” ratio works well for
high ion velocities and sometimes, including the semicon-
ductor targets 14Si and 3,Ge, down to medium velocities.
Though in our examples the free-electron subshell never
contributes more than 40% to the total stopping cross
sections at high velocities, a strong and precise cancel-
lation of the remaining subshells may equalize (15) and
(16). The necessary condition is that the free electrons
give the same percental contribution to the heavy-ion
and proton stopping powers, but not that this percent-
age is large. This condition is automatically fulfilled
in the Bethe limit of binary ion-electron collisions (cf.
Sec. IV B), when the free target electrons share the ra-
tio Ngree/(Niree + Y Nbnd) of the stopping power of any
projectile, heavy ions or protons.
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That means, although the direct calculation of heavy-
ion or proton stopping powers using the free-electron tar-
get model and the electron density taken from experimen-
tal Fermi velocities is highly inaccurate, their ratio yields
reasonable effective-charge fractions.

At least two factors are recognized that validate this
scaling even at low velocities: first, if the ion has small
Z; and is therefore highly stripped or pointlike even at
small v. Second, the “free-electron approximation” works
better, if more of the target electrons are assumed to
be free, better for the semiconductors Si and Ge (4 of
14 and 32) than the metals Ni and Fe (2 of 28 and
26). The nonequivalence of the number of free electrons
in the Kaneko theory to the experimental Fermi veloc-
ities vp used by ZBL introduces some arbitrariness of
the comparisons. For Si, vgp = 0.974vy corresponds to
4.2 electrons evenly distributed in the crystal; for Ni,
vp = 1.2vp corresponds to 4.3 electrons; i.e., the cross
section of about two d electrons should be added to the
two free electrons before building the fraction (16). The
example of the Fe target has been added to show that
this nonequivalence need not be responsible for the worse
agreement of the Ni ratios: The Fe value vy = 0.927vg
corresponds to 2.1 electrons evenly distributed in the
crystal in good accordance with Kaneko’s partitioning,
but does not give better agreement of the ratios.

The mismatch of the curves at v < 2vg is rather caused
by a breakdown of the mixed BK-Kaneko model. For
heavy ions at low velocities we can no longer find values
of g to fit the small effective charges of ZBL. The model
sets lower bounds to the effective charge fractions that
are reached by slightly negative g¢; they increase again if
q is chosen more negative. In the example of P on Ni in
Fig. 11, negative values of the fitted ¢ had to be used at
v < 2vg to adapt 7y to the ZBL values.

FIG. 11. Comparison of squared effec-
tive-charge fractions of the Kaneko theory
using the BK form factor. Thick lines: by
ratio of the total cross sections, made iden-
tical with ZBL by fitting q. Thin lines: by
ratio of the cross sections of the free-electron
parts only. Numbers in braces are the total
number of electrons or number of free elec-
trons per target atom.
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V. SUMMARY

Effective-charge theory neatly separates the ion and
target properties. It provides much physical insight and
is not restricted to ranges of ion atomic numbers or ve-
locities.

There has hitherto been no successful parameter-free
explanation of the experimental ionization fractions of
medium and heavy ions. The energy criterion is more
universal and fundamental than the familiar velocity cri-
terion. Accordance with experiments can be achieved if it
is improved by looking at the effectively available energy
transfer of target electrons to the ion.

In general, the free-electron gas model of target elec-
trons is highly inaccurate due to the contributions of

target inner shell excitations to the charges induced by
protons or ions. The inspection by the extended target
model of Kaneko verifies that the effective-charge frac-
tion may be interpreted as being built only by the elec-
trons in the top valence or conduction bands. Effective-
charge theory may therefore use the effective-charge frac-
tion parametrized by the target Fermi velocity in the
heavy-ion scaling rule.
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