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Ground states of large quantum dots in magnetic fields
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The quantum-mechanical ground state of a two-dimensional (2D) ¹lectron system in a confining po-
tential V(x) =Ev(x ) (K is a coupling constant) and a homogeneous magnetic field B is studied in the
high-density limit N~ ~, K~ ~ with K/N fixed. It is proved that the ground-state energy and elec-
tronic density can be computed exact1y in this limit by minimizing simple functionals of the density.
There are three such functionals depending on the way B/N varies as N~~: A 2D Thomas-Fermi
(TF) theory applies in the case B/N~O; if B/N —+const&0 the correct limit theory is a modified B-
dependent TF model, and the case B/N~ ~ is described by a classical continuum electrostatic theory.
For homogeneous potentials this last model describes also the weak-coupling limit K/N~O for arbi-
trary B. Important steps in the proof are the derivation of a Lieb-Thirring inequality for the sum of ei-

genvalues of single-particle Hamiltonians in 2D with magnetic fields, and an estimation of the exchange-
correlation energy. For this last estimate we study a model of classical point charges with electrostatic
interactions that provides a lower bound for the true quantum-mechanical energy.

I. INTRQDUCTIQN

In the past few years considerable experimental and
theoretical work has been devoted to the study of quan-
tum dots, which are atomiclike two-dimensional systems,
confined within semiconductor heterostructures. The
number of articles on this subject is by now quite large.
See, e.g. , Refs. 1 and 2 for reviews, Refs. 3—7 for recent
measurements of conductivity and capacity of quantum
dots, and Refs. 8 —18 for various theoretical aspects and
further references. The parameters of such artificial
atoms may differ appreciably from their natural counter-
parts because of the interactions of the electrons with the
crystal where they reside. In a quantum dot the natural
atomic unit of length is a„=efi/(m, e ), where e is the
dielectric constant and m, is the effective electron mass.
Compared with the usual Bohr radius ao =Pi /(me ), the
length a, is typically large, e.g. , a, =185ao in GaAs.
The corresponding natural unit 8, with which we mea-
sure the magnetic field 8 is the field at which the magnet-
ic length l~ =fie /(8 'r c ) equals a, , i.e.,
8, = (a o /a, ) 80, where Bo =e m c /fi =2. 35 X 10 I is
the value corresponding to free electrons. If ao/a, is
small, 8~ can be much smaller than 80. Thus 8, =7 T
in GaAs. This makes it possible to study in the laborato-
ry efFects which, for natural atoms, require the magnetic
fields of white dwarfs or even neutron stars.

The ground-state properties of natural atoms in high
magnetic fields have recently been analyzed rigorously in
the asymptotic limit where the number of electrons and
the nuclear charge are large. ' ' For artificial atoms one
may expect asymptotic analysis to be even more useful
because the accuracy increases with the number of elec-
trons, and a quantum dot can easily accommodate several
hundred or even a thousand electrons. In the present pa-

per we carry out such an analysis of the ground state of a
quantum dot in a magnetic field. One of our conclusions
is that the self-consistent model introduced by McEuen
et a/. ' is a rigorous limit of quantum mechanics. This
model has recently been applied to explain interesting
features of the addition spectra of large quantum dots in
strong magnetic fields. ' '

Before discussing our results for dots we summarize,
for comparison, the main findings about atoms in Refs.
19—21. The quantum-mechanical ground-state energy
and electronic density of a natural atom or ion with elec-
tron number X and nuclear charge Z in a homogeneous
magnetic field 8 can, in the limit X—+ ~, Z~ ~ with
Z/X fixed, be described exactly by functionals of the den-
sity, or, in one case, of density matrices. There are five
different functionals, depending on the way 8 varies with
N as N ~ oo. In each of the cases 8 ((N (with 8 mea-
sured in the natural unit Bo), 8 -N, and N r

«8 «N the correct asymptotics is given by an ap-
propriate functional of the semiclassical Thomas-Fermi
type. For 8-X a modified functional, depending on
density matrices, is required, whereas the case 8 )&N is
described by a density functional that can be minimized
in closed form.

A review of our results about quantum dots was given
in Ref. 22. Due to the reduced dimensionality of the elec-
tronic motion, there are only three different asymptotic
theories for quantum dots instead of five for natural
atoms. These three theories are given by simple function-
als of the density and correspond, respectively, to the
cases 8 &(N, 8-N, and 8 &)N (8 measured in units of
8~) as N~~ with V/N fixed, where Vis the attractive
exterior potential that restricts the two-dimensional
motion of the electrons. This potential, which plays the
same role as the nuclear attraction in a natural atom, is
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As before, e and m denote the charge and mass of a (free)
electron, e is the dielectric constant, m, is the effective
mass, and g, is the effective g factor. The magnetic vec-
tor potential is A(x)= —,'( Bx,Bx') [wit—h x=(x', x
ER ], B=(0,0,8), and S is the vector of electron spin
operators. The potential V(x) is supposed to be continu-
ous and confining, which is to say that V(x)~oo as
~x

~

~ ~. It is not assumed to be circularly symmetric.
The constant term in (1.2), —[Ae /(2mc ) ][(m /m „)—~g, ~/2]8, is included in order that the kinetic-energy
operator Hk;„=H,—V(x) has a spectrum starting at
zero. The Hilbert space is that appropriate for fermions
with spin, the antisymmetric tensor product
h L (R 'C )

We define an effective charge by e~ =e /&e and choose
units such that 4=m, =e, =1. The unit of length is
then the effective Bohr radius a„=A' /(m, e, ) and the
unit of energy is E„=e,la, =e,m „/fi . Moreover, the
unit B, for the magnetic field is determined by
fieB~/(m„c)=E„,so 8 =e„m~c/(e'~ h' ). The values
for GaAs are a, =9.8 nm, E~ = 12 meV, and B,=6.7 T.

The true quantum-mechanical ground-state energy of
H& is denoted by E~(N, B, V) and the true ground-state
electron density by pgii i,(x). The density functionals
that describe the asymptotics of E~ and p~ are of three
types. The first is a standard two-dimensional Thomas-
Fermi energy functional

generated in a quantum dot by exterior gates, and thus is
adjustable to a certain extent. In the course of proving
the asymptotic limits we shall also consider, in addition
to the density functionals, a model of classical point
charges in two dimensions that gives a lower bound to
the quantum-mechanical energy.

Some of the methods and results of the present paper
contrast markedly with those of our earlier work. '

From a mathematical point of view the most interesting
feature of quantum dots compared to natural atoms is the
somewhat peculiar electrostatics that appear because the
interaction between the electrons is given by the three-
dimensional Coulomb potential although the motion is
two dimensional. Also, the fact that the kinetic energy
vanishes in the lowest Landau level requires additional
mathematical effort in order to bound the kinetic energy
from below by a functional of the density. We now de-
scribe in more detail the limit theorems to be proved in
the sequel. A quantum dot with N electrons in a
confining potential V and a homogeneous magnetic field
B is modeled by the following Hamiltonian:

N 2H„=y HIJ'+ '
j=l 1&i &j+&

with x; ER and where H
&

is the one-body Hamiltonian

e "[p;V]=(ir/2) fp(x) dx

+ f V(x)p(x)dx+D(p, p) (1.3)

D(p, p) = ,' f -f P "P y dx dy . (1.4)

Here p is a non-negative density on R and all integrals
are over R unless otherwise stated. The second func-
tional is a two-dimensional magnetic Thomas-Fermi
functional

"[p;8,V]= fj s[p( x)]d x+ f V(x)p(x)dx

+D(p, p), (1.5)

where jz is a piecewise linear function that will be
defined precisely in the next section. This functional is
the two-dimensional analog of the three-dimensional
magnetic Thomas-Fermi functional that was introduced
in Ref. 23 and further studied in Refs. 24„25,and 21.
The present two-dimensional version was first stated in
Ref. 3; these authors call it the self-consistent (SC) model.
The repulsion term considered in Ref. 3 is slightly
different from D(p, p), since it has cutoffs at long and
short distances. It is still positive definite as a kernel and
our methods can easily be adapted to prove Theorems 1.1
and 1.2 with such cutoff Coulomb kernels.

The last asymptotic functional will be called the classi-
cal functional, since the kinetic-energy term is absent and
only classical interactions remain:

[p; V]=f V(x)p(x)dx+D(p, p) . (1.6)

The functionals (1.3) and (1.6) are in fact limiting cases
of (1.5) for 8 ~0 and 8~ oo, respectively. As discussed
in detail later, for each functional there is a unique densi-
ty that minimizes it under the constraint fp=N. We
denote these densities, respectively, by p&"v(x), p& ii"i (x),
ptt i,(x), and the corresponding minimal energies by
E "(N, V), E "(N,B,V), and E (N, V).

In order to relate E~ to these other energies we take a
high-density limit. This is achieved by letting X tend to
infinity (which is a reasonable thing to do physically,
since N can be several hundred) and we let V tend to
infinity. The latter statement means that we fix a poten-
tial U and set V =NU. With this understanding of
X, V—+ ~ our main results are summarized in the follow-
ing two theorems. [In order to prove these theorems we
need to assume that V is su%ciently regular. The techni-
cal requirement is that V belongs to the class Ci",, (see
Theorem 3.2 for the definition of Ci",, )].

1.1 THEOREM (limit theorem for the energy). Let
V=Nv with v a fixed function in Ci",, . Then

lim E~(N, B, V)/E "(N,B, V)=1
Pf~ oo

uniformly in B. Moreover,

lim E~(N, B,V)/E "(N, V)=1 if 8/N~O (1.8)
N~ oo

and
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lim E~(N, B,V)/E (N, V)=1 if B/N —+~ . (1.9) lim E~(N, B,Kv )/E (N, B)=1
Pf~ oo

(1.17)

1.2 THEOREM (limit theorem for the density) .Let
V=Nv with u a fixed function in C,",, . Then

1 Q MTF
NP%, 8, v P1,8/x, u

uniformly in B, and

1 Q TF—p~~ v~p), sf B/N~O,

(1.10)

Q C
Np~, a, v~] ~, U

&f B/N~~- (1.12)

F(N B V)=N EMiF(1 B/N V/N) (1.13)

Thus (1.7) is equivalent to

The conuergence is in the weak L ' sense. [By definition, a
sequence of functions f„converges to a function f in
weak L ' sense if ff„g~ ffg for all bounded (measur-
able) functions g.]

Let us add a few comments on these results. As dis-
cussed in the Sec. II, the energy E " has the scaling
property

uniformly in B.
One can also prove a limit theorem for the density in

the case of homogeneous potentials. Since the formula-
tion of such a theorem becomes somewhat complicated
we refrain from doing this, but refer to Eqs. (2.14)—(2.16)
below for the scaling of the MTF functional with
k =K/N and to (3.24) for the weak-coupling limit of the
MTF density.

The proof of the limit theorems involves the following
steps. In Secs. II and III we discuss the basic properties
of the functionals (1.3)—(1.6). In Sec. IV we consider the
energy of a system of classical point charged particles in
R in the exterior potential V as a function of the posi-
tions of the charges. This energy has a minimum, denot-
ed by E (N, V) (with P denoting "particle" ). A
significant remark is that the charge configuration, for
which the minimum is obtained, is confined within a ra-
dius independent of the total charge N for fixed V/N.
This finite-radius lemma, which also holds for the charge
densities minimizing the functionals (1.3)—(1.6), is proved
in the Appendix. Using this and an electrostatics lemma
of Lieb and Yau we derive the bounds

E~(N, V, B)=N E (1,B/N, V/N)+o(N ) (1.14) E (N, V) —aN &E (N, V)&E (N, V) bN ~—
, (1.18)

where the error term is uniformly bounded in B for V/N
fixed. One expects the error to be O(N ~ ), which is the
order of the exchange contribution to the Coulomb in-
teraction, but our methods do not quite allow us to prove
this. We do, however, show that for B/N larger than a
critical value (depending on V /N) one has
E "(NrB, V)=E (N, V) and

E~( N, V, B ) & N E (1,V /N ) bN— (1.15)

where the coefficient b depends only on V/¹
The condition that V/N is fixed as N~ oo guarantees

that the diameter of the electronic density distribution
stays bounded as N~ (x); thus the limit we are consider-
ing is really a high-density limit rather than simply a
large-X limit. On the other hand, for a homogeneous po-
tential V (e.g. , quadratic, as is often assumed) one obtains
also a nontrivial N~ ~ limit for V fixed, if the lengths
are suitably scaled. In fact, this limit is given by the clas-
sical functional (1.6). Intuitively this is easy to under-
stand, for if an increase in N is not compensated by an in-
crease in V the charge density spreads out and the
kinetic-energy terms in (1.5) and (1.3) become negligible
compared with the other terms. (The result again re-
quires Vto be in C&', .)

1.3 THEOREM (energy limit with a homogeneous po
tential) Assume that . u is homogeneous of degree s &1,

where a and b depend only on V/N. These bounds are of
independent interest apart from their role in the proof of
the limit theorems where, in fact, only the latter inequali-
ty is needed. Upper and lower bounds to the quantum-
mechanical energy E~(N, B,V) in terms of
E "(N,B, V) with controlled errors are derived in Sec.
V. The upper bound is a straightforward variational cal-
culation using magnetic coherent states in the same way
as in Ref. 21. For the lower bound one treats the cases of
large B and small B separately. The estimate for large B
is obtained by first noting that obviously
E2(N, B, V) &E (N, V), because the kinetic energy is
non-negative, and then using (1.18). For small B two
auxiliary results are required: a generalization of the
magnetic Lieb-Thirring equality considered in Ref. 21,
and an estimate of the correlation energy. Once these
have been established the proof of Theorem 1.1 is com-
pleted by a coherent state analysis. The limit theorem for
the density follows easily from the limit theorem for the
energy by perturbing V with bounded functions.

II. THE MTF THEQRY: ITS DEFIMTK)N
AND PROPERTIES

By employing the natural units defined in the Introduc-
tion, the kinetic-energy operator can be written

I,.e.,
u(Ax ) =k'u(x) .

H„,„=-,'(i V —A)'+yS. B—
—,'(1—lyl)B

with y =g „m~ /(2m ). The spectrum of Hk;„is

(2.1)

Then

lim E~(N, B,Ku)/E "(N,B,Kv)=1 (1.16)
=(n+yo + —,

'
ly l )B (2.2)

uniformly in B and in K as long as K/N is bounded aboue
Moreover, ifK /N ~0 as N ~ oo, then

with n =0, 1, . . . , o.=+—,'. We write the energy levels
(2.2) in strictly increasing order as e (B), v=0, 1, . . . .
The degeneracy of each level per unit area is
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d (8)=B/(2n. ), except if, by coincidence, y happens to
be an integer; in that case d (8 ) =8 /(2') for
v=O, . . . , ~y~

—1, while d (8) is twice as large for the
higher levels. It is worth recalling that if V(x)=K~x ~,
the spectrum of the one-body Hamiltonian H, in (1.2) is
solvable. The spectrum of H& was determined by Fock
in 1928, two years before Landau's paper on the spec-
trum of (t'V A—) . For the Hamiltonian without spin,
namely, ,'(i —V'A—) +E ~x ~, the spectrum is given by

E=—,'(n, nz)8+—,'(n—,+nz+1)[4K+8 ]'~

B26—

82

is(t)

with n „n2=0, 1,2, . . . . It is remarkable that this simple
spectrum gives a qualitatively good fit to some of the
data. '

For a gas of noninteracting fermions with the energy
spectrum (2.2) the energy density jii as a function of the
particle density p is given by

js(0)=0,
j&(p)=e (8) if D (8) &p&D +i(B), v=0, 1,

where jB=djB/dp and

B/~ 2 B/~ 3 B/z 4B/~

FIG. 1. The kinetic-energy densities gz(p) and Jo(p) in the
special case where y =0.

and define the MTF energy by

V

D (B)=g d (8).
v'=0

E "(N,B, V)= inf 6[p;8, V] .
pEeN

(2.7)

More explicitly, Because of (2.4) the energy satisfies the scaling relation

max

js (p ) = g e (8 )d, (B)+[p D(B ) ]—E„+,(8 ), EMTF(N 8 V) N2EMTF( 1 8 /N V/N ) (2.8)

where v,„=v„(p,B) is defined by

(8)&p&D, +i(8) .

(2.3)

Thus jB is a convex, piecewise linear function with

j~ (p) =0 for 0 & p & d i (8 ). It has the scaling property

j&(p) =8'ji (p/8 ) . (2.4)

As B~0, jB becomes a quadratic function of the density:

»mi~(p) =j0(p) = p'. —
B~O 2

Moreover,

i ~(p») jo(p)-
(2.5)

(2.6)

C~= p: p 0, fpV & ~, fp & ~,D(p p) ~, fp=N .

for all p and 8 (see Fig. 1).
Given an exterior potential V the MTF functional is

defined by (1.5). We assume that V is continuous (V
measurable and locally bounded would suffice) and tends
to ~ as ~x ~

—& ~. In particular, Vis bounded below and,
by adding a constant if necessary, we may assume that
V(x) ~ 0 everywhere. Because of (2.6) the functional (1.5)
is defined for all non-negative functions p such that

J pV& ~, J p & ~, and D(p, p) & ~. Since V~O the
functional is non-negative. If N is some positive number
we denote

In the limit 8 +0 the kine—tic-energy density (2.3) con-
verges to jo(p)=(~/2)p and (1.5) converges to the ener-

gy functional (1.3) of two-dimensional TF theory at
8=0. It is easy to see that also limni OE "(N,B, V)
=E "(N, V), where E " is defined in the same way as
E "with (1.3) replacing (1.5). We can thus consider the
TF theory as a special case of MTF theory. In the oppo-
site limit, B~~, the kinetic-energy term vanishes alto-
gether and one obtains a classical electrostatic model (1.6)
that we shall study in Sec. III. Note also that since
ji, & jo for all 8 it follows that E "(N,B, V)
& E "(N, V) for all B. In particular E "(I,P, v ) is uni-
formly bounded in the paraineter P=B/N for fixed
v = V/N.

For fixed 8 and V, E "(N,B,V) is a convex, continu-
ously differentiable function of % and, since V 0, it is
monotonically increasing. By the methods of Refs. 28,
29, and 21 (see also Ref. 30) it is straightforward to prove
the existence and uniqueness of a minimizer for the varia-
tional problem (2.7).

2.$ THEOREM (minimizer) There is a u.nique density

p& z v E C such that

EMTF(N 8 V) gMTF( MTF
)

7

Note that the existence of a minimizing density with

J p=N is guaranteed for all N because V(x)~~ as
~x~~~. This condition on V also implies that p&z v
vanishes outside a ball of finite radius, cf. Lemma A1 in
the Appendix. The scaling relation for the minimizing
density is
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PN, B, V(x) NP), B/N, V/N(x )
MTF MTF (2.9)

Theorem 2.1 includes the TF theory as a special case. In
the same way as in Prop. 4.14 in Ref. 21 one shows that
P~ g y ~P~ v weakly in Ls as B~0.

The shape of the electronic density (computed by Kris-
tinn Johnsen) in the case of a quadratic potential
V(x ) =K

~
x

~
and y =0 is shown in Fig. 2 for diferent

values of B. At the highest value of 8 (8 T), the density is
everywhere below do(8) and given by the minimizer
(3.15) of the classical functional (1.6). At 8 =7 T, all the
electrons are still in the lowest Landau level, but that lev-
el is full around the middle of the dot where the density is
anchored at do(8). As the field gets weaker it becomes
energetically favorable for electrons at the boundary of
the dot, where the potential is high, to move into the next
Landau level close to the minimum of the potential. A
dome-shaped region then arises above the plateau at
p=do(8)=Do(8), but eventually the density hits the
next plateau at p=D, (8). This gradual filling of levels
continues as the field strength goes down. At B=2 T
three Landau levels are full and electrons in the central
dome are beginning to occupy the fourth level. Finally,
at 8 =0, we have the usual Thomas-Fermi model, which
may be regarded as a limiting case with infinitely many
Landau levels occupied.

In order to state the variational equation for the
minimization problem it is convenient to define the
derivative ji') =djt) /d p of the kinetic-energy density
everywhere, including points of discontinuity, as a set
ualued function (cf. Ref. 30), namely,

[E (8)j for D (8)(p(D +, (8), v=0, 1, . . .
' I

[E (B),E,+,(8)] for p=D +, (8), v=0, 1, . . . .

(2.10)

With this notation the Thomas-Fermi equation for the
functional (1.5) may be written as follows.

2.2 THEOREM (Thomas F-ermi equation) .There is a
non n-egatiue number p, =p(N, B, V) such that the minim
izer P=PN ti"v satisfies

E:ji) [p(x) ] if p(x) & 0
p —V(x ) —ps x

«0 if p(x)=0 .
(2. 1 1)

The quantity p appearing in the TF equation is the physi-
cal chemical potential, i.e.,

p, =BE(N, B, V)/BN . (2.12)

Since E is convex as a function of N, p is monotonically
increasing with X for fixed B and V. It satisfies

p(N, B,V)=Np(1, 8/N, V/N) . (2.13)

From the definition of jz one expects that the kinetic-
energy term above can be neglected for large B and hence
that lim~ E T"=E . The rigorous proof of this fact
relies on a careful study of the classical problem. This
analysis is far from trivial and is postponed to the next
section.

There is another case where the MTF energy can be re-
lated to the classical energy. Namely, for a homogeneous
exterior potential, i.e.,

V(kx ) =A, 'V(x)

The derivation of the TF equation is analogous to that
in Ref. 29. It is also true that if (p, )M ) is any solution pair
for (2.11), then p is the minimizer of 6' " for some N
and p=p(N, B, V). The proof of this is a bit trickier
than in the standard case, because jz is not continuous-
ly diQ'erentiable. It has been carried out by Lieb and
Loss.

Finally we discuss the relationship between the MTF
theory and the classical theory defined by the functional
(1.6). We of course have that

"[p;8,V]= fj i[p)( x)]d x+ ( [p; V] .

zo

lO lO

0 — 7'1'
for all A, )0 with some s )0. We consider the potentials
k V(x) with k )0 and are interested in the dependence of
the MTF energy and density on the coupling constant k.

Writing

zO
I.

lO 10

U =- 0'1'

p x k 2/(s+ 1)q k 1/(s + 1)

we have the scaling

"[p;B,kV]=k /'+" f jb(p)+8 fp;kV]

r—k1/(s+1) k1/(s+1) fJ"Jb P

(2.14)

where

b Bk —2/(s + 1)

+( [p, V] (2.15)

(2.16)

FICs. 2. Quantum dots at various magnetic field strengths.
The potential is V(x) = —'m s, co2~x ~', with m s, =0.67m,
Ace=3. 37 meV, and %=50. The coordinate axes are displayed
in units of 10 m and the density p in the units 10 ' m

Changing k is thus equivalent to changing the kinetic en-
ergy by a multiplicative factor and rescaling the magnetic
field, keeping the potential fixed. We shaH show in the
next section that for k small E is a good approximation
to EMTF
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+& px x —y 'pydxdy.
The corresponding classical energy is

E (N, V)=inf ~ 8 [p; V]:p)0, fp=N

(3.1)

(3.2)

III. THE CLASSICAL CONTINUOUS MODEL:
A LIMIT OF MTF THEORY

For densities p small enough [p(x) ~d&(B) for all x]
the kinetic energy js(p) vanishes. It is therefore natural
to consider the resulting classical energy functional
defined by (1.6), i.e.,
8 [p; V]= fp(x)V(x)dx

In this section we analyze this functional and prove that
it is, indeed, the large-8 limit of MTF theory.

As before we assume that the confining potential V is
positive and that V(x)~~ as ~x~~~. Moreover, we
shall here assume that V is continuous (in fact, we shall
make an even more stringent regularity assumption in
Theorem 3.2 below).

We begin by showing the existence of a minimizer for
(3.2). For general continuous V (without further assump-
tions) we must take into account the possibility that the
minimizing p may be a measure. In (3.2) we therefore
minimize over all positive measures p with fp=N I.t
follows from the finite radius lemma given in the Appen-
dix that

E (N, V)=inf 6 [p, V]: support pC: [x:~x~ ~R„],p)0, fp=N (3.3)

Here R, depends only on U= V/N. Later on we shall
show that the minimizer is, indeed, a function, and hence
that (3.2) does give us the large Blimit of-MTF theory
for suitable V.

3.1 PROPOSITION (existence and uniqueness of a
minimizing measure) Let V .be continuous. Then there is
a unique positive measure p& & with p+ V=X such thatC ~ C

E (N, V)=6" [p~ ~, V].
Proof. [Note: we write measures as p(x)dx, even if

they are not absolutely continuous with respect to Lebes-
gue measure. ] By (3.3) we can choose a sequence of posi-

tive measures, p„p2,. . . , supported in Ix:~x ~

~ R, I with

Jp„=N, such that lim„b [p„;V]=E (N, V). The
bounded measures are the dual of the continuous func-
tions, and so, by the Banach-Alaoglu Theorem, we may
assume (by possibly passing to a subsequence) that p„
converges weakly to a positive measure p still supported
in [x:tx ~

~ R„I. In particular it follows that fp=N and

fp„V—+ fp V. Moreover, the product measures

p„Xp„—+p Xp weakly. Hence

f fp(x)p(y)~x —
y~ 'dx dy=lim f fp(x)p(y)(~x —y ~+5) 'dx dy

=lim lim f fp„(x)p„(y)(~x—y~ '+5) 'dx dy
Q~Q n —+ oo

~lim inf f fp„(x)p„(y)~x—y ~

'dx dy .
n~oo

(3.4)

The first equality follows by the Lebesgue's monotone
convergence theorem. The last inequality is an immedi-
ate consequence of the pointwise bound (~x —y ~+5)

We conclude from (3.4) that

E (N, V) ~ 8 [;V] ~lim inf 6' [p„;V]=E (N, V),
fg~ oo

(3.5)

and hence that p is a minimizer.
The uniqueness of p follows from strict convexity of

D(p, p). Q.E.D.
The next theorem gives conditions which are perfectly

adequate for the physical applications under which the
minimizer is a function and not just a measure. More-

over, that function has certain nice integrability proper-
ties.

3.2 THEOREM (the minimizer is a function). Assume
that the potential Vis in the class CI,', for some 0(a~ 1

(i e., V is once c.ontinuously differentiable and for each
R )0 its deriuatiue satisfies

iVV(x) —VV(y)i ~c~ ix —yi (3.6)

f ~px, v(p)~ ~p~ dp +C& (3.7)

inside the ball of radius R centered at the origin for some
constant cR )0). Then the minimizing measure pz r of
Proposition 3.1 is a function It has the properti. es (with p
being the Fourier transform ofp)
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p~ i, e Ix I

' is continuous,

fp~y(x) dx(C2, 1

(3.8)

(3.9)

By integrating VV along the line from x —y to x, and us-
ing (3.6), we have

I
V(x —y )

—V(x)+y V V(x) I

~ c Iy I

where C, and Cz ore constants (implicitly computed
below) that depend only on the constants cz, q, r, a and on

Proof. We write pz v=p. We know that fp=N and
that p has compact support. From the former fact we
conclude that p is well defined, continuous, and bounded.

I.et g, be the function with Fourier transform

g, (p)= fg, ( x)e'~"d x= '0 ) (3.10)

Then g, is continuous, fg, =1, and fyg, (y)dy =().
Let p, be the convolution peg„sothat J'p, =N.
Since p is a minimizer, 8 [p; V] ~ 6' [p„V].Expljcjt

ly this inequality is

V. —~ ~+a n. V. —& c»c —o.
Since f Vp, =f ( Veg, )p we can write the first term as

f f [ V(x —y ) —V(x) ]p(x)g, (y )dx dy .

The last two terms in (3.11) are

const f lpqp )I p I '[Ig, (p ) I

—1]dp

=const f p(p)l~lpl 'dp .
Ipl ~~

(Recall that the Fourier transform of Ix I

' is equal to
const Ip I

in two dimensions. ) The inequality (3.11)
thus implies

f p(p)l Ipl 'dp ~const a
Ipl-~

Using (3.12) and p(p) + fp=N we can now prove (3.7)
as follows:

(3.12)

(Note that by the finite radius Lemma A 1 all integrals are
restricted to a finite ball. ) Using the fact that fyg, (y)=0
we can estimate the first term in (3.11) as follows:

f (p, —p) V ~ C f y I

+'
Ig, (y ) dy =const a

f Ip(p)I'Ip I "dp = f Ip(p)I' p I "dp+ & f„„„Ip(p)I'lp "dp

N' f— p I "dp+const »'"+'"""'f „„„Ip(p)l'IpI
'dp

Ipl —& n=O

(const)N +const g 2'"+'""+"
n=0

if r (a.
To prove that pe Ix I

is continuous is now easy. We simply prove that its Fourier transform is integrable. The
Fourier transform of pe Ix I

' is (const) p(p)lpl ' and

f Ip(p)llpl 'dp~ f . p(p)Ilail 'dp+ f Ip(p)l'Ipl"dp f p
" 'dp

Ipl Ip I
—&

Finally, we prove (3.9). For 1 ~ q ~ 2 there is no prob-
lem because we know that fp = fp Hence . p is a
square integrable function and, since fp=N, we con-
clude by Holder's inequality that (3.9) holds for 1 ~ q ~ 2.
For q & 2 we will prove that

p ( ao with (t= (2 .
Ex+2 q 1

This will prove (3.9) by the Hausdorff'-Young inequality,
which states that ( f lpl')'~'~( fp )'~ when 1 t ~2.

We wri«
I p(p) I'=

I I pap) I'(1+ lp I ) ] I (1+
I p I )™]and

then use Holder's inequality with a '+b '=1 to con-
clude that

f lpl'~ f Ip(p)I "(1+Ipl) 'dp

x f (1+
Ip I )™dp" .

V =V+pelxl (3.13)

is continuous. It is then easy to derive by standard argu-
ments, as in Sec. I, that p is the unique non-negative solu-
tion to the variational equation

Thus f Ipl'( ~ if we can satisfy ta=2, ma (a, and
mb & 2, in addition to a '+ b ' = 1. This requires
a/a & m & 2/b, or 1 & a (1+—,'a. Thus, we require
t=2 ja )4/(a+2) which, since q=tl(t —1), means
q &4/(2 —a). Q.E.D.

Corresponding to the minimization (3.2) there is a vari-
ational equation satisfied by the minimizer p. In the gen-
eral case in which p might be a measure, the variational
equation exists but is slightly complicated to state.

In physically interesting cases V is certainly in C', in
which case Theorem 3.2 tells us that p is a function and
that pe Ix I

' is continuous. Hence the total potential
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V(x)+p~lxl '=p if p(x)&0,

V(x)+pe Ixl ')(L(, if p(x)=0,
(3.14)

from 8 to n/2 in (3.16) is negative. ] Q.E.D.
The energy function E (N, V) has the simple scaling:

r

for a unique p & 0. As usual the chemical potential p is a
monotone function of the particle number N= fp. In
the special case of a parabolic confining potential the
solution to (3.14) can be given in closed form.

3.3 PROPOSITION (minimizer for the parabolic exteri
or potential). If V(x) =K Ix I

then the minimizer of A &~ v
LS

NX&1 —)(, fxl2 if lxl &A,

P~, v«)= ' 2

0 if Ix I
& k

(3.15)

—Ix I'sin'8]' 'd 8 d Iy

f (1—Ix I
sin 8)'= 3

2m

2
1/2

I
x

I
cos8)

1 —lx I'sin'8

the integrations are over the intervals in 8 and y I
for

which the integrands are real. Introducing the variable
t=(lyl —Ixlcos8)(1 —Ixl sin 8) '/ we obtain

0 (x)
2 1/2p*lxl '= f. . .(I

—lxl'»n'8)d8f (1—t')'"dt
m

where A, =(8K/3nN) In f.act, pz v is the solution to
(3.14) with l2,

= (3'/4)NA, '

Proof. This solution (3.15) was certainly known before;
see, e.g. , Ref. 10. We give the proof here for the conveni-
ence of the reader. We only have to show that p=pN v
is the solution to (3.14). It is enough to consider
the case 1,= 1 and N= 1. Then V(x)=(3m/8)lxl
and @=3m/4. We may compute pe Ix I

=3/2n f+I—Ix —y I Iy I
'dy by writing y in polar

coordinates (Iyl, 8) and performing the Iyl integration
first:

p*lxl '= f Jl(l —lyl
—xlcos8)'

E (N, V)=N E 1—V (3.17)

The minimizing density pz v for (3.2) scales as

px, v(x) =Np(, .«)
where u = V/N.

We shall now make precise in what sense the classical
energy E is a limit of the MTF energy. In fact, in two
different limits (the large-B limit and the low coupling
limit) the MTF energy will converge to the classical ener-
gy. We first treat the large-B limit.

3.4 THEOREM (large Blim-it of MTF). If the exterior
potential V is in the class CIo', we have, as B~ oo,

EMTF(N B V')~Ec(N V) (3.18)

and

Px, a, v(x ) ~PJv, v ~

MTF C (3.19)

E "(N B, V)=E (N, V), (3.20)

in the weak L ' sense.
Proof. If we use pz~"v as a trial density in 6' and re-

call that js )0 we immediately obtain E (N, V)
&EMTF(N, B V)

For the bound in the opposite direction we use pN v as
a trial density for ( ". In order to do this it is, howev-
er, important that we know (from Theorem 3.2) that pz v
is a function. Hence j~(P& v) is well defined. Moreover,
from the definition of j~, j~(p~ v)~0 almost everywhere
as B—+ oo and js(pz v) j o(p~ v). Since jo(p)
=(m/2)(P) we know from (3.9) that jo(P& v) is integra-
ble. The limit in (3.18) is therefore an immediate conse-
quence of Lebesgue's dominated convergence theorem.

The convergence of the densities in (3.19) follows in a
standard way by replacing Vby V+Ef with f a bounded
(measurable) function and differentiating with respect to
E, see e.g., Ref. 29. Q.E.D.

We point out that if pN v is a bounded function, as it is,
e.g. , for V=K Ix, then

where

0 (x)=—I (1 —Ixl sin 8)d8,
4 —6) (x)

~/2
8 (x)= . ( 1

sin ' if Ixl)1.
lxl

(3.16) for B large enough, because in that case j~(P& v) van-
ishes for B large.

Finally, we now discuss the weak-coupling limit in the
case of homogeneous exterior potentials. Suppose V is a
homogeneous function of x, V(k,x ) =A, 'V(x ), s )0. If we
consider the exterior potentials kV(x) with k )0 the clas-
sical energy and density obey the scalings

Thus

pelxl
4

E (N kV)=k'"'+"E'(N V)

C
( )

k2/(s+() C (k(/(s+()
PN, kV + PN, V

(3.21)

(3.22)

pelxl
4

IThe last inequality comes from the fact that the integral

If k is small we see from (3.22) that the minimizing
density for the MTF functional will spread out and its
kinetic energy will be negligible compared with the classi-
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cal terms. We prove this rigorously now.
3.5 THEOREM (weak co-upling limit of MTF with

homogeneous potentials) Let V be C)",, and homogeneous

of degrees. Ifk —+0 then

E "(N,B,kV)
(3.23)E'(N, k V)

and

The minimum classical particle energy for N point parti-
clesin R is

E (N, V)=infI6 (x„.. . , x)v, V): x, ER ) . (4.2)

We shall estimate the particle energy E (N, V) in
terms of the classical continuum energy E (N, V). We
first show that E (N, V) gives an exact upper bound on
E (N, V).

4.2 LEMMA (upper bound for E ). For all N we haue
t

—2/(s+ 1) MTF
( k

—1/(s + 1)
)

C
PN, B,kV PN, V (3.24) E (N, V) E (N V) —N /(8R ) (4.3)

in weak L sense B.oth limits are uniformin B.
Proof. As above we may use p~ s"), as a trial density in
to conclude that E (N, V) ~ E "(N,B,V).

To prove the bound in the opposite direction we again
use p~ F as a trial density for @ ". We then obtain from
(2.15) and the scaling (3.22) that

EMTF(N B kV) (k2/(s+1) f1 (
C )+EC(N kV)

(3.25)

where we used that jb ~ jo. If we compare this with the
scaling in (3.21) we see that E "/E ~1 as k~0 since
jo(P)v F) =(vr/2)(P)v ) ) is integrable

The convergence of the densities follows again by re-
placing Vby V+ef and differentiating with respect to E.
Q.E.D.

In the same way as for the large-B limit (3.23) becomes
an identity for small k if pN z is a bounded function.

We may of course also introduce the scaling V=NU
when U is homogeneous of degree s. Then kV=LU,
where E =kN, and the limit in (3.23) is uniform in ¹
The limit in (3.24) is uniform if we formulate it as

N
—)k —2/(s+1) MTF (k

—1/(s+1)
)

C
( ) (3 26)

s j

We remark that if a potential 8' is asymptotically
homogeneous in the sense that there is a homogeneous
potential Vwith lim(,

(

„W(x)/V(x)=1,then

lim E(N, B,kW)/k' "+'=E (N V)
k~0

(3.27)

uniformly in 8, where s is the degree of homogeneity of
V.

IV. THE CLASSICAL POINT CHARGE MODEL:
A LIMIT OF QUANTUM MECHANICS

4 (x), . . . , X)v, V)= g V(x, )+
1&i &j&N

fx, —x, f

(4.1)

Another model that sheds some light on the physics of
our problem —and that will also be important for bound-
ing the difference between the TF theory and the original
quantum theory in Sec. V—is the classical particle mod-
el. In this model the kinetic energy is simply omitted al-
together, but the pointlike nature of the electrons is re-
tained.

4.1 DEFINITION (classical particle energy) With.
V(x) being the confining potential the classical particle
energy for N points in R is de6ned by

where A, is the maximal radius giuen in Lemma A1.
Proof. First, let us give a very simple argument that

yields an error term proportional to N instead of N
The energy E (N, V) is bounded above by

f 6 (x), . . . , x)v, V)@(x), . . . , x))()dx )
' ' dx))t

for any non-negative function @ with f4=1. We take
4(x), . . . , X~)=ll;=)p())(x;), where for simplicity we
have introduced the notation p~ l ~

for the minimizer
p, ),/)v for (

f p; V/N] with fp, F/))(=1. Note that p[)l
depends only on U = V/N. We obtain

N
E (N, V) ~ f 6 (x), . . . , X))„V)g p())(x;)dx, . dx)v

=N Vx p(l) x dx

+ f fp[ ]()x)l x

+N +N N3/2
g (t +h,„)

j=l k =1
(4.4)

Xp())(y)dx dy .

Recalling that the minimizer of 6 is p)v F(x) =Np()~(x),
we get an error term —aN, with
a = ,' f fp—(,)(x)p(, )(y) fx —y f

'dx dy.
Now we turn to a proof of (4.3) which, obviously, has

to be more complicated than the previous discussion. By
Lemma Al there is a fixed square Q centered at the ori-
gin, whose width 8'equals 2R„such that the minimizer
p=p)v ) for ( is supported in Q. For simplicity we sup-
pose that (/N is an integer; if this is not so the following
proof can be modified in an obvious way.

First, cut Q into v N vertical, disjoint strips,
S),S2, . . . , S~z such that f s p=&N for all j. Let t
denote the width of Sj, so that g~ +, t =W. Next, make.
v N —1 horizontal cuts in each Sl so that the resulting
rectangles RJk for k =1, . . . , v N satisfy f )) p= l.

jk
Denote the height of these rectangles by h.k, so that
gk=)hlk=W for each j. Having done this we note, by
convexity, that for each j

")/ N
—1

1/2 g (t +h )
—I& N

—1/2 y (t +h )
k=1 k=l

=ft +N- / W~-
J

Again, using the same convexity argument for the j sum-
mation, we have that
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Let p k be the minimizing density p restricted to the
rectangle Rjk, i e ,. pJI, (x)=1 if x ERik and =0 other-
wise. Thus, fp k =1. We denote these N functions by p',
i=1, . . . , N. Define @(xi, . . . , x~):=11, ,p'(x, ) and,
as in the previous proof, a simple computation yields

N

E (N, V) f @ 4=@ [p; V] —g D(p', p'),

with D(f,g)= ' f—ff(x)g(y)lx —y I
'dx dy.

To complete our proof we note that as long as x and y
are in Rik we have that Ix —yl '~(tj+h~k) '. Thus,
g. kD(p~k, p~i, ) ~N /4W' by (4.4) and the fact that

fp,„=l. Q.E.D.
4.3 LEMMA (lower bound for E ). Assume that Vis a

potential in Ci",, . Then for all N we have

statics lemma of Lieb and Yau. The original version
was for R; we state it here for R solely for the conveni-
ence of our present application.

4.4 LEMMA (the interaction of points and densities).
Given points xi, . . . , x& in R, we define Voronoi cells
I 1, . . . , I"NCR by

I =[y&R': ly
—x, l

&
ly

—xkl «r»I k&j] .

These I have disjoint interiors and their union covers R .
We also define R to be the distance from x. to the bound
ary of I t, i e , .R.i is half the distance of x to its nearest
neighbor Let. p be any (not necessarily positive) function
on R . (In general, p can be replaced by a measure, but it
is not necessary for us to do so.) Then jwith
D (f,g) = ,' f f-f (x)g (y) lx y I

'd—x dye

E (N, V) ~E (N V) bN—
u)ith

(4.5)
1~i (j&N

Ix; x
I

~ D(p, p—)

b = ', Q —,' f [—p,„(x)]~ dx

1/p

(2R, )
—1+(2/P)

(
c )q

1/q2&
2 p

(4.6)

and where q is any number satisfying 2 & q & 4/(2 —a), R,
is the maximal radius given in I emma 31 and
p=q/(q —1) &2. As we explained in Theorem 3.2, our
hypothesis that VHCI,', implies that for q &4/(2 —a),
[f (p, , )q]' q is less than some constant that depends only

on q, a, and v = V/N. In particular, b depends only on v.

We see from (4.3) and (4.5) that when VHC~",, the
power —,

' in the error term is optimal.
In order to prove (4.5) we need the following electro-

+ g f,p(y)ly —x
I

'dy
R

+ —,'gR, '

j=1
N—g f, p(y)ly —x, l

'dy.
j=1 J

(4.7)

Proof of (4.5). We choose p in (4.7) to be the minimizer

pg i, for the functional 8 and we choose the x s to be
any (not necessarily minimizing) configuration for 6 . It
is important for us that a minimizer exists for 8, for
then p satisfies the Euler-Lagrange equation (3.14). Since

fp =N, we conclude from (3.14) that

N

fp(y)ly —x, l
'dy+V(x, ) = g V (x )~Np= f V p=2D(p, p)+ f Vp .

Thus, if we add g, V(x ) to both sides of (4.7), we have that

E (N, V) &E (N, V)+ g —,'R. ' —f p(y)ly —x
I

'dy .
j=1

(4.8)

Our goal will be to control the rightmost term in (4.8) by the R ' term.
We split each region I" into two disjoint subregions, I = A UB, where

A, := Ix:Ix —x, I
& R, ],

Then, by Holder's inequality

' 2/3

y f, ,

ly x, l-'dy—
' 1/3

2/3
p3/2 2~ 8 -1

1/3

(4.9)
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If we define X:=g R. ' we can rewrite (4.9) plus the
X/8 term in (4.8) as —,'X —

( fp
r

)
r X' .The minimum

of this quantity, over all values X, is —4v'2/3 fp r~, and
thus we have accounted for the first error term in (4.6).

To estimate the term I:=g,f „p(y)ly—x
l

'dy

some control is needed over the possible singularities of
p. Let p =q/(q —1) be the dual of q. Then

1/p
1/qfp' g f ly

—x
l

~dy
j J

treated in Ref. 21 and involves some new mathematical
ideas. The second ingredient is a lower bound on the
exchange-correlation energy. The proof of this inequality
is similar to that given in Refs. 34 and 35 for the three-
dimensional case.

Once the kinetic energy and exchange-correlation in-
equalities have been established the proof of the lower
bound is completed by a coherent states analysis.

We start by discussing the magnetic coherent states
used in the proofs of both the upper and lower bounds.
They are constructed from the kernels

2m

2 —p J

1/p

(4.10) II (xcr', ycr")= exp[i(x Xy) B—x —y B/4]

We note that, since

XgR' i'

j=1

1/p

1~@&2,
1/p —1/2

g R,'
j=l

2~q

2 p
(2R )

'+ ~X'
U

This yields (4.6). Q.E.D.

V. MTF THEORY IS THK HIGH-DENSITY LIMIT
OF QUANTUM MECHANICS

In this section we prove that the quantum energy and
the quantum density are given by the corresponding
MTF quantities to leading order for large N. These are
the statements of Theorems 1.1 and 1.2. We shall not
prove Theorem 1.2 since it follows from Theorem 1.1 in a
standard way by replacing Vby V+ef with f a function
in C1,', and di6'erentiating w. r.t. c, see, e.g. , Ref. 29.

We shall prove Theorem 1.1 by giving sharp upper and
lower bounds to the quantum ground-state energy. The
upper bound is obtained by a variational calculation us-
ing the magnetic coherent states introduced in Refs. 25
and 21. The lower bound is more dificult. Besides the
results of the previous sections several ingredients are
needed. The first ingredient is a kinetic energy inequality
of the Lieb- Thirring type. ' ' ' Such an inequality es-
timates the kinetic energy of a many-body wave function
from below in terms of a functional of the density. The
proof of this inequality in the two-dimensional case con-
sidered here is harder than the three-dimensional case

by Holder's inequality. Now ~R is the area of the disc
and thus mg R. is the total area of all these disjoint

discs. How large can this area be? To answer this we re-
call Lemma A1 in the Appendix, which states that for the
purpose of finding a set of points that minimizes the clas-
sical particle energy 4 we can restrict attention to a disc
of radius R„centered at the origin. We may therefore
assume that our xi's satisfy lx~ l &R„.This we can do
whether or not an energy minimizing configuration ex-
ists. Having done so and assuming that N~2 we have
that R- &R, for all j, and hence all our discs are con-
tained in a disc of radius 2R, centered at the origin.
Thus gJ R~ & (2R, ), and our second error term, (4.10), is
bounded above by

1/p

xL (lx —yl'B/2)5. 5. (5.1)

of the projection operators onto the Landau levels
+=0, 1,2, .. . with z-component of spin o =+—,'. Here L
are Laguerre polynomials normalized by L (0)=1. In
fact, all that matters are the projectors II on the states
with energy e (B ); these are given by a sum of at most
two of the projections H . More precisely,

a, o.

a+ —+yo. =c (B)/B1

2 V

(5.2)

We shall not need the explicit form (5.1). The three
important properties of II that we use are the following:

g II (xo', ycr") =5(x —y)5 ~ (5.3)

o

H„;„11=E (B)II, ,

(5.4)

(5.5)

g f II „(xo',ycr")du =5(x —y)5 ~ ~, (5.7)

Trll „=gf II,„(xo.', xcr')dx =d, (B) . (5.8)

Moreover, a simple computation gives, using (5.5),

Tr[H„;„II„]=d(B) e,(B)+f (Vg„)'

Tr[ VII „]=d„(B) Veg, (u ),
(5.9)

(5.10)

where Vis a (continuous) potential and e denotes convo-
lution. Likewise, for all f with (f l f ) = 1

where H„;„is given by (2.1).
Let g be a real continuous function on R, with

g(x)=0 for lx ) 1, fg =1, and f (Vg) & ~. [The op-
timal choice that minimizes f (Vg) is the Bessel func-
tion Jo, suitably scaled and normalized. ] Define
g„(x)=r 'g(x/r), with 0&r &1 to be specified later.
For each u ER, v=0, 1,2, we define the operator II „—
the coherent "operator" —with kernel

II „(xo.',yo")=g„(x—u)II (xcr', ycr")g„(y—u ) . (5.6)

It easily follows from (5.3) and (5.4) and the properties of
g that these kernels satisfy the coherent operator identi-
ties
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&flH; f&=+ f E (B)&fllI..lf &du —f (Vg, )', for all operators K, with kernel CC(xo,y cr'), satisfying

(5.11) &flKlf & —&flf & (5.14)

& fl Veg2lf & =+ f V(u)& flII „lf &du . (5.12)
for all f, and

Equations (5.9) and (5.10) will be used in proving the
upper bound, while (5.11) and (5.12) are needed for the
lower bound.

Tr [K ]=g f,K (x o.,x o. )dx =N .
R

(5.15)

A. The upper bound

We use the variational principle of Ref. 37. According
to this principle

E~(N, B,V) &Tr[(Hk;„+V)K]

We shall choose K as follows. Let p "be the MTF den-
sity, i.e., the minimizer of the functional (1.5) with

fp "=N De.note by v,„(x)the highest filled level.
Then

K(x o,x o. )K(ycr', y o ')
R2 lx yl

0 p (x) g d (B)&d i )+i(B)„()
(5.16)

Xdx dy (5.13) We introduce the filling factors

1, v&v, „(x)
[p (x ) g d (B)]/d ( i+i(B) v=v (x)+ 1

max

0, v) v,„(x)+I

(5.17)

and define

K( xycrr'c)=g ff„(u)II,„(xcr,yo')du, (5.18)

g K(xcr, xcr ) =p "eg„(x). (5.19)

Hence, the last term in (5.13) is D(p "eg„,p eg, . ),
where the functional D was defined in (1.4). By convexity
of D we find that

D( MTF~ 2 MTF~ 2) &D( MTF MTF)gg„p gg p p

From (5.9), (5.10), and (5.13) we obtain

Q( N B V }& @MTF(pMTF ) +N f ( Vg )2dx

+ f [Veg„(e)—V(x)]p "(x)dx

&EMT"(N, V, B)+Nr f [Vg(x)] dx

+N sup [u eg„(x)—u(x)], (5.20)

where R =R, is the finite radius and we have written
V=. NU. Since U is in C'

sup lung„(x)—u(x)l &(const)r .
l~l &a

with II „asin (5.6). It follows from (5.7) that K satisfies
(5.14) and from (5.8), (5.16), and (5.17) that Tr[K]—f MTF( )d

Note that (5.4) and (5.6) imply

We can choose r = r~ such that r~~O and r~ /N~0 as
X~~. This means that r& should go to zero but still be
large compared with the average spacing X ' between
electrons. The optimal choice is of the order
r =(const)N '~ . Thus the error

[E~(N B V) E "(N B V)—]N

is bounded above by a function e~(u)=c+(u)N '~ (in-
dependent of B) This fi.nishes the proof of the upper
bound.

5.1 THEOREM (Lich Thirring inequ-ality in tiuo di
mensions) Let H.t, =

—,'(iV —A) +S B. [This is the
operator Hk;„from (2.1) upwith y= 1.] Let W be a locally
integrable function and denote by e, (W), e2(W), . .. the
negatiue eigenualues (if any) of the operator H=H A

—W'

defined on L (R;C ), the space of waue functions of a sin
gle spin ,' particle Def-i—ne

l
W +(x.)= —,'[l W(x)l + W(x)].

For all 0&A. (1 we then haUe the estimate

g le (W')l &A, ' f, W +(x)dx2' R

+ —,'(1—
A, ) f, l Wl+(x)dx .

Proof. For any self-adjoint operator A we denote by
N ( A) the number of eigenvalues of A greater than or
equal to cz.

Since replacing W by its positive part
l
W'l+ will only

enhance the sum of the negative eigenvalues we shall
henceforth assume that W is positive, i.e., W'=lWl+.



10 658 LIES, SOLOVEJ, AND YNGVASON 51

and

K =W' (I—II )(H~+E) '(I II )W'—

(5.21)

Since Ho commutes with H A we ha e KE KE+KE
Now we use Fan's theorem, which states that if

pl(X)~lM2(X)~ . denote the eigenvectors of a self-
adjoint compact operator X then l2,„++,(X+ Y)
+p„+1(X)+p +1(Y) for n, m ~0. From this we have
Nl(X+ Y) ~N2(X)+Nl 2( Y) which, in our case, reads
as follows:

N, (K~)~N2(KE)+N, 2(K~ ) for O~A, ~1 .

This inequality permits us to consider the two parts of
Kz separately. We first consider the contribution from
the lowest level: Nl„(Kz)=N2E(W' IIOW' ). We get

f "N (K')dE= f "N„,(w'"II, W'")dE

NE(W' II W' )dE

0=X-'Tr( W'/211 W'")
' f II,(x,x ) W(x )dx

f W(x)dx .i B
2'

We consider the Birman-Schwinger kernel

K = W' (H~+E) 'W'

According to the Birman-Schwinger principle (see, e.g. ,
Ref. 38, p. 89) the number Nr( H—) of eigenvalues of H
below E —is equal to the number N, (Kz ) of eigenvalues
of KE greater than or equal to 1. We find

y e, (w)l= f NE( H—)dE= f "N, (K, )dE .
J

In order to estimate N, (Kz ) we decompose the
Birman-Schwinger kernel into a part KF coming from the
lowest Landau level and a part Kz coming from the
higher levels. If Ho is the projection onto the lowest Lan-
dau band these two parts are defined by

Ko Wl/211 (H +E )
—

111 Wl/2 E —1 Wl/211
W 1 /2

The second part is straightforward. We first notice that
H / (I—IIO) ~ B(I—IIO). Hence H /, (I—

IIO) ~ ', (H—z
+ ,'B—)(I—Ilo) ~

—,
' (i V —A) (I—IIo). [Note that

(iV —A) commutes with IIO.] Since the operator in-

equality 0&X~ Yimplies X ' Y ' we have that

K ~ W' (I—II(1)[—,'(iV —A) +E] '(I —IIO)W'/

1/2[ 1 (iV A)2+E ]
—1 Wl/2

We conclude that N, z(KE ) ~ N, (KE ), where

K~ = [(1—
A ) 'W]'/ [—,

' (i V —A) +E]

X [(1—k) 'W]'

is the Birman-Schwinger kernel for the operators
H =

—,
' [(iV' —A) —3(1—

A, )
' W]. The Birman-

Schwinger principle implies that fo N, (KF)dE is the
sum of the negative eigenvalues of H. An estimate on
this quantity follows from the standard Lieb-Thirring in-
equality, i.e.,

2

N& g KE dE 0.24
3

8 X dX

~
—,'(1 —

A, ) f W'(x) dx .

The constant 0.24 can be found as L& 2 in Ref. 40, Eq.
(51). It was improved slightly by Blanchard and
Stubbe, ' see also Ref. 42. In these references only the
case A=O was considered. It is, however, a simple
consequence of the diamagnetic inequality (see Ref. 43)
that the constant is independent of A. Q.E.D.

The Lieb-Thirring inequality in Theorem 5.1 implies
an estimate on the kinetic energy

N

T,= a„'~~
j=1

in terms of the one-particle density

p~(x) =N
o.

) =+1/2
f lI/f(X, X2, . . . ,x~, o'1, . . . , 0'~)l dX2 ' ' dx~

cr~ =+1/2

Here f is a normalized N-particle fermionic wave function.
5.2 COROLLARY (kinetic energy inequality -in two dimensions) Let T& and p& .be defined as above Then for all.

0&A, &1 we have

0 ifp (8
2 (5.22)

—'(1 )1,)2f p—(x)—A,
' — dx if p

Proof. The inequality in Theorem 5.1 holds for the operator Hl„„—W if lyl & 1. If lyl ( I, however, one should
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choose IIo in the proof of Theorem 5. 1 as the projection onto the levels v=O and v= 1 (not only onto v=O). Equation
(5.21) is then no longer an identity but a bound. In this way one concludes that the negative eigenvalues e&(W),
e2( W), . . . for Hk;„—W satisfy

& le, (W)l ~a f, Wl+(x)dx+p f, l Wl+(x)dx,
J

with a =A, '8 /m and P= —,'(1 —
A, ) . This bound is clearly valid for all y.

The proof of (5.22) now follows by a standard Legendre transformation. In fact, if W ~ 0 we have

T~= Hk;„' —8' x + 8'p~, 8'p~ —a8' —8
J

Since the Legendre transformation of the function W~a W+pW is the function

(5.23)

r

0 if p~a
p)—) sup [pW —aW —PW ]=

(4p)
—j( )2 'f )

we see that (5.22) follows by making the optimal choice for Win (5.23). Q.E.D.
5.3 LEMMA (exchange inequality in ttoo dimensions) Let .gE L (R;C ) be any normalized N particle -waue func

tion (not necessarily fermionic) and let

p~(x)= g
i =1 a)=+1/2

2 12)f(x)). . . )x; ()X)x;+)). . . )xg)o')). . . ) 0'g)~ dx) ' ' ' dx; )dx;+) ' ' ' dxg
o'& =+1/2

be the corresponding one-particle density. Then

. g f,„lgl' g lx; x, l
'«, — dx~~ ,' f,f-,p~(x)p~(y) lx —yl '«dy —192(2')' f p&(x) dx .

C7) o~ 1 ~i & j&N

(5.24)

Proof. The proof is essentially the same as in Ref. 34, where the three-dimensional equivalent of (1.1) was proved.
Our presentation is inspired by Ref. 44.

We use the representation (in three dimensions a similar representation was originally used by Fefferman and de La
Llave )

lx —yl '=m. 'f, f y~(x —z)yz(y —z)R dR dz, (5.25)

where y~ is the characteristic function of the ball of radius R centered at the origin. If we use (5.25) to represent
g; &z x; —x.

l

' we can estimate the integrand as follows:

1~i (j~N
y~(x; —z)y~(x —z)= —,

' gg~(x, —z)
2

—
—,
' gy~(x; —z)

2

(x; —z) —fp&(y)y (y —z)dy

'2
++X (x; z)fpq(—z)X (y z)dy —,' fpq—(y—)X (y z)dy ——

—,
' gX (x; —z)

'2
QX (x-; z) fp~(—y)X (y z)dy —'f p~—(y-)X (y z)dy ——

—,'QX (x; —z) .

If we integrate this inequality over the measure R dR dz, the last term —,g;yz(x; —z) will give a divergent integral.
For the purpose of a lower bound, however, we can restrict the integration in (5.25) to R ) r(z), where r(z) )0 is some
specific function we shall choose below. Using the fact that

& f, lWI'&X~(x; z)dx& dx~= f—,pq(y)X~(y z)dy—
0'l ~w I

we obtain
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& f »ICl g Ix; xjl 'dx& ' ' 'dx~~ —,'~ ' f,f fp&(y)yz(y —z}dy R 4dR dz
C7) 0'~ l (j

' f f fp&(y)y~(y —z)dy R ~dR dz

~
—,'~ ' f fpy(x)pg(y) lx —y 'dx dy

—,'~ ' f,f ~'p,*(z)'dR dz
R R (r(z)

'f-, f R '~p,'(z)dR dz .
R R ) r(.z)

Here we have introduced the Hardy-Littlewood maximal function

p&(z) =sup (mR') ' fp&(y)y~(y —z)dy,
R

(5.26)

which, viewed as a map from L~(R ) to L~(R ), is a bounded map for all p ) 1 (see Ref. 46, pp. 54 —58). The error
terms in (5.26) can be computed as

' f, f vr p&(z) dR + f R mp&(z)dR dz= ,'vr ' f—[r(z)np&(z) +r(z) 'up&(z)]dz .

The optimal choice for r(z) is r(z) = [m (z)] '/ . This
means that the error is w' I 2 p&(z) dz, but this can
be estimated by the maximal inequality to be less than
192(2~)'/ f,p(z) dz. Q.E.D.

B. The lower bound

tends to zero as X tends to infinity.
Case 1, B/N /3, : By simply ignoring the kinetic-

energy operator, which we had normalized to be positive,
we have the obvious inequality E~(N, B, V) ~ E (N, V)
where E is the energy of the classical point problem.

From Lemma 4.3 we can therefore conclude that

Our goal here is to give a lower bound to E~(N, B, V)
in terms of E "(N,B, V) with errors of lower order
than X as X tends to infinity. It is important here that
V=Xv, where v is fixed. To be more precise we shall
prove that

E~(N, B, V) ~E (N, V) ~E (N, V) —b(v )N . (5.30)

Since E (N, V)=N E (l, v) and E "(N,B,V)
=N E "(1,BIN, v ) we have from (5.29) that

N [EQ(N, B,V) E(N, B,V—)])—e (v) E~(N B V) ~E "(N B V) 5(N v)N ——b(v)N'

where E~(v) is a non-negative function which tends to 0
as N ~ ao for fixed v. Note, however, that E& ( v ) does not
depend on B.

We shall treat the cases of large B and small B sepa-
rately. In the large-B regime we prove (5.27) by a com-
parison with the classical models discussed in Secs. III
and IV. In the small-8 regime we use magnetic coherent
states, Theorem 5.1 and Lemma 5.3.

The dividing line between large and small B is deter-
mined as follows. If the minimizer p&, of 6', with

fp, „=1and confining potential v, is bounded [e.g. , for
v(x) = lx ], then we define small B to mean

B /N +P, :=2m sup p, , (x) . (5.28)

As explained in (3.20) we have for P ~ P, that
E "(1,P, v)=E (l, v).

For the general class of v where we do not know the
minimizer p, „

is bounded we simply define

P —N 1/3
C

By Theorem 3.4 we then have that the function

(5.31)

~ g & qlH„'&'„+V(x, )lq)/+D(p, ,p, )
j=l
—Cf,p ~(/x)dx . (5.32)

We first estimate the last term in (5.32) in terms of the
kinetic energy

N

T~= g g H'~„'
j=l

Thus (5.27) holds with e~(v)=6(N, v)+b(v)N
We emphasize again that if pi, is bounded (e.g. , for

v =k lx l ) then 5(N, v ) is not needed.
Case 2, B/N ~P,: In this case we use inequality (5.24)

to reduce the many-body problem to a one-body problem.
Let g be the many-body ground state for HJv. (Since

the exterior potential V tends to infinity at infinity HN
will have a ground state. ) The correlation estimate (5.24)
gives

E~(N, B, V) = & PIH~IP&

5(N, v)= sup lE "(I,P, v) —E (l, v)l (5.29)
of P. According to (5.22) we have
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where we have used the fact that
(5.34)

1/2
2

1/2
+(const) fp& f p&

&(const)(QP, N +QT&N' ) . (5.33)

Hence, for all 0&e & 1 (we shall later choose E-N '
)

we have
N

E~(N, B, V) ) g (Ql(1 e)—H„';„'+V(x )lf&
j=1

+D(p~, p&) (const—) (QP, N +e 'N),

N

E~(N, B,V) (1—e) f Q [H„';„'+V(xi)
j=1

MTF~
I I

1]

Obviously

D( MTF MTF)

—(const)(+P, N i2+s 'N) .

N N

0 X [H",.'+ v(, )]+p"'"*l,l-' y
j=1 j=l

(5.38)

eT& —const+T&N' ) —(const)e 'N . (5.35)

+D( MTF MTF) (5.36)

which is a consequence of the positive definiteness of the
kernel ix —y . Inserting this in (5.34) gives

E~(N, B, V) g (gi(1 )H'„;„'+V—( )

p
MTF g

I
x

I

1
I @& D) (p

M TF
p

MTF
)

—(const)(+P, N i +E 'N) . (5.37)

Since we have normalized the potential to be positive we
have that (1—E) ' V(x) ) V(x) and also
( 1 e)1pMTFgg

I
x

I

1)pMTFg ix I

1

Hence

To relate (5.34) to the MTF problem we use the in-
equality

0 D(p~ -p'" p—~ p'")—
N

MTF+
I I

—1

q +D(
j=1

(5.39)

where e, , e2, . . . , eN are the N lowest eigenvalues of the
one-particle Hamiltonian

H "=H + V(x)+p "e ixi '=H + V "(x) .

(5.40)

We shall estimate g+, e by a straightforward
coherent states analysis.

Let f1, . . . , fz be the N lowest normalized eigenfunc-
tions of H& ~ For technical reasons we introduce a
modified operator H1 whjch is obtained from H1 "by
replacing V "by the truncated potential

V '"(x),
P MTF(x) —,

CN, ixi&R„,

where R„is the finite radius given in the Appendix and
C=infi„i&11 V "(x)/N is independent of N by the scal-

ing (2.9) of MTF theory. Note that V "& V T". Then
from (5.11)and (5.12) we have

g e)= & &f, lH1'"If, & —g &f)IH, "If, &

j=l
N

=g f [E,,(B)+V "(u)]g (f iII,„if&du rN f(Vg)—
N

(f I

P' MTF —P MgTFg lf2&

j=1

We first consider the last term. Writing g+,
If (x)i =p(x) we have

(5.41)

) f [V "(x)—V "eg„(x)]p(x)dx
U

—f V "eg„(x)p(x)dx .

Since V "=Nv "and jp=N we have

N

g (fj I
V "—V eg„if'&

) Nsup lv "(x)——v "eg„(x)i-
Ix I «„ sup v "(x) R „rN

Ixl &E, +r
(5.42)
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We can then write (5.41) as
N

g e )g f [E (8)+V "(u)]

N
X g (f iII „if)du —N s (v),

where

( )
—

i

MTF( )
MTF 2( ) i

Ix I «,
+ sup v "(x) R r N—'r f (V'g)

I-I-E'. +

(5.43)

g f E (B)p (u)du+ f V "(u)p "(u)du

= f [j~[p "(u)]+V "(u)]du,

(5.49)

where the identity follows from (2.3).
We can now combine (5.38), (5.39), (5.43), (5.44), and

(5.49) to arrive at

E~(N 8 V))(1 E)E— (N 8 V) ED(—p "p ")
—(const)(+P, N ~ +E 'N) —C(v)N'~'

(5.50)
& C(v)N-'" (5.44)

For the last step we made the choice r -X
We focus next on the first term in (5.43). It has the

form

f [E.(8 )+ V "(u)]p„(u)du, (5.45)

where we have denoted g =i(f III..lf/ & by p.(u ).
These functions satisfy

Hence, since D(p ",p ")&E "(N,B,V) we have

N [E~(N, B, V) E "(N—,B, V)]
) —2eE "(1,8 /N, v )

—(const)[QP, N ' +e 'N '+c(v)N '
] .

Note that E "(1,8/N, v) is bounded by a constant de-
pending only on U. If we choose c, -N ' we find

N [E~(N,B, V) E "(N—,B,V)]
0 &p,(u) & TrII,„=d(8) (5.46)

) —c (v)[+PN '~'+N '~'] .

g fp (u)du=N . (5.47)

We obtain a lower bound to (5.45) by minimizing over all
functions p satisfying (5.46) and (5.47).

Minimizers p can be constructed as follows. There is
a p )0 such that

d (8) if E,(8)+ V "(u) &p,

p,(u)= 0 if E (8)+V (u)) p
«d (8 ) if E,(8 )+ V "(u)=p .

(5.48)

All families p„satisfying (5.48) and the constraint (5.47)
are minimizers. Note that it is possible that
E (8)+ V "(u)=p on an open set of u values. The
minimizers are therefore not necessarily unique. The
chemical potential p is uniquely determined by (5.48) and
the condition (5.47).

We shall now prove that p=p . All we have to
show is that we can find functions p satisfying (5.47) and
(5.48) with p =p

We know from the MTF equation, Theorem 2.2, that if
p "(u)=0 then V "(u ) )p ". Since V " differs
from V " only on the set "=0 we may in (5.48)
when p=p " replace V by V ". We then know
from the MTF equation that there are unique functions
p satisfying (5.48) with p, =p "and g~ (u)=p "(u ).
In fact, in terms of the filling factors (5.17) we have

p (u)=f (u)d (8). Since Jp "(u)du =Nwe have pro-
duced the functions p allowing us to conclude that p is
indeed equal to p ". If we insert these functions in
(5.45) we obtain

This is equivalent to (5.27) with E~ ( v )
=c (v)[+P, N'~ +N '~ ]. In the case when p is
bounded, P, is a constant, otherwise we chose it to be
P, =N' . In both cases Ez(v) will tend to zero as N
tends to infinity. This finishes the proof of the lower
bound.

We have proved (1.7). The limits in (1.8) and (1.9) fol-
low immediately from the corresponding results for E
proved in Secs. II and III.

C. Homogeneous exterior potentials

Finally, we shall show how to prove the stronger result
Theorem 1.3 for homogeneous exterior potentials.

In this case we do not have that the minimizing MTF
density is supported within a fixed ball. In fact, the den-
sity will spread out as the coupling constant becomes
small.

We shall prove that given c.)0 and k, there is an X,
independent of 8 such that for N )N, and K/N & ko

iE~(N, B,Kv )/E "(N,B,Kv ) —1
i

& 8 . (5.51)

We consider large and small K in very much the same
way as we did for B in the lower bound above. We shall
see below that we can find a k, (depending only on v and
e) such that (5.51) holds for K/N & k, .

In the case of large K, i.e., K/N) k, (but K/N & ko)
the proof of (5.51) is then identical to the proof of
Theorem 1.1 given above.

For small K we again consider the upper and lower
bounds separately. We begin with the upper bound. We
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proceed as in Sec. V A. We define the trial operator as in
(5.17) and (5.18) except that we replace p

" by pox„.
The estimate (5.20) now becomes

E~(N, B,Kv ) ~ e "[pz K„'B,Ku ]

+Nr f [Vg(x)] dx

+NK sup [u 4 g„(x)—u(x)] .
x

Here Rk is the radius of the ball containing the support
I

of p~ 1rv for IC =kN. According to (3.22) Rk
=k '/'+ "R,, where R, is the radius for k = 1, which
depends only on U.

Using the homogeneity of U we have

*g,'( ) —( )=I I'f [ [( —~)/I I]

—u(x /ix
~

) ]g„'(y)dy

(c3(u)r ix i'

We obtain since s ) 1

E~(N, B,Ku) —6 "[p;B,Kv ] c4(u)N[r +KrR' ']

v)N[r
—2+Kr(K /N )

—(s —1)/(s+1)]

)N2/3(K /N )4/[3(s + 1)]

with the choice r =(K/N) /[ '+"]. We also know from (3.25) that

"[p;B,ICu]((K/N) '+"N fjo(p, , )+E (N, Ku) .

Hence, from (3.21) and (3.17) we obtain

c6(u)N
E~(N, B,Ku)( 1+ c [N ' (K/N) '+" +(K/N) '+"] E (N, Ku)E (N, Ku)

((1+c7(v)[N ' (K/N)' '+" +(K/N)' '+"])E (N, Kv )

It therefore follows from Theorem 3.5 that we can find k,
depending only on E (but not on 8) such that
E~(N, B,Ku)/E "(N,B,Kv ) (1+e for IC/N ~k, .

We turn next to the lower bound. As in Sec. VB (in
the case 8/N &P, ) we may ignore the kinetic-energy
operator, which we had normalized to be positive. We
then have the obvious inequality E~(N, B, V) & E (N, V)
where E is the energy of the classical point problem.

We shall use Lemma 4.3 to compare E (N, Ku) to
E (N, Ku). We must, however, first discuss the scaling
of E (N, Kv ). It is clear that if u is homogeneous of de-
gree s then

(x„.. . , x)v;Kv )

k 1/(s+1)@P(k 1/(s+ 1) k 1/(s+1)
0 ~ ~ X~, U

Therefore, E (N, kV)=k' '+"E (N, V), i.e.,
E (N, k V) has the same scaling as E (N, Ku ) [see (3.21)].

From Lemma 4.3 we thus find that

for K /N (k, . We can therefore clearly find N, such that
the right-hand side of (5.53) is greater than 1 —e for
N) N, .

VI. CGNCLUSIGN

We have analyzed the ground state of a two-
dimensional gas of N electrons interacting with each oth-
er via the (three-dimensional) Coulomb potential and sub-
ject to a confining exterior potential V(x) =Ku(x) where
E is an adjustable coupling constant. The electrons are
also subject to a uniform magnetic field B perpendicular
to the two-dimensional plane.

We have found the exact energy and electron density
function p(x) to leading order in 1/N, i.e., in the high-
density limit. This limit is achieved by letting K be pro-
portional to N as N~ ~, thus effectively confining the
electrons to a fixed region of space, independent of N.

It turns out that the answer to the problem depends
critically on the behavior of B as N —+ 00. There are three
regimes.

E (N, Ku) E (N, Kv) —b(v)(K/N)' '+"N

&E (N, Ku)[1 —cs(u)N '
] . (5.52)

According to Theorem 3.5 we may thus assume that k,
is such that

E~(N, B,Ku )/E "(N,B,Kv )

& (1—e/2)[1 —c()(v)N '/
] (5.53)

(i) If 8/N~O, i.e., N &&8 in appropriate units, then
normal (two-dimensional) Thomas-Fermi theory gives the
exact description. Correlations can be ignored to leading
order in this high-density situation.

(ii) If 8/N =const, a modified TF theory in which the
"kinetic-energy density" is changed from (const)p to a
certain 8-dependent function of p [called j~ (p)] is exact.

(iii) If 8/N~ ~ then the kinetic-energy term can be
omitted entirely and a classical continuum electrostatics
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theory emerges as the exact theory. This electrostatics
problem is mathematically interesting in its own right
and can be solved in closed form for the customary
cl oice u(x) = ~x ~'.

Related to the continuum problem is an electrostatics
problem for point charged particles. Apart from its
mathematical interest, it provides a crucial lower bound
to the energy in case (iii). Another technical point of
some interest is the extension of the Lieb-Thirring in-
equality to two-dimensional particles in a magnetic field
which involves dealing with a continuum of zero energy
modes (i.e., the lowest Landau level).
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APPENDIX

Here we prove that the minimizers for our three semi-
classical problems can be sought among densities that
vanish outside some finite radius —for which we give an

upper bound. This lemma is in an appendix because it
pertains to several sections of the paper.

A. l LEMMA (ftnite radius of minimizers) Co.nsider
the three cases: (a) The classical energy; (b) the classical
particle energy; (c) the MTF energy Le.t V(x) be the
confining potential. We assume that V(x)~+ ~ as
~x

~
~ ao in the sense that the number W(R)

:=infI V(x): ~x~
~ R ] tends to ~ as R ~~.

Then there is a radius R„,depending only on U = V/N
such that

E (N, V)=infI6 (x„.. . , xz}: ~x;~ ~R, for all i ]

E (N, V}=inf 8 [p; V]: support pC Ix:~x
~
&R„],jdp=N .

E "(N,B, V) =inf @ "[p;B,V]:p(x) =0 for ~x ~
)R„jp=N (A 1)

Furthermore, any minimizing particle distribution measure or density satisfies the conditions giuen in braces in (Al).
A choice for R„which is far from optimal, is any R satisfying the inequality

—W(R ) & (2+fr )+—( V &

1 ( 1
(A2)

with ( V &
&

being the auerage of Vin the unit disk:

( V&, =—j V(x)dx .1

Ix) (1

Proof: Particle case. Suppose that ~x& ~
)R, . Then we move particle 1 inside D, the unit disc centered at the origin.

The point y to which we move particle 1 is not known, so we average the energy over all choices of y ED. If we show
that this average energy is less than the original energy then we know that there is some point y HD such that the ener-

gy is lowered. Thus, we have to show that
N N

V(x, }+y lx, —x, l
'&«&, +—g j ly

—x, l
'dy .

J =2 J=2

Noting that jD~y —x
~

'dy ~ jD~y ~

'dy =2m, by a simp. le rearrangement inequality, we see that it suffices to have
W(R„)) ( V &, +2N, which agrees with (A2).

The classical case. Ifp is any measure with fdp =N, we define p+ to be p restricted to the complement of the closed
disc of radius R, centered at the origin. Thus p, (A )=p(A ll Ix:~x

~
)R, ] ). Similarly, p is p restricted to the disc,

so that p =@++p . Assuming that @+%0,we replace p by p, :=(1—E)p++p, +5v, where v is Lebesgue measure re-
stricted to the unit disc D, and where m5=E fdp+ Thus f.dp, =N The cha,nge in. energy, to O(s) as sl0, is easily
seen to be

5j V(x)dx —c.jV(x)p+(dx )+5j j ~x —y ~

'dx p(dy)

Ejj Ix ——y I p (dx )p(dy ) & ~5( V &,
— s W( R)jd @++2~5N,

which is negative by (Al).
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The MTF case. This is similar to the classical case, but with two differences: (i) The measure p is replaced by a func-
tion p with Jp(x)dx =N and (ii) a "kinetic-energy" term fjz[p( x)]dxis added to the energy. Point (i) only simplifies

matters. For point (ii) we note the simple fact that jz(p) is bounded above by harp /2 and its derivative, jz(p), is bound-
ed above by harp; this is true for all B. Let us assume that dp+:=p+(x)dx is not zero, with p+(x)=p(x) for ~x ()R„
and p+(x)=0 otherwise. The argument is as before, but now we must take into account the change in kinetic energy
which, to leading order in c,, is

&I jt't[p(x)jdx ej—p+(x)jt't[p+(x)]dx &5~J p(x)dx ~5N=e fp+(x)dx .D' D

The total energy change is then negative by (Al). Q.E.D.
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