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Spectral statistics of nondiffusive disordered electron systems: A comprehensive approach

Alexander Altland* and Yuval Qefen
Department of Condensed Matter Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel

(Received 8 December 1993)

We present an analysis of the two-level correlation function (K) and the fluctuation of the level num-

ber (X&) within an energy interval E of disordered conductors. Our analysis extends to nondiffusive re-

gimes, including E larger than the inverse elastic scattering time A/w and ballistic (but not perfectly
clean) systems. Technically, our perturbational approach goes beyond the common diffusion and coope-
ron approximation. We find additional types of behavior for E and X2. These manifest in the large-

energy (E & A/~) nonuniversal regime, which is studied vis-a-vis general features of the scattering poten-

tial. The impurity-averaged correlation function is contrasted with energy-averaged correlators often

employed in the context of quantum chaos. Various composite correlation functions, defined with

respect to energy, disorder, and possibly sample-size-averaging procedures, are introduced and calculat-

ed. This provides a bridge between the physics of clean chaotic and disordered systems. We extend our

analysis to the case of an external magnetic field that is applied to a diffusive sample. We address the

question of how strong magnetic fields, corresponding to magnetic lengths smaller than the elastic mean

free path, affect the spectral statistics.

I. INTRODUCTION

Mesoscopic systems exhibit plenty of fingerprint-type
phenomena, i.e., the measured values of macroscopic ob-
servables often depend sensitively on the microscopic pa-
rameters characterizing the system at hand. Two ma-
croscopically identical mesoscopic systems, for example,
may yield very different results for magnetization and
conductance as functions of an external magnetic field.
Similar sensitivity to system parameters typifies chaotic
systems. The study of systems exhibiting fingerprint phe-
nomena can often be reduced to the analysis of the corre-
sponding quantum-mechanical energy spectra. A few ex-
amples in this context are as follows: The averaged mag-
netization of an array of quantum dots (within the canon-
ical ensemble) is related to the fluctuations of the level
number over a field-dependent energy scale. ' The
phenomenon of persistent currents in small normal con-
ductor rings is closely connected with level correlations
at the Fermi energy. The ac conductivity of an isolat-
ed mesoscopic conductor ( cr)tios connected with correla-
tions over an energy scale co. Other Auctuation phenom-
ena (including conductance and magnetic-susceptibility
fluctuations) are connected with spectral correlations, as
well. An exhaustive statistical description of random en-

ergy spectra is a highly complicated, and in many cases,
an unmanageable task. Many mesoscopic phenomena,
however, including those itemized above, can be dis-
cussed by relating them to the most elementary correla-
tion function characterizing a stochastic spectrum. This
function, which is often denoted by K, will be defined
below.

Besides its importance for practical applications, the
correlation function K also plays a more fundamental
role as a source of information about the charge carrier
dynamics: Within the semiclassical approximation (cf.,

e.g. , Ref. 8), the energy Fourier transform of K represents
a measure for the classical probability for electron
motion along periodic orbits (a more precise formulation
of this statement will be given below). So far, the
correspondence between classical dynamics on the one
hand and spectral correlations induced by the presence of
disorder on the other hand has only been elaborated in
cases where the dynamics is governed by diffusive
motion. On the other hand, the derivation presented in
Ref. 8, as it relies only on the applicability of the semi-
classical approximation, should extend throughout a
much wider domain including, in particular, the
nondiffusive regimes treated in this paper. Indeed, it will
turn out that many of the results derived below (in a fully
quantum-mechanical formulation) can be given a vivid a
posteriori interpretation by relating them to the classical
dynamics of electrons in the regime under consideration.

Spectral correlations are of fundamental importance in
the context of quantum chaos as well. One is typically in-
terested in the behavior of quantum particles moving
freely within certain geometries. Such systems will be re-
ferred to as clean systems. Depending on a clean
system's geometry, the corresponding dynamics may be
governed by chaotic or regular motion. Besides the
confining geometry, microscopic disorder may render the
motion of quantal partic1es chaotic as well. This explains
the far reaching analogies between the physics of clean
chaotic and disordered mesoscopic systems, respectively.
To classify these analogies, it is convenient to distinguish
between at least four different ranges of disorder strength.
As a preliminary stage to the definition of the various dis-
order regimes, we list the relevant length and energy
scales. Throughout this paper an A= c= 1 convention
will be employed.

The length scales are as follows.
L is the linear size of the system.
l& is the phase-breaking length, i.e., the scale beyond
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which a single electron may not be described by a
coherent quantum-mechanical wave function. Dephasing
may be caused by electron-electron collisions, by the in-
teraction of the electron with external degrees of free-
dom, or by temperature-induced energy averaging.

g is the Anderson localization length (localization al-
ways occurs in systems of dimensionality d ~ 2 or, other-
wise, for sufficient strong disorder).

I is the elastic mean free path. For soft scattering po-
tentials one has to distinguish between the mean free path
between subsequent scattering events, and the (longer)
scale characterizing the randomization of the particle's
original momentum, the latter scale is of relevance for
transport coefficients.

A,z is the Fermi wavelength (the inverse Fermi momen-
tum A,z= 2vrpr —'). Unless we are in the strong disorder
limit the inequality pF I &&1 holds.

The relevant energy scales are as follows.
EI; is the Fermi energy.

' is the inverse elastic mean free time. Similarly to
our preceding remarks one may distinguish between the
elastic-scattering time and the transport mean free time
(associated with large momentum transfer).

t& is the inverse time of Aight of electrons at the Fer-
mi energy through a ballistic system t&

' =—vI;L '. Here
vF is the Fermi velocity.

E, is the Thouless (or correlation) energy E, =DL
equal to the inverse diffusion time through a diffusive sys-
tem.

is the inverse dephasing time.
5 is the mean level spacing at the Fermi energy.
We next review the classification of disordered meso-

scopic systems (L &l&) according to the degree of disor-
der. The scheme applies to systems of integrable
geometry.

For strongly localized systems, L »g.
For diffusive systems, l «L «g, or in terms of energy

parameters 6 «E, « ~ ' «E~.
For ballistic systems, lM ' «L « l or

«Ez. Here M is the number of trans-
verse channels. The inequality involving length scales
may also be written as 1 « lL ' « (p~L)"

For perturbative (nearly clean) systems,
lL '»(p~L) ' or b, &&r '. These conditions imply
that the typical matrix element of the scattering potential
is smaller than the level spacing. It follows that the spec-
trum may be obtained from the underlying clean spec-
trum employing low-order perturbation theory. Note the
distinction between nearly clean and ballistic systems, the
former imposing more severe conditions on the system
size.

In the present work we consider an electron confined
to move in a regular geometry —in our case a two-
dimensional square. ' In the absence of intrinsic scatter-
ing the motion of a classical particle in such a potential is
integrable. In general the corresponding single-particle
energy spectrum obeys (nearly" ) Poissonian statistics
(degeneracies caused by symmetries, as they occur, e.g.,
in square geometries, may cause deviations from this
behavior). The introduction of impurities or imperfec-

tions renders the motion of the electrons chaotic. Think-
ing in terms of semiclassical trajectories, one should not
expect qualitative differences between the motion of par-
ticles in disordered and chaotic systems on sufficiently
large time scales. Evidently, the degree of disorder will
dictate the relevant time scales needed to observe chaoti-
city. In a more quantum-mechanical picture the disorder
gives rise to a mixing of the clean system's energy levels,
thereby inducing spectral correlations. The extent of
correlation between energy levels depends predominantly
on the disorder strength (measured by r ') and their dis-
tance E. As has been verified for diffusive systems and
energies E & ~ ', there exist various qualitatively
different regimes of correlations. It has been speculated
that Auctuations in the level number obtained within an
energy window AE saturate as AE exceeds 1/~.

Surprisingly enough, this question, although having
important bearing on the physics near the Fermi energy,
has not been settled until recently. Even more important-
ly, it has not been realized that ballistic (according to the
definition above) systems may exhibit interesting types of
behavior that are profoundly distinct from the physics of
clean systems, contrary to some misleading statements in
the literature. As has been pointed out in Ref. 12,
significant mixing of the clean system's levels and non-
trivial spectral correlations may be encountered even un-
der the condition L & /. Evidently these extensions of the
analysis of spectral correlations to nondiffusive regimes
bear consequences on the effects of magnetic fields too.
One may study the effect of weak fields in regimes which
are nondiffusive even in the field-free case. Alternately
one may investigate the influence on strong fields (in a
sense that will be defined below) on diffusive systems. All
cases have in common that the prerequisite of a generally
diffusive dynamics is to be abandoned.

The first major goal of the present paper is to extend
the study of spectral correlations beyond the diffusive re-
gime. To this end we develop a perturbative technique
that is more general than the standard approach in so far
as it does not invoke the standard diffusion and cooperon
approximation. Within that formulation we analyze the
nondiffusive regimes and recover some known results in
order to relate our approach to earlier works. Exploiting
the above-mentioned connection between spectral corre-
lations and classical dynamics, we relate our results to the
dynamical behavior of charge carriers in the nondiffusive
regimes. The second goal of this paper is to compare the
disorder-averaged two-level correlation function with the
energy-averaged correlation function commonly em-
ployed in the field of quantum chaos. We discuss qualita-
tive differences between both quantities and propose a
generalization of the latter to include the presence of im-
purity scattering. We believe that this constitutes anoth-
er step in bridging the two disciplines of mesoscopic
physics and quantum chaos.

The outline of this paper is as follows: In Sec. II we
define our model system and outline the perturbative ap-
proach used to calculate the correlation function K. Re-
sults for the field-free case, both for diffusive and ballistic
systems are presented. Nonuniversal features of the
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correlations and the smooth scattering potentials are dis-
cussed in Sec. III. In Sec. IV we generalize the definition
of the two-level correlation function to include energy
averaging and relate it to the correlation functions com-
monly used in the context of quantum chaos. Magnetic
fields are discussed in Sec. V and a few concluding re-
marks are presented in Sec. VI. Technical details of our
analysis are provided in the appendixes.

II. CALCULATION OF THE TWO-LEVEL
CORRELATION FUNCTION

We now turn to the concrete calculation of the two-
level correlation function. Let us represent our model
system of noninteracting electrons moving in a disor-
dered potential and a magnetic field by the Hamiltonian

&=Ha+ V,
where in a self-evident notation

1H, = (p —eW)'
2m

and Vis a white-noise potential defined by the correlator

& V(x)) =0,

& V(x) V(y) ) = 5(x —y) .
1

2'7TV7

Here, r is the scattering time (of electrons moving at the
Fermi surface), v=v(E~) the density of states per unit
volume at the Fermi energy E~, and the angular brackets
denote the disorder average. At present we specify nei-
ther the system geometry nor the magnetic field. The
generalization of Eq. (1) to different types of disorder po-
tentials will be discussed in a subsequent section.

Our aim is to calculate the two-level spectral correla-
tion function

1K (e„Hi,'e2, H2 ) = [ & v(e„H,)v(e~, H2 ) )

the correlation function takes the form

K (ei&H, & e2&H2 )

+2
& tr ImQ+(e„H, )tr Imf+(e2, H2 ) ), ,

where the subscript c indicates the omission of all discon-
nected contributions to the average and where 6 denotes
the mean level spacing at the Fermi surface. In order to
evaluate this expression to leading order in the disorder
parameter pal ))1, we employ the methods of diagram-
matic perturbation theory. The applicability of perturba-
tion theory is restricted to energy differences co, which
are large in comparison with the mean level spacing h.
For energy differences smaller than 6, the diagrammati-
cally evaluated result exhibits an unphysical divergence
and nonperturbative techniques have to be applied. The
emergence of this divergence can be avoided by smearing
the individual energy levels according to E ~E+l g,
y=O(b, ). ' For the sake of notational simplicity, we
denote the smeared levels again by e+—. On energy scales
larger than 6, this manipulation does not affect the spec-
tral properties of the model and it permits one to apply
perturbation theory throughout the entire spectrum.

In order to evaluate Eq. (5) to leading order in peal, we
find it convenient to express the Green functions as

9+—(e,H)=B,ln(e ——Vf') .

The advantage of this seemingly complicated representa-
tion will become apparent below. Expanding Eq. (6) in
terms of V and taking only diagrams with avoided cross-
ings of impurity lines, i.e., diagrams of leading order in

pF, into account, we are led to the result

K (ei, Hi, e2, H2 )

Q2 QO

+S„' '( e, e2, H+ )j—
describing the disorder-induced correlation between two
energy levels e, and e2 (and the magnetic fields Hi and
Hz ) close to the Fermi energy and the related quantity

E0+E/2
X2(E&Hi&H2)=b, J de, de2K(e, &Hi&e2&H2),

0

ED=0(E~),
which measures the level number fluctuations in an ener-
gy strip of width AE. Note that both quantities, contrary
to the energy-averaged correlation functions commonly
employed in the context of quantum chaos, vanish in the
limit of no disorder and should be carefully distinguished
from the latter. As will become evident below, E de-
pends only on the difference co=@&—e2 between the lev-
els, except for corrections in the small parameter
(ei —e2)E+ ((1. Similarly, X2 is independent of the
center coordinate ED. Expressed in terms of single-
electron Green functions,

0—(e,H) =(e——&) ', e =e+i 5, —

+S,(e, —e2)

G+ (&.i,Hi)

G (&.g,Hg)

s(C)—
G+ (ci,Hi)

G (cg,Hg)

where the inner and the outer ring are mutually connect-
ed by n impurity lines. The solid arrows represent

where H+ =H, +H2. Diagrammatically, the terms
S„' ' ' can be represented as
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impurity-averaged Green functions. In coordinate repre-
sentation

=(a+(e,H-;r, r') &

=—G +(e—,H;r, r')

l6+ Hp0

In the diagrams S2 and Sl the relative direction of the ar-
rows is meaningless, i.e., it is not necessary to distinguish
between (D)- and (C)-type contributions. Introducing
the quantities

g(D)(co,H;r, r') = G+( e)H )r, r')G (ez, Hz, r', r),'

2%v
(10)

(co,H+ ', r, r') = G+(e(,H(, r, r')G (e2, H2,'r, r'),
2777

where co=—el —e2 the diagrams S,' ' ' can analytically be
represented as

(C,D)
n nS„'' '= df Q dr Q g' ' '(r, r +)), r„+)——r)

m=1 m=1

The analysis of the right-hand side (rhs) of this equation
can be formulated in a much more transparent way if we
regard the g( ' ' as linear integral operators with coordi-
nate representation g' '(r, r'). Then

discuss these diagrams, one has to calculate expressions
involving both Green functions and the eigenfunctions of
the operator g. This entanglement, while inessential in
the diffusive cases, leads to major complications in the
nondiffusive regimes. Furthermore, representing E as an
energy derivative of some other function renders the en-
ergy integrations necessary to obtain X2 trivial. This
turns out to be essential as soon as we are going to con-
sider energy windows E larger than the inverse scattering
time. In that case, the integration domain splits into
various regions in which the correlation function behaves
qualitatively different. To a large extent the respective
contributions to the integral tend to cancel each other,
hence the result depends sensitively on the matching pro-
cedure between the different domains. On the other
hand, the directly calculated correlation function is
known only approximately, which renders a continuous
matching and thereby makes the integration impossible.

We now turn to the discussion of the operators g. Both
their eigenvalues and eigenfunctions depend on the shape
and dimensionality of the sample and, in particular, on
the characteristics of the magnetic field. In the present
section we shall consider the comparatively simple case
of a 2d quadratic sample in the absence of a magnetic
geld. No current is allowed to fiow across the boun-
daries, i.e., we have to impose Dirichlet conditions on the
Green functions entering Eq. (10). In an eigenfunction
decomposition,

G (e, r, r') =—g t(p, r)D (e p)t(p—, r'),

S(c,D) tr[g(c, D)]n
n (12)

D —= e+ — p
l 1

27 2m

I( (co,H„H~)
=2 '

t (p, r) =—sin(p ( r) )sin(p2r2 ),L
Q2

c) [trln[1 g( '(co, H )]—
2772

" 77=
fl;&

L 7 ) 9 ' ' ' )

+in[1 —g' '(co, H+ )]—S,(co)J,

where the function ln is defined by the power series

(13)

ln(1 —x)= —g —x"=ln(1 —x)+x,
n=2 "

and can be handled like a conventional logarithm as long
as the subtraction of the first-order contribution is under-
stood. Apart from a few exceptional cases, the single-
impurity scattering contribution S, does not play a
significant role. At any rate, it deserves a special treat-
ment; hence we have singled it out in Eq. (13) and discuss
it separately in Appendix B.

As is obvious from Eq. (13), the spectral correlation
function is essentially determined by the eigenvalues of
the integral operator g. This is the main advantage of
representing K in terms of energy derivatives of the dia-
grams S, . Expanding the Green functions entering Eq.
(5) directly, rather than their logarithm, leads to dia-
grams of more complicated structure containing vertex
parts in addition to the impurity ladders. ' In order to

where L is the sample length, r =(r„rz)and g is an ab-
breviation for the summation over all modes n, . The di-
agonalization of the thus defined g, i.e., the solution of
the integral equation

1
d f dr'g(co;r, r')gq(r')=A(q, co)gq(r) (16)

is discussed in Appendix A. As a result, we obtain the
eigenfunctions

17 (r)= P a cos(q,.r,. ),
i =1,2

L-ll2,
q, =o

~0
with associated eigenvalues'

m;~
q,=, m;=0, 1, . . . ,

A,(q, co)=[(1+icor) +(ql) ]

where q =Q(q, +q2). Substituting the A, (q, co) in Eq.
(13) and noticing that in the field-free case no distinction
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between g' ' and g' ' is necessary, we are led to the pro-
visional results

Q2 y2 2

Dl: K(co)=
2 (y2+ 2)2

Q2
K(co)= 8 2 g in[1 —

A, (q, co)]—S, (co)
1T

(19) E +
Xz(E)= ln

y'

(23)

and

X2(E)= Re g I2 in[1 —A(q, E)]—21n[1 —A(q, O)]
7T

q

—[&$(E)—&](0)]] . (20)

A. DifFusive systems L &&I, H=o

In this case, three energy regimes with qualitatively
different spectral statistics can be identified:

D1: 0~m &E, ,

D2: E, &~&1/~,

D3: 1/w&e .

(21)

The meaning of this partition of the energy axis can be
understood by interpreting the spectral correlation func-
tion semiclassically. According to Ref. 8,

As is indicated by the form of the A,(q, cu), all further steps
in the evaluation of Eqs. (19) and (20) depend on the
correlation range co and (via the quantization conditions
to be imposed on the modes q) the system size. As for
the system size, the two alternatives L » l and L « I
have to be distinguished. We begin by considering the
diffusive case, L &)l.

where

I (x)—:—,
' [(x —1)ln(x —1)—x ln(x)+x] . (25)

For energies smaller than the inverse scattering time, an
expansion in the small parameter m~ yields' '

2
L

1n(cor ),2+i

X2(E)= L E~.
2~l

Note that the expressions appearing on the rhs of these
equations are the respective leading-order contributions.
The result given for E stems from the twofold energy
derivative of a higher-order correction (in cur) to X2,
which is not displayed. In the regime of large energies
cow)& 1,

2

27T 2' l Q)
D3: K(e)=—

For times smaller than (E, )
' the contribution of

nonzero modes must no longer be neglected. The q-
dependent eigenvalues differ significantly from zero as
long as (ql) —(d'or) =O(max[i, cor)]. In the diffusive re-
gime this condition is met by 0 (L/I) )) 1 modes, hence
it is permitted to replace the sum by an integral. Per-
forming the integration, we obtain

2

K(co)= —— ReI(1+iso'r)~ 'o, (24)
2 L I

K(t) ~ tP(t), (22)
2

X2(E)=—1 L ln(Er) .
2+i

(27)

where K (t) is the energy Fourier transform of K(~) and
P (t) denotes the classical probability for periodic motion,
i.e., the probability that a classical particle released at
time t=O somewhere in the system returns to its initial
phase-space coordinates after time t. In this interpreta-
tion, regime D1 corresponds to times larger than the
diffusion time E, through the system, which implies
that the probability density for finding the particle at an
arbitrary point has equilibrated to some constant value.
In the intermediate time domain (="D2) the particle is
moving diffusively in a region close to its initial point.
Finally, regime D3 represents times comparable with the
scattering time, i.e., the corresponding classical dynamics
is governed by free motion, eventually interrupted by a
few scattering events.

The small energy regimes Dl (Ref. 15) and D2 (Ref. 13)
have been investigated earlier and we discuss them only
for the sake of completeness. For co&E„the constant
mode q=O dominates the sum in Eq. (20). This retlects
the spatial equilibration of classical and quantum proba-
bility density after su%ciently long times. Retaining only
the zero mode, we obtain

E»1 jg
X2(E) = — Re+ [A, (q, E)—A, (q, O)] .

TT

(28)

Diagrammatically, this contribution can be represented
as

In contradistinction to Ref. 13, where a saturation of the
level number Auctuation towards a constant value for en-
ergies larger than the inverse scattering time was conjec-
tured, we arrive at a logarithmically increasing expres-
sion for X2. ' This result, however, deserves further in-
vestigation as it depends nonuniversally on the micro-
scopic features of the white-noise potential. The irnplica-
tions of different choices for the scattering potential will
be discussed in Sec. III. Here we restrict ourselves to
drawing a relation between the heuristic interpretation of
regime D3 given above and the Green-function formula-
tion underlying the expression Eq. (20). In the regime of
large energies, the rhs of Eq. (20) is dominated by the
term that decays slowest in energy, i.e.,
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A, (q, co)'- g jd'p d'p' &+&„ + (eg,Hg) p' (29)

G (eg,Hg)

B. Ballj1stic samples i. && I, H=O

As in the diffusive case, three different energy regimes
have to be distinguished:

Bl: 0+co(1/r,
B2: I /r (co (uf L

B3: UfL '&co .

(30)

On time scales corresponding to regime B1 the electrons
are multiply scattered, i.e., their motion is diffusive. In
contradistinction to the previously considered case L ))I,
however, these times are at any rate larger than the time

where the momentum dependence of all Careen functions
is indicated explicitly. Heuristically, the diagram de-
scribes a bouncing trajectory between two impurities. It
is clear that Eq. (29) depends sensitively on the features of
the scattering potential. In the general case of potentials
with finite correlation length, the impurity lines have to
be supplemented by form factors depending on the
momentum exchange p —p'. As is detailed in Sec. III,
this imposes restrictions on the momentum integrations
and may lead to a qualitatively different q and co depen-
dence of the diagram, i.e., to a different large-energy
behavior of the correlation functions. In Fig. 1 we have
plotted X2 of a diffusive sample over all three energy re-
gimes.

of flight through the system, which means that the energy
scale E, no longer plays the role of the inverse diffusion
time through the system. The existence of regime B2,
corresponding to times smaller than the scattering time
but larger than the time of ffight L/uf through the sys-

tem, motivates the denotation ballistic samples. Regime
B3 represents times shorter than the time of flight. Con-
trary to the diffusive case, disorder-induced spectral
correlations in the ballistic regime depend in general on
the system geometry. Strictly speaking, our analysis ap-
plies to two-dimensional systems of square (or slightly
more general, of rectangular) geometry. Nevertheless, it
is obvious on physical grounds that the result obtained in
regime Bl (where electrons scatter multiply off' impuri-
ties) is insensitive against changes in the underlying sys-
tem geometry.

For energies smaller than UfL, i.e., in regimes B1
and B2, the constant mode q=O dominates the sum over
eigenvalues, Eq. (19) (a similar statement was made above
for diffusive systems; cf. Fig. 2, which demonstrates this
fact for a marginally ballistic system, 2rrl /L =2.). In light
of the interpretation given above, this reflects the fact
that the time of flight L /Uf rather than the diffusion time
(E, ) determines the transport time through a ballistic
sample. Retaining only the zero mode and neglecting
terms of higher order in ~~ &&1, we obtain in regime B1,
like in Dl,

3.0 I I I I llllI 1 I I I IIIII I t I I IIIII l I I I IIIII I I I t IIIII I I I i IIII
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FIG. 1. X,(E) in the diffusive case (pF I= 100, L /l= 10).

E7

FIG. 2. Semilogarithmic plot of X2 for a sample with
2~I/L=2. Zero-momentum mode (dotted line) and S2 contri-
bution (broken line) are displayed separately (cf. the text).
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B 1: K(co) = 2 (y2+ 2)2

X2(E)= 2
ln

(31)

As soon as coco becomes larger than I/r

I d ho hi
sq inE. (19

g i is still exceeded by th 0-y e -mode term.
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o e exact value. Its

goutt eco

ing onl th d
e r s of the expression below

gmo es WOb
erformin the

'
g e mtegration we obtain

K(co) = 8
Q2

ln
Q) +p

y [I+(cur) j

2 (cor) 4 I.
2

2 1/2 '

ReI ( I+icos) +
L (32)

where the function I is defin . . n 2 one ob
tains

ion is defined in Eq. (25). In B2 one ob-

B2: K(co) =
277 T CO

Xz(E)= — In(yr)—2 2 (Er)
vr 1+(Er)

B3: K(co)

&2(E)

co» v L

E »vf L

1 L
2m 2~I

1 L in(Er) .

(34)
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—(1/2)p a

L
(37)

Performing the momentum integration, we obtain

'=2mvv f (a),
2 2 — 2cl 2 —(app) (1 —cosej

2 0

As is obvious from Eq. (37), the finiteness of the correla-
tion length leads to an exponential suppression

where I' is the Fourier transform of the potential correla-
tor

I'(p)=I. f d x(V(x)V(0))e'P"
2

~ exp[ —(hpa) j of the momentum transfer bp per
scattering event. For energies much smaller than the
transport scattering time ~t, . this phase-space restriction
does not lead to qualitative changes in the spectral corre-
lations. On the corresponding time scales the particle's
motion can be compared with a long random walk and
details of individual scattering processes average out.
These qualitative statements can be put in a more
rigorous form by proving that the finiteness of the poten-
tial range does not alter the singularity of the diffusion
pole. In the opposite case E & 1/~ & 1/~„ the two-
impurity scattering process S2 represented in Eq. (29)
gives the domjnant contribution to the correlation func-
tions. Substituting Eq. (37) for the scattering lines and
noticing that only momenta close to the Fermi surface
contribute significantly to the integration, we obtain

S~(q, e, —ez) = '7T a
2n.v~f (a) 2m

2 —( a) (1—cosO)Jd pd p'e G+(e„p)G+(e„p')G (e2,p+q)G (e„p'+q),

0=6p,p') (39)

'2
« 1

Q)v)) 1

S2(~) In(co~) .
2m 2+i

(40)

This does not come as a surprise since the mean extension
a of the scattering centers is much smaller than the typi-
cal wavelength of the electrons, hence the scattering can
be regarded as effectively pointlike.

Let us now turn to the opposite limit of a soft potential
pFa »1. In this case, the angle-dependent suppression
factor forces p and p' to be close to each other and we
may expand in terms of small angular deviations 0. As a
result of a straightforward integration, we obtain

))1 co~))1 L
S2(co) = m' pea

2

+2 Re(1+i cow) (41)

Equations (40) and (41) imply a nonuniversal dependence
of the correlation functions on the microscopic features
of the disorder in the regime of large energies. The
summed contribution of all higher-order diagrams S„,
n ~ 3 gives a finite contribution to the correlation func-
tions as E becomes large. Hence, the logarithmic diver-

p+a «1
gence exhibited by S2 implies a logarithmic diver-

for the analytical expression corresponding to the dia-
gram Eq. (29). Let us discuss Eq. (39) in the respective
limiting case pF a « 1 and pF a » 1 separately. If
pea «1, the factor exp[ —(pea) (1—cos8)] can be re-
placed by unity and we obtain the same result as in the
white-noise case, i.e.,

2
p+a «1P (t) = const X

2~I
(42)

At first sight, the nonvanishing of P(t) as t approaches 0
may seem to be paradoxical. It can be explained by not-
icing that the white-noise correlator Eq. (1) represents a
dense distribution of hard (s-wave) scatterers, i.e. , arbi-
trary small surroundings of a given initial point still con-
tain impurities that act as backscattering centers. In the
opposite case pFa »1, however, the return probability
vanishes,

))1 t «T
P(t)" :const XpFa —, (43)

indicating that the softness of the potential lowers the
efficiency of the backscattering.

gence of X2 as a whole (cf. Figs. 1 and 3). In the opposite
case of a soft potential, however, S2 converges, which
means that X2 saturates at a constant value with increas-
ing E. A reliable estimation of the limiting value is
difficult as it would necessitate a calculation of higher-
order diagrams S„;n ~ 3 in the presence of a soft poten-
tial for intermediate energies 1/~ & co & 1/~„.It is also in-
structive to study the sensitivity of the short time return
probability against the properties of the scattering poten-
tial. In the white-noise case, Fourier transformation of
S2 ( co ) leads to
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IV. FEATURES OF THE CLEAN SPECTRUM
AFFECTING THE CORRELATION FUNCTION

m 1

~L p~l ~ (p p~) +(2l—)
(44)

In the last equation we have linearized the spectrum
around E~, exploiting the fact that E~))r . Qualita-
tively, the E~ dependence (i.e., the p~ dependence) of
(v(E~)) can be foreseen by inspecting the weight

f (p,pz):—[(p —pz) +(2l) )] ' in the two-dimensional
space of discrete modes p. The function f may be visual-
ized as a ring of width 1/l and radius pF. In the diffusive
regime, 1/l exceeds the intermode spacing 2~/L and the
number of intermixed levels can accurately be estimated
by dividing the ring's area 2~pFl by the area per mode
(2m IL) . As a result, one obtains the constant density of
states (v(E+) ) —=7=m I(2') Upon app. roaching the
ballistic case, however, the width of the ring shrinks

So far we have neglected the fact that even the spec-
trum of a clean square exhibits nontrivial spectral corre-
lations. In the diffusive case, the level structure of the
clean sample indeed turns out to be inessential. As soon
as L -I, however, one encounters a subtle interplay be-
tween the spectral statistics of the clean sample on the
one hand and disorder-induced spectral correlations on
the other hand. Before turning to a discussion of this
point let us review some features of the clean spectrum
and their robustness against a moderate amount of disor-
der.

A clean square sample possesses two intrinsic energy
scales: The level spacing 6 and the inverse time of Aight

tf '. Energy correlations on small scales AE «tf ' have
previously been investigated in numerous works. "' For
our purpose, however, the large-scale properties are of
primary importance. In order to reveal the existence of
long-range fluctuations in the density of states, it is con-
venient to coarse grain the spectrum over short distances.
Equivalently one may assign an imaginary width y ))5
to individual levels by configurational averaging: Intro-
ducing some amount of disorder, which mixes the unper-
turbed levels E„overscales I/r with 5 « 1/r & t& ', and
averaging over all its microscopic realizations leads to the
appearance of a width E„~E„+i/(2r)=E„+.We—are
thus led to investigate

( (E ))=,I (t [G (E )])1

mL

Py

b)

Px

FIG. 4. Schematic plot of the Fermi ring characterizing a
ballistic sample (cf. the text).

(v(E~))= g fd pe "Im +4~ EF —p /2m
(45)

where Lk =2L (k„k2), k, =0,+1, . . . is a two-
dimensional vector, and the angular brackets denote a
configurational average at fixed sample size The lat. ter
condition will become of importance below. Introducing
polar coordinates and integrating over the modulus of p,
we arrive at

below the intermode spacing [cf. Fig. 4(b)] and one may
expect the onset of fluctuations in ( v). In particular, one
encounters exceptional situations where f (pF ) cuts a line
of levels [cf. Figs. 4(a) and 4(c)], in which case the number
of levels included in the ring changes drastically.
A simple geometric construction leads to 5(v)
—(v)[l/(p~L )]' as an estimate for the excess number
of states in such resonant scenarios. The typical spacing
between consecutive sudden changes in the number of
levels is 6p~ —(~/L) corresponding to 5E~-~t& ' for the
period of oscillations in v(E =E~).

In order to incorporate the phenomenon of these Auc-
tuations in a quantitative description of spectral correla-
tions, one has to calculate the sum Eq. (44) rigorously.
For this purpose, we employ a two-dimensional generali-
zation of the Poisson sum rule and write

m 1 21T

(v(E~)) = 1+ g f dOexp iLkp~cos8 ~cos8~
2& 277 ~~o 0 2t

1+ g
k~o

1/2 —L.„nj]cos(L kp~ —~/4) e (46)

where Lk = ~Lk ~. In Fig. 5 we have plotted (v(E~) ) for several values of the disorder. Spacing and amplitude of the
Auctuations agree with the qualitative estimate given above.

For the sake of future reference, let us now investigate correlations in the energy-dependent quantity (v(E) ) and cal-
culate
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rC =— « (E+ )&& (E)», —« (E+ )»,,« (E-2 (47)

h f '((E «E centered at the Fermi energy, e.g. ,where & &z denotes averagmg m E over a
~ ~

r an interval of width tf (( o F

2 E 21 ~ (E E~'I /EOE(E)&F(E) &z
=—, dE e (48)

Expanding p (E)=p~+(E E~—)/Uf +O(p~ Eo/E~, we have

—(E t )2
&e' "'

& =O(e "/ )«1,E0

from w ic weoh h btain with exponential accuracy

=2 1K'(co) =—
1/2

k, k'%0 pF(LkLk')
[L p (E +co) vr/4 jc—os[L„,p (E) vr/ 4 & (49)

i.e., for suKciently large

Eo & l/(Ltf ) (5O)

contributions wit
'

h k&k' are negligible and we arrive at

1 —Lk /IK'(co) =—g e cos~,~, pFL, Vf
(51)

L ' the sum may be re-For energy differences co «vf
p acelaced by an integral leading to

co ((U Lf
(52)

1

(L /l) + (cotf )

—L/I
PFI'

Due to the supression factors -exp, ——x ( L /l) th—e k sum-
cut off at Lk=O(l). For valuesmations a e

L,Lk, =O (I), a lower bound for ~Lk —Lk ~,

roughly be estimate as L /l. Energy averagi s ch
nearby values leads to

i(Lk —L )kP(E) ~
~

Eot/i. /I—
l
&e

e have lotted the numerically evaluated sum
Eq. (51) for various values of the dtsor er. e
of-states uc uaA t ations discussed above lead to the appear-

ner scalesin the correlation function on energyance o cusps in e
etermined~) v L '. While the height of these cusps is dete

of disorder, their width and position de-
pend on the system geometry, indicating a w
probing a nongeneric regime.

nt on the1 din this section, let us comment on t eBefore conc u ing is
role o sys em-sf t - ize fluctuations in connection wi e

Ab we argued that the ensemble-semble average. ove we
d densit of states exhibits fluctuations. Inspec-averaged ensi y o

f E . (44), however, shows that the fluct
'

pctuatlon at-tion o q. , 0
m size L: Even arn de ends sensitively on the system size

gL =O ( ') leads to a gras-minute change in L of order = pF
han e in the energy dependence of v. 0On the othertic c ange in e

' seems to be compara-h nd the correlation function E seems o
'

ns of L. These observa-tively insensitive against variations o
h ld consider two alternative averag-tions suggest one s ou c

ing proce ures, od b th being of practical relevance.
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FIG. 5. Density of states plotted for variourious values of the dis-
F =1000, =1. Solid line, l/L =10; dotted line,order. pFL=1000, m= . o i

l/L=3; broken line, l/L=1.

W/ E(f
FIG. 6. The energy correlation function Eq. (

'
n E . (51) (here denot-

ed by Y2 ) plotted for various values of the disorder. pI:L= 1000,
=1. Solid line l/L=10; broken line, l/L=3; dash-dotted

line, l/L=1.
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(al) Keep the system boundary strictly fixed upon
averaging over realizations of a certain type of disorder.

(a2) Parametrize a set of systems containing, say, N im-
purities by their coordinates r,-, I, = 1, . . . , X. The sizes of
the systems may differ by a certain amount 6L. For the
sake of notational simplicity, we do not introduce 6I
and 6L„separately.

Scenario (al) is the one we have considered so far. Let
us now comment on (a2). Consider the diagrammatic ex-
pansion of some observable of interest. Obviously, any
diagram containing unpaired impurities, e.g. ,

will vanish as before upon averaging over the phase
-exp[i(p —p')r, ] associated with the scattering. More-
over, in each diagram containing only paired impurities,
the effective impurity interaction has to conserve momen-
tum in order to prevent the appearance of large random
phases.

'

These observations impose restrictions on the
class of significant diagrams before ensemble averaging.
In particular, none of the relevant diagrams contains the
impurity coordinates explicitly. The ensemble-dependent
variations amount to different quantization conditions
imposed by the varying system sizes L +6L on the
momentum summations. Neglecting Auctuations in the
scattering time 1/7 (which is a reasonable approximation
as long as 5v « v, i.e., b, « 1/r), we are again led to Eq.
(46) for the density of states. Ensemble averaging
amounts to averaging 6L over a certain range. Since 6L
appears as a factor in a large phase, the Auctuating con-
tribution to the density of states readily averages to zero
and we conclude that & v & is constant as soon as we allow
for tiny variations 6L ) 1/pF. In the qualitative picture
discussed above, sample-size Auctuations amount to a
quenching and stretching of the momentum lattice. Since
fiuctuations 5L & 1/pF are equivalent to fluctuations
5pF & 1/L in the radius of the Fermi circle, the pF-
dependent structure of the density of states gets lost even
for size variations on atomic scales. We note that averag-
ing over the system size with 6L & 1/pF such that
5EF & 1/tf is synonymous to energy averaging [cf. Eq.
(48)] with Eo & 1/tf. Note that condition Eq. (50) leading
to Eq. (51) is equivalent to system-size averaging with
5L & l/(p~L).

Although the (a2)-averaged density of states is con-
stant, one may still expect the presence of correlations in
the spectrum, e.g., in individual samples the density of
states at a given E will be correlated with the density of
states at E +Uf L '. In the following section, the
difFerence between (al)- and (a2)-type correlations will be
discussed in a somewhat more general context.

K"(co)= « v(E+co)v(E) &,„,= 1

—
& (E+ ) &,„,& (E) »,„,, ,

K ( )=,« (E+ ) (E)&
1

(53)

Furthermore, disorder and energy averaging commute
with each other such that we may conclude

(a2): K =K = « v(E+co)v(E) »,„,~ —1 .d E (54)

Consider now the diagrammatic analysis of & vv&,„,. One
may distinguish between diagrams in which both factors
are connected by impurity lines and an impurity-
disconnected contribution. Cornrnonly, the latter cancels
against v . In our scenario (a2), however, this is not the
case. The reason is, of course, that individual samples
differ not only in the impurity constellation but also in
their size. We thus obtain for the impurity-disconnected
part & vv&,„,„,Eq. (49), which is to be averaged over both
sample sizes and energy. As in the previous section, this
procedure leads to

1 « v(E +co)v(E) »,„,„,E =K'(co)+1,

where K' is given by Eq. (51). We note that K' is ex-
ponentially small for L ) I, rendering the present discus-
sion for diffusive systems irrelevant. Combining this re-
sult with the impurity-connected contribution, we obtain

(a2): K"(co)=K (co) =K (co)+K'(ro), (55)

where K is the previously calculated disorder correlation
function [cf. Eq. (19)]. Comparison of the respective
small-energy expansions, Eqs. (52) and (31), shows
that for co & b, (p~L)' L /i the disorder-connected contri-
bution K is negligibly small.

The situation is different when (al)-type averaging is
performed, in which case K" and K no longer equal
each other. Still &v&E =v, hence we have as in the (a2)

0

—
& (E+ )&,, & (E», &.„,,

where &
. . .

&,„,stands for ensemble averaging according
to either procedure (a 1) or (a2) and v—= « v »,„,z . Note

0
that K" and K differ from each other just by the se-
quence of disorder and energy average, respectively. Be-
ginning with (a2), we consider the two averaging pro-
cedures introduced above separately. According to the
previous section, (a2)-type averaging implies
& v( E) &,„,=v =const, i.e.,

« (E+ )&, & (E)», ,„,.

=« (E+ )&,„,& (E)»,„,, =-'.

A. A uni6ed treatment of disorder-
and energy-averaged spectral correlations

case,

(al): K (co)=K(co)+K'(co) . (56)

We now turn to a unification of the previously found
results. To this end, we characterize the spectral proper-
ties of our sample in terms of two correlation functions,

On the other hand, &v& is no longer constant [cf. Eq.
(46)]. Since individual samples differ only in their impuri-
ty configuration, the impurity-disconnected contribution
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to (vv),„,cancels exactly against (v),„,(v),„,and we
obtain

(al): K (co)=K(co) . (57)

From this discussion we conclude that in order to observe
the (more interesting) disorder correlation function K for
energies larger than b, (pFL)' L/I, one necessarily has to
perform (al)-type averaging. One may also speculate
about the relevance of these results to experiments prob-
ing the existence of chaotic behavior in mesoscopic sys-
tems. In the context of quantum chaos, the energy corre-
lation function E plays a crucial role. Drawing from
the above discussion and according to Eqs. (55) and (56),
its small energy structure is governed by the disorder-
dependent contribution K, thereby always indicating the
onset of chaotic behavior for su%ciently long time scales.
The fine-scale structure of the clean spectrum, i.e., the
long-time behavior of the semiclassical trajectories, will
be masked by K. Evidently, our results do not apply to
common practice quantum chaos experiments performed
with mesoscopic systems. First, no disorder averaging
[cf. the definition of E, Eq. (53)] needs to be performed
in such experiments. Second, and more important, one
will in general investigate geometries diA'erent from the
square geometry, viz. , geometries leading to chaotic
motion. Nevertheless we believe that the unavoidable
presence of disorder will render the motion eventually
chaotic, thereby making the long-time distinction be-
tween chaotic and nonchaotic geometries impossible.
The two most relevant parameters governing the com-
petition between disorder and geometry-induced chaos
are I/r and the Lyapunov exponent characterizing the
clean system.

Finally, we would like to stress that it is possible, in
principle, to define other types of two-level correlation
functions (permuting, for example, the order of impurity,
energy, and size averaging). Our aim here was to discuss
the most relevant, experimentally accessible cases.

V. FINITE MAGNETIC FIELDS

So far we have considered spectral statistics in field-
free systems. Earlier on we have stated that our ap-
proach is applicable to situations where a static (and uni-
form) magnetic field is applied, as long as it is not too
strong. Application of a magnetic field breaks invariance
under time reversal. As long as the spectral statistics is
described by random-matrix theory, this defines a GQE
(Gaussian orthogonal ensemble) statistics to GUE
(Gaussian unitary ensemble) statistics crossover. Evi-
dently, this transition does not take place abruptly.
One may rather define a field-dependent energy scale E~,
such that on energy scales much smaller than EH GUE
statistics prevails, while correlations much larger than
EII are properly described by GOE statistics. ' ' This
characterization, as it implies the validity of random-
matrix theory is only suitable under ergodic conditions.
On the other hand, one should expect that the energy
scale EH characterizes a crossover in the correlation
function and derivatives thereof under much more gen-
eral conditions as mell. In order to pursue our analysis of

the field-dependent correlation function, we have to clas-
sify the various regimes not only according to disorder
strength and energy scales (along the lines of Sec. II), but
also with respect to the field strength. It is therefore ap-
propriate to present a brief review of the various
magnetic-field regimes. This part follows closely the dis-
cussion in Ref. 2. In the presence of a magnetic field one
needs to distinguish between the length scales I., /, the
magnetic length lH=(eH) '~, and the cyclotron radius
l, =/H(EF/co, )

' -pFlH. Here the cyclotron frequency
is to, =eH/m—. The cyclotron radius may be thought of
as the magnetic length of electrons at the Fermi energy.

Depending on the relative magnitude of the magnetic
length we group the various regimes into three different
classes as follows.

(i) The weak-field regimes defined by lH )L, i.e., there
is less than one Aux quantum enclosed in the system. For
diffusive systems this range of the magnetic field splits
into two subregimes: The superweak field re-gime

lH ) (E, /6)' L [regime 3 in the notation of Ref. 2(a)].
In the presence of inelastic broadening y) 6, the rhs of
this inequality is replaced by (E, /y )' L. We note that
for mesoscopic systems, E, /y ) 1. The weak-field regime
(8) is defined by (E, /b, )' L ) IIt )L. No similar
subclassification has been proposed for ballistic systems.

(ii) The intermediate field reg-ime ( C), defined by
L ) iH ) l (for diffusive systems). In Ref. 2(a) this regime
was divided into two subregimes. For reasons detailed
below, we have concluded that no such division is need-
ed.

(iii) The strong-field regimes defined by i ( lH (for
diffusive systems). It is divided into subregime D,
lH &I &I„where the field is not yet strong enough to
prevent the disorder-induced mixing of adjacent Landau
levels. Under this condition, Shubnikov —de Haas oscilla-
tions (as well as quantum Hall plateaus) are washed out.
Subregime E (l, (l, i.e., ai, r) 1) is the quantum Hall re-
gime. This also implies that Shubnikov —de Haas oscilla-
tions may be observed. To detect the quantization of the
Hall conductance, one usually employs a field stronger
than one needed to satisfy co,~) 1, such that the number
of occupied Landau levels is small.

Spectral correlations in the presence of a magnetic field
are of interest since the latter represents a source of sym-
metry breaking. Evidently, one is interested in universal
properties of the level statistics and those are mainly
a6'ected by changes in symmetries. The field-dependent
part of the associated correlation functions is directly re-
lated to experimentally measurable quantities. ' As
an example, we refer to the observation that the
ensemble-averaged electronic properties of mesoscopic
systems (in the presence of some external magnetic field)
depend crucially on the type of the employed statistical
ensemble. Qn the one hand, one may vary the applied
field adiabatically, keeping the chemical potential (but
not necessarily the particle number) of each member of
the ensemble fixed. This procedure is usually referred to
as grand caIMnica/. Alternatively, one may decouple the
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system (i.e., each member of the ensemble) from the parti-
cle reservoir, thereby keeping the particle number (again
of each ensemble member) field independent. This is re-
ferred to as a canonical procedure. In fact a larger
variety of averaging procedures may be defined. Rela-
tions between canonical and grand canonical thermo-
dynamic derivatives have been found. The respective
magnetizations, for instance, are related to each other
through' '

(58)

where &5X &„—:X2(AE=@;H). Evidently, it is the
magnetic-field-dependent part of this quantity which
counts. Similar relations may easily be derived for
higher-order derivatives (e.g., the magnetic susceptibili-
ty), as well as for derivatives with respect to other fields
(e.g., with respect to an Aharonov-Bohm fiux, yielding
the persistent current in multiply connected geometries).
Level correlations enter in the calculation of mesoscopic
fluctuations, e.g. , fiuctuations of the orbital susceptibility
too. A detailed discussion of the canonical magnetization
as well as its derivation for a variety of field strengths can
be found in Ref. 2.

Considerable work has been done on spectral correla-
tions in the presence of a magnetic field. This includes
extensive analyses of the GOE-to-GUE transition within
random-matrix theory, cf. Ref. 20. For diffusive systems
the study of Aux-dependent correlations has been extend-
ed beyond the random-matrix regime. There are major
differences between the effect of an Aharonov-Bohm Aux
and the effect of a uniform magnetic field. ' Let us con-
sider the energy scale EH marking the crossover between
small energy scales, over which correlation functions are
affected by the field (or flux) due to a broken time-reversal
symmetry, and large energy scales, over which spectral
correlations are essentially field independent. For
diffusive systems E~ ——D /$~. %'hen considering an
Aharonov-Bohm Aux, the effective magnetic length al-
ways satisfies IH)L: Owing to the Aux periodicity the
effective Aux does not exceed a Aux quantum, meaning
that in such systems we are always in the weak-field re-
gime. Next, we note that when calculating the Jlux-
dependent Auctuations in the number of levels Xz, one
needs to integrate the correlation function E over the en-
tire energy range —E~ & E & Ez. It turns out, however,
that the fiux-dependent part of K (E;H) decays exponen-
tially for E )EH. Therefore, only a relatively small ener-

gy window will contribute to the Aux-dependent part of
Xz. Since for Aharonov-Bohm geometries E& &E„the
Aux-dependent contributions to Xz may indeed be calcu-
lated within the framework of random-matrix theory
(which is applicable for energies smaller than E, ). It
turns out that the field-dependent part of Xz is of order
unity.

%'e next review certain points vis-a-vis a uniform ap-
plied field that hitherto have been left open.

(a) For a weak magnetic field one may expect a
behavior that qualitatively resembles the one discussed in

connection with Aharonov-Bohm geometries. When cal-
culating Xz, it has previously been assumed' ' that
field-dependent contributions arise mainly from energy
windows smaller than E, (and in any case not larger than
1/r), yielding field-dependent particle fiuctuations that
do not exceed an order of unity. That led to a prediction
of an anomalously large paramagnetic orbital susceptibil-
ity in canonical systems, similar to the prediction of large
paramagnetic persistent currents in Aharonov-Bohm
geometries. Central to this discussion was the question
whether indeed the field dependence of E may be neglect-
ed for cu) E„or,more quantitatively, how fast does the
field-dependent part of K (co) decay with co.

This issue turned up in the analysis of linear-
susceptibility fluctuations. ' Such calculations lead
to energy integrals over expressions involving field
derivatives of spectral correlation functions. Assuming
that the dominant contribution to the field-sensitive part
of the function E is due to the so-called zero mode (re-
ferred to above as the q=O mode), Scrota and Oh were
led to ultraviolet diverging expressions. To obtain finite
results, they employed the scale E, (which limits the
range of applicability of the zero-mode approximation) as
an upper cutoff. In this way they arrived at

(59)

i.e., at an expression exhibiting a logarithmic cutoff
dependence. Hence gL is the Landau susceptibility and

T*=max( T, (2nrH )

with rH'=2m E,(2@/@0) The sem. iclassical analysis
presented below supports the view that E, is not a natu-
ral upper cutoff for the relevant integrals and that the
zero-mode approximation is incapable of describing the
proper ultraviolet behavior of the integrands. This would
imply that Eq. (59) is not correct. Unfortunately, our ap-
proach is restricted to energies co) E„which means that
we are unable to suggest an alternative result.

(b) A recent analysis of the field-dependent part of X2
revealed the existence of a previously unaccounted for
contribution to the orbital magnetization in the diffusive
regime. These results were based on the assumption that
the low-energy (co (1/r) correlation functions can be de-
rived within the standard diffusion approximation (which
employs diffusons and cooperons), while the contribution
of high energies (co) 1/r) is inessential. Below we sup-

port the latter assumption by showing that the field-

dependent part of E(co,H) indeed decays exponentially
for suSciently large energies. On the other hand, we ob-
tain the surprising result that the first assumption has to
be abandoned, which implies that some of the findings of
Ref. 2(a) need to be revised.

(c) The strong field behavior of Xz has not been dis-

cussed previously. We address this field regime and com-
ment on the importance of the field-dependent part of Xz
in connection with thermodynamic observables.

%'e begin our analysis by outlining the diagonalization
of the field-dependent g, analogous to the discussion of
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r2
ief dr A

G((D, H;r„r~)=e "' G (co;r), r2), (60)

where the integral is taken along a straight line. The ab-
sorption of the magnetic field in a phase factor is com-
monly referred to as the Bethe-Peierls approximation.
Employing the latter and the definition of difFusion and
cooperon g [Eq. (10)],we are led to

the field-free case in Sec. II. We consider a two-
dimensional sample subject to a perpendicular magnetic
field. For l, & l (i.e., in regimes A, 8, C, and D), it is pos-
sible to show that the magnetic-field-dependent single-
particle Green function G(cD, H) is related to the field-
free Green function G (co) via

g2
'(q, cD, H ) =1—icor+Drq —a

lH
(63)

where 5 is the systems area and a is a geometry-
dependent factor.

We now turn our attention to the cooperon contribu-
tion. Formally, our analysis follows the lines of Ref. 29,
where an eigenvalue equation like Eq. (61) was encoun-
tered in the context of dirty superconductors near the
transition point. Recalling the Bethe-Peierls approxima-
tion, the rhs of Eq. (62) becomes

f (ef dr A~
d r2e

L 2

ief dr A+
)( co,H+; r„r2 ) = e ") '

{ (co; r ) r2 ), — Xge ' '
g (q, co)g'„'(rz,co, H+ ) . (64)

g( C, D),)( C, D) g( C, D),)( C, D) (61)

i.e.,

f d r2(( ' '(co, H+;r„r2)g(„''(co, H+;r~)

where H+=H, +H2, H+=V'X A+, and g is the field-
free g. The eigenvalue equation for g( ' ' reads

The evaluation of a very similar expression is detailed in
Ref. 30 and we shall not repeat it here. Let us mention,
however, that one essential step in the analysis of Lee and
Payne was the introduction of polar coordinates for the
r2 integration. In principle, the polar integration
is hindered by the presence of system boundaries.
Due to the presence of exponential supression factors
-exp[ —(r2/lH) ], however, their effect becomes
inessential once one demands

Evidently g( ' and g( ) differ from each other in the pres-
ence of a field. In many instances we are interested in
H& ——02, which implies that the diffuson contribution
may be discussed in the context of the weak-field regime.
For reasons that will become clear below, the exact
analysis of the eigenvalues turns out to be cumbersome in
that limit. One may, however, treat the field dependence
as a second-order perturbation correction to the field-free
eigenvalues and write

)) 1
L
H

(65)

If this relation does not hold, the analysis of Eq. (61) be-
comes significantly more involved, and the eigenvalues
begin to depend on the system geometry, similar to the
sample-shape dependence of a in Eq. (63). After some
algebra we obtain for regimes C and D (where both the
inequality Eq. (65) and the Bethe-Peierls approximation
hold),

2
lH 0 1

A,(„)(co,H)=( —)"2m 2 g (q =O, co)+ dx e "I.„(2x)g(x' llH, co), n =0, . . . ,L 2~ (,2~IH IL)
(66)

where L„is the Laguerre polynomial of order n. Re-
stricting ourselves to the consideration of the large-field
regimes C and D, we now apply these results to investi-
gate the so-called canonical magnetization. While regime
D is nondiffusive in the sense of our earlier discussion and
has not been analyzed before, regime C fulfills all formal
requirements to be described in terms of the standard
cooperon approximation. Most surprisingly, however,
the results of our more general calculation diA'er substan-
tially from the findings of Ref. 2(a).

Formally, the canonical magnetization resembles the
magnetization of dirty superconductors close to the tran-
sition point, i.e., apart from a few straightforward manip-
ulations, the calculation presented below amounts to a re-
petition of a similar calculation contained in the paper of

X2(i) E,H, H) =Re[F (AE, H) —F (O, H) ], (67)

where

F(co,H) =—1 j
2~ IH

g in[1 —
A,„(co,H)] . (68)

Substituting this expression in Eq. (58), we obtain

Lee and Payne on superconductor diamagnetism. To
begin with, we derive an expression for X2 in terms of the
field-dependent eigenvalues [ A,

„ I . Substituting the ap-
propriate eigenvalues A, „(co)in the general expression Eq.
(13) and integrating over energies as in Sec. II, we obtain
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(M ),= —
2

lim BHRe[F(bE, H) —F(O, H)] .
bE~ oo

Insertion of this result in Eq. (70) leads to

(69) B~F(co,H)
1 L

7T
g . ln(1 —A,„)

The differentiation with respect to H then leads to

'dHF(co, H) =— 1 L
H

(n + 1)(A,„+,—A.„)+n (A,„—A,„,)

2(1 —A,„)
X g g —A~ '[A,„+jHBHA.„].

n g=O~
(70)

HBHA, „= (A,„+,—A.„)+—(A.„—A.„,) . (71)

As will become apparent below, both terms appearing in
the square brackets cancel each other to a large extent.
For this reason, it is essential to calculate the derivative
HBHA, „asaccurately as is possible. A more elegant way
of performing the differentiation exactly was found by
Lee and Payne. Making use of recurrence relations
fulfilled by the Laguerre polynomials [cf. the definition of
A,„,Eq. (66)], one obtains as a result of a short calculation
of purely algebraic expression

Note that contributions of order k„and k, correspond-
ing to diagrams 5, and S2 exactly cancel each other.
This is an (admittedly rather intricate) proof of the physi-
cally obvious fact that these diagrams are field indepen-
dent in Bethe-Peierls approximation. A closed trajectory,
involving only one or two impurity scattering events (and
no boundary scattering) cannot enclose the magnetic fiux.

Instead of evaluating both the summation Eq. (72) and
the eigenvalue integration Eq. (66) numerically, one may
tentatively resort to some approximations. At least in re-
gime C and for n &(l/lH) the factor x(i/IH) appear-
ing in the integrand of Eq. (66) is smaller than unity and
one may expand according to

A, „(co,H) =( —)"f dx e L„(2x)
0 [(1 ko~) +—1/2x(l/lH) ]'

x I[=( —)"f dx e L„(2x) 1+ioir
0

' 4 IH

=1+icos (n + —,
'—

)
l

IH
(73)

Since this form of the eigenvalues leads immediately to
the standard cooperon, we will refer to Eq. (73) as the
diffusive approximation. With this expression for k„,the
sum Eq. (72) can be calculated analytically and we redis-
cover the result of Ref. 2(a), i.e., a constant magnetization

( )d'ff ln2e b,L
16ma~

For values (1/lH) «1, the necessary restriction of the
sum to values n & (i/lH ) is of minor importance. This
can be read off from Fig. 7, where we have plotted the
properly restricted sum (dash-dotted line) together with
the unrestricted sum (broken line) as a function of the
magnetic field [cf. also the discussion in Ref. 2(a)]. As
soon as we approach regime D, i.e., the ratio I jlH ap-
proaches unity, the diffusion approximation breaks down,
and the integration Eq. (66) can no longer be carried out
exactly. Within an accuracy of 0.15%%uo (3%%uo) for
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FIG. 7. Canonical magnetization plotted vs magnetic-Aeld
strength. For an explanation, see the text.
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(I /lH ) =0.1 [(1/lH ) = 1], however, the result may be ap-
proximated according to

co) E
C 7Tco&p

= const X cosh +R,
2E, N

(76)

A,„(co,H) =(—)"I dx e "I.„(2x)
1X—

[(1 ic—or) +(x/2)(l/lH) ]'~2

1

[(1—icow) +2(n+ ,')(l/—IH) ]' (75)

Substitution of this form in Eq. (72) and summation over
n (numerically) leads to a magnetization that is shown as
a solid line in Fig. 7. In order to check the validity of the
approximation, we have computed both integration over
the Laguerre polynomials as well as the subsequent n
summation numerically. The result (dotted line in Fig. 7)
agrees qualitatively with the one based on Eq. (75).

Most surprisingly, exact and diffusive forms of A,„,re-
spectively, lead to remarkably different results euen in re-
gime C. Notwithstanding the results of Ref. 2(a), we ob-
tain a nonconstant, monotonously decreasing magnetiza-
tion, which could hardly be interpreted in terms of
corrections to an essentially constant magnetization (cf.
Fig. 7). From the technical point of view, this result is
somewhat disturbing since it demonstrates the invalidity
of the approximation Eq. (73) in a regime where it is com-
monly adopted.

It should also be noted that a further subdivision of the
intermediate field regime as in Ref. 2(a) is not necessary.
It has been postulated there that the low-lying cooperon
eigenstates contribute differently once their spatial exten-
sion becomes comparable with L. But this is not quite so.
As long as the Bethe-Peierls approximation holds, the
eigenstates are determined by the integral equation (61).
The field-free Green functions extend over an area of or-
der I . Thus, in most cases [i.e., apart from corrections of
order (l/L) ] the integration will not be sensitive to
boundary effects, which implies that a division into two
subregimes is superAuous.

The above analysis applies to regime D as well. It
turns out that the field-dependent contributions to X2 are
so strongly suppressed that the canonical contribution to
the magnetization is not relevant in these regimes, i.e., it
is significantly exceeded by the Landau diamagnetic term.

We have stressed earlier that our approach holds for
ballistic systems as well. We have obtained some indica-
tions that an interesting field-dependent behavior is ex-
pected for this range of disorder (including cases of
enhanced field sensitivity as compared with diffusive sys-
tems). A full scale analysis of the ballistic case, however,
is significantly more intricate than the one presented here
and has not yet been completed.

The analysis of spectral correlations in the weak-field
regimes is seriously hindered when l~) L. The approxi-
mation based on the inequality Eq. (65) cannot be taken.
One may yet try to solve the eigenvalue problem Eq. (61).
As an alternative we present in Appendix C a totally
different approach based on a semiclassical v, nalysis of the
two-level correlation function. Parts of the discussion
but not the conclusions concerning the effects on K and
X2 have been addressed in Ref. 8. As a result we obtain

where R denotes the field-independent contribution to the
correlation function that has been discussed earlier and is
not of interest here. In a strict sense, this form is justified
only for co )E, . Equation (76) confirms the prevailing be-
lief that there are indeed no significant contributions to
field-dependent thermodynamic quantities from energies
larger than the magnetic energy FH =E,C&I@0. Equation
(76) suggests that for 4 (@0 the upper energy scale limit-
ing the range of magnetic-field sensitivity is parametrical-
ly smaller than E, . For energies larger than E„the field
sensitivity is exponentially small. As mentioned above,
this behavior is incompatible with the logarithmic E,
dependence predicted by Eq. (59).

VI. CONCLUDING REMARKS

The discussion presented here consists conceptually of
two parts. In the first one we develop a formalism that
enables us to calculate the disorder-averaged two-level
correlators and subsequently the level number Auctua-
tions Xz. Our analysis underlines the existence of a ballis-
tic regime L (l, which cannot be described within the
framework of clean systems. Our study also stresses the
importance of correlations over large energy intervals,
which so far have been largely ignored (or have been
treated heuristically). Most parts of our analysis have
semiclassical counterparts, and therefore a semiclassical
treatment of this problem (parts of which have already
been published) is called for.

The second conceptual part of our analysis is the intro-
duction of various averaging schemes. The fact that one
may average over energy, disorder, and system sizes al-
lows for the definition of several differently averaged
correlation functions. We have chosen to discuss only
two, which to us seem most practical. These correlation
functions provide a crossover from predominantly
energy-averaged functions (where spatial disorder plays
no important role, e.g. , in clean chaotic systems) to
predominantly impurity-averaged functions (pertinent in
mesoscopic physics). A typical ensemble of electronic
systems (e.g. , an ensemble of quantum dots) is character-
ized by sample-to-sample size fluctuations, which are
large in comparison with the Fermi wavelength. A realis-
tic description of the ensemble average should thus in-
clude a simultaneous average over both disorder and
sizes. We have shown that the sample-size averaging
may drastically affect the spectral statistics of ballistic en-
sembles. On the other hand, one may consider an experi-
ment on a macroscopic microwave cavity, where the
confining potential may be varied in a controlled way.
For that type of experiment one should not employ size
averaging. In conclusion, we believe that the various
averaging procedures proposed here may, in principle, be
put to a test.

These are some obvious extensions and generalizations
of the present analysis. One may apply the same methods
to higher-dimensional systems. Other types of disorder
correlations may also be studied. But perhaps the most
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promising direction is to address the question of
magnetic-field correlations in ballistic systems. As has
been mentioned above, we have some preliminary indica-
tions that these correlations may be of significant magni-
tude.
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APPENDIX A: DIAGONALIZATION
OF THE OPERATORS g

This appendix is devoted to an approximate diagonali-
zation of the integral operator g, which is a solution of
the integral equation (16) up to corrections in the disor-
der parameter pF/. We consider the model system intro-
duced in Sec. II, i.e., the Green functions entering Eq.
(16) are those defined in Eq. (15) and no distinction be-
tween g' ' and g'I is required.

As long as the sample is diffusive, L ))I, Eq. (16)
possesses a set of slowly varying solutions

f (r)= Q a cos(q,. r, ),
i =1,2

L-'", q,
——0

.~p
n;~
L , n, =0, 1, . . .

(Al)

with ql « 1 and eigenvalues

A(q, co) =1 icor+Drq— (A2)

g [sin (p, r, )cos(q,r;).
i. =1,2

+2sin(2p;r;)sin(q, r, )]D+(ei,p)D (ei,p+q)
= A,(q, co) Q cos(q, r, ), (A3)

i =1,2

where D is the diffusion constant. To the best of our
knowledge, all concrete derivations showing that the
modes Eq. (Al) solve Eq. (16) (cf., e.g. , Ref. 14) rely on
their slow variation on scales of the mean free path, a re-
striction that has to be abandoned in the nondiffusive re-
gimes. Still, there exists a general physical argument in
favor of cosine functions as promising candidates for
eigenfunctions that is independent of the oscillation rate.
The point is that g is directly related to the density-
density response kernel, i.e., its normal derivative taken
at the boundary is a measure for the current leaving the
system. In the case under consideration, this implies that
eigenfunctions of g have to fulfill Neumann boundary
conditions. In the following, we argue that the functions
Eq. (Al) indeed solve the integral equation within the
desired accuracy, even if the condition of slow variation
is abandoned. Substituting Eqs. (A1) and (15) in Eq. (16)
and performing the coordinate integrations, we arrive at

where g denotes the summation over positive and neg-
i

ative modes p; =0, +mL ', +2~L ', . . . . As for the p-
dependent trigonometric functions appearing in the curly
brackets, the p summation effectively amounts to an aver-
age over the Fermi surface. The reason is that the energy
denominators D are —strongly peaked at p =0 (p~) but
depend only weakly on the direction of p, while for typi-
cal values r, =O(L) the sine and cosine functions oscil-
late with period O(pz/L). In the case ql ))1 not the
whole Fermi circle but only two angular sections of width
2ir/(q/)'~ contribute significantly to the p sum. In this
region, however, the energy denominators are still
smooth functions of p and the subsequent argument
remains applicable. We now argue that each contribu-
tion to the Fermi-surface-averaged product of tri-
gonometric functions involving a factor sin(2p, r, ), i = 1,2
is small in the sense of the pal expansion. The point is
that sin (p, r, ) is a positive-definite function with mean
value —, while sin(2p, r, ) rapidly changes sign. This con-
sideration can be made quantitative by exploiting that
variations of the arguments r, on atomic scales are
inessential for our purpose. Upon averaging the coordi-
nates r in Eq. (A3) with a Gaussian weight
-exp[(r;+5r) /a ], where a is large in comparison with
the atomic distance O(pf ) but small in comparison with
any other length scale in the problem, terms involving a
function sin(q;r;) acquire a suppression factor
—exp[ —(p, a) ]=O(exp[ —(pfa) ])«1, while pure
cosine terms remain unaffected. One might object that
not only p;=O(pf) but also small momentum com-
ponents p;, to which the argument cannot be applied,
contribute to the p summation. For example, one has a
region on the pf shell where p1 -—pf and p2 is small,
rendering the r2 coarsening of sin(2p2r2) ineffective.
This objection can be refuted by performing the Fermi-
surface summation over p before applying the procedure
outlined above. Upon retaining only the first
terms in the curly brackets and approximating

, &sin (p, r, ))i; f——,
' we find the eigenvalue

equation to be solved with eigenvalues

A(q, ai)= g D+( pe)D (e2,p+q) . (A4)
8~~~L 2

p,.

The evaluation of the sum Eq. (A4) is simplest in the
diffusive case. For l «L, the disorder-induced broaden-
ing of the Fermi circle in p space ( —I ') exceeds the
spacing between the p modes (-L '), hence the sum
may be replaced by an integral. As a result of the in-
tegration one obtains Eq. (18). In the ballistic case, how-
ever, the disorder does not suKce to smear the structure
of the individual modes and the sum has to be retained.
Application of the Poisson sum rule (cf. Sec. IV) leads to

k(qadi)= g fp dp I d9e " D+( pe)

kez2

XD (e2,p +q), (A5)

where g„z,is an abbreviation for the summation over
all pairs k =(k, k ), k, =0,+1, . . . , LkT=2L(k, k ),
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1 277
A, (O, co)= g f d9exp ipFL&cos88~v~, okeZ2

cos9i

X +O(cotf) .
1+1C07

At this point it is essential to remember that the density

Lg =
I
I.k l, and 8=~(p, I.& ). We evaluate Eq. (A5) sepa-

rately for energies larger and, respectively, smaller than
the inverse time of Aight tf =L /Uf. In the latter case, the
contribution of nonzero modes A, (qWO, co) to the correla-
tion functions is negligible (cf. the text). Performing the
pole integration over p we arrive at

of states is also to be calculated as a discrete sum, i.e.,

v= 21m+ G+(p, O)
1

4~L

=m g J d8exp ipFLkcos8-
keZ2

(A7)

Inserting this expression in Eq. (A6) we obtain
k(O, co)=(1+icos), i.e., the same expression as in the
diffusive case. As soon as we approach co-tf ', higher
modes A,(q&O, co) have to be taken into account. Per-
forming the pole integration over p we obtain instead of
Eq. (A6),

1 2m.

A(O, co)= g j d8exp ip(q, cu)Lkcos8
8m vs 2 okeZ2

mv
/cos8[

I 1+&co~+&ql cos0
(A8)

where p(q, co) denotes the pole value whose dependence
on co and q must no longer be neglected and 0 is the angle
enclosed by q and p. Due to the entanglement of the vec-
tors q, p, and J k, the result of the 0 integration will in
general depend on the Fermi energy and the orientation
of the mode vector q with respect to the boundary. As a
consequence of the rapid oscillation of the 0-dependent
phase factor, however, the dominant contribution to the
integral comes from 8-0 as long as Lk&0. Linear-
ization of cos(8) around 8=0 shows that L&WO
contributions to the sum are of order
cos(pFLk )exp( L& Il)(pFL& —)' after the integration.
Suffering from both a rapid phase dependence and a fac-
tor O(pFL) ' «1, these terms will henceforth be re-
garded as negligible. Apart from a weak energy depen-
dence of the parameters ~ and l, the product [A(q, co) ]"
is insensitive against energy averaging. The k(q, co),
however, depend on the Fermi energy via the large phase
pFL„cos(9)=O(p„Lcos(8)). From the discussion of
Sec. III, it is clear that a factor [A,(q, co)']" will average to
a term of order exp( Eo tf ) « I if —n is odd and
(pF l )( —n /2) « 1 if n is even. We therefore have
(X(q, co)")z -([A,(q, co) ]")z . On the other hand, we

would have obtained [A(q, co) ]" immediately, had we ap-
proximated the sum over p by an integral from the outset.
In other words, averaging the correlation function over
energies larger than the inverse time of Bight renders the
discreteness of the levels inessential. Similarly to averag-
ing over the Fermi energy, the phase-dependent terms
can also be discarded by allowing for sample-to-sample
fluctuations in the system size with 6L,p~ && 1.

To summarize, we may take Eq. (A4) as eigenvalues
and Eq. (Al) as eigenmodes for all relevant values of the
parameters co~ and lq.

APPENDIX 8: SINGI.K-IMPURITY SCATTERING

In this appendix we study the contribution of the
single-impurity scattering process S& to the correlation
functions. Diagrammatically, S, can be represented as

(B1)

G (eg, Hg)

S =—8 (B2)

In contradistinction to the previously considered dia-
grams S„,n ~ 2, there is no summation over q-
momentum modes [cf. Eq. (19)]. The reason is that a sys-
tem boundary can only Aip momentum components, i.e.,
it does not allow for arbitrary momentum exchange like
an s-wave impurity scatter. This leads to a reduction in

where the location x of the impurity is integrated over.
In an infinite system translational invariance prevents any
momentum Aow through the impurity line. In this case
the diagram Si is readily expressed as a decoupled prod-
uct of two momentum integrations over Green functions
and vanishes. Within the semiclassical interpretation this
means that in an infinite system at least two impurity
scattering events are required to form a closed phase-
space trajectory. In this aspect ballistic samples behave
differently, since not only impurities but also the boun-
daries may serve as scattering centers. To study the
effect of boundary scattering we substitute the hard-wall
Careen function Eq. (15) in Eq. (Bl) and integrate over x.
As a result of a straightforward calculation we get
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degrees of freedom and renders the contribution of S, to
the correlation functions inessential: For small energies
co ( 1/r the behavior of the correlation functions is
governed by the diffusion pole and low-order diagrams
S;, i =O(1) are insignificant anyhow. In the large-energy
limit E ) I/r, however, the contribution of S, is by far
less than that of Sz [cf. Eq. (40)].

APPENDIX C: SEMICLASSICAL ANALYSIS
OF THE FIELD-DEPENDENT PART
OF THE CORRELATION FUNCTION

P (S)= cosh
mS

(Cl)

P(S) is normalized according to

J dSP(S)=1 .

The total classical probability density to return to the ori-
gin at time t is I/(27rDt) Noting that D. =vfl/2, X = uf t,

The fact that for diffusive systems pFl ))1 implies that
between two consecutive scattering events the electron,
viewed as a classical particle, propagates along straight
lines (unless the field is too strong). Evidently, we need to
assign a quantum phase to each semiclassical trajectory,
considering probability amplitudes rather than probabili-
ties. For both weak- and intermediate-field regimes, the
Bethe-Peierls approximation is valid and the phase asso-
ciated with a given close path is 2~4/Np, where N =SH
is the Aux enclosed by the path. Here, S is the enclosed
area. It is assigned a plus or minus sign depending on
whether that particular path winds clockwise or anti-
clockwise, respectively. Let us first try to estimate the
field sensitivity of the return probability in real space.
Throughout this section we consider time scales shorter
than the diffusion time through the system. We thus ex-
clude energy scales smaller than E, . Parts of the present
discussion, but not the final conclusions concerning the
correlation functions, have appeared in Ref. 8.

It has been shown that the probability distribution to
find a returning path (in an infinite two-dimensional
difFusive system) of length X, enclosing an algebraic area
S is"

—2

we write this probability as 1/(vrlX). Thus the classical
probability density of a returning path of length X en-
closing an area S is given by

P (X,S)= cos
1 mS

2521 2
(C2)

Recalling weak localization theory and accounting for
the fact that the following ensemble-averaging contribu-
tions to the quantum-mechanical return probability arise
only from products of the ith returning path with itself or
with the amplitude of the time-reversed path, we thus ob-
tain the quantum-mechanical return probability at time
t =L /vf,

1 ~, mS
PoM(t) =

2 2 I dS cosh~2/2 p

—2

r 2SH

0

2LIH/(24&p)
1+

rrlL sinh[ZEIH/(2&bp)]
(C3)

This probability is expressed as an integral over contribu-
tions from all returning paths of a given length X. The
interference of a trajectory with its time-reversed coun-
terpart [the second term in the integrand of Eq. (C3),
identified as the Cooper-channel contribution] is field sen-
sitive. For H=o, Eq. (C3) yields the well-known factor-
two enhancement of the return probability. According to
the analysis of Ref. 8, the sum over products of semiclas-
sically evaluated transition amplitudes and mutually
time-reversed transition amplitudes [Eq. (C3) in our case]
has to be multiplied by t and energy Fourier transformed
in order to yield the correlation function E. Performing
the calculation we arrive at the result Eq. (76). Since we
consider here time scales shorter than the diffusion time
across the system [the effect of boundaries was ignored in
Eq. (Cl)], our final result should apply for frequencies
co) E
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