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The semiconductor Maxwell-Bloch equations are solved to study the simultaneous influence of
pulse propagation effects and Coulomb many-body interaction on the four-wave-mixing signal of
semiconductors. Temporal and spatial modulations as well as the decay of time-resolved and time-
integrated signals are analyzed for various excitation conditions. It is shown that propagation effects
may significantly modify the line shapes depending on sample thickness and excitation conditions.
In most cases the signal is more influenced by its own propagation than by the propagation of the
input pulses. Exciton-polariton effects are recovered in the low intensity limit. For relatively thin
samples an increased temporal decay is observed whereas for thicker samples the propagation effects
lead to strong beats in real time. For higher intensities, where an echolike structure is generated,
the competition of signal generation by the pump pulses and absorption by the semiconductor

determines the output.

I. INTRODUCTION

Recently, several experimental and theoretical studies
examined the influence of Coulomb many-body effects on
the time-resolved and time-integrated four-wave-mixing
signals (FWMS) emitted by semiconductor slices.'™ It
was shown that Coulomb exchange contributions, which
are contained in the optical Bloch equations for the semi-
conductor, cause time delayed components in the time re-
solved FWMS. Furthermore, it has been predicted that,
in contrast to FWM in atomic systems, signals at nega-
tive time delays arise as a consequence of the Coulomb
many-body interactions among the electronic semicon-
ductor excitations. Most of these results were obtained
for thin samples and do not include pulse distortion ef-
fects induced by light propagation through the sample.

On the other hand, it was shown that polariton ef-
fects in linear pulse propagation lead to significant pulse
distortions.* These effects have been investigated exper-
imentally measuring time-integrated FWMS. The cor-
responding experiments have been modelled using cou-
pled Maxwell-Bloch equations where the semiconduc-
tor is treated by the two-level atomic dynamics® or by
reduced semiconductor Bloch equations which include
many-body Coulomb interactions only in the so-called
local-field approximation.® Other investigations, which
discuss propagation induced features in FWM followed,
see, e.g., Refs. 7 and 8. A general conclusion from the
studies including propagation aspects is that under suit-
able conditions pulse reshaping and propagation induced
distortions may contribute to the signal and lead to fea-
tures which in some aspects resemble the Coulomb in-
duced FWM signatures. For instance, negative time de-
lay signals are observed if the Coulomb many-body effects
are neglected but propagation effects of the light pulses
in a finite size sample are included in the calculation.?
In particular it was found that oscillating time inte-
grated signals are induced by polariton formation in thick
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samples.> %2 From these studies it can be seen that prop-
agation effects may be of great importance under certain
experimental conditions.

In extension of the previous studies we discuss in this
paper propagation effects in FWMS using the semicon-
ductor Maxwell-Bloch equations (SMBE).® The equa-
tions consist of (i) a set of reduced wave equations for the
different propagation directions of incident and FWMS
pulses and (ii) the semiconductor Bloch equations (SBE)
which describe the dynamics of the polarization which
acts as a source for the field components.!® This ap-
proach allows a simultaneous description of pulse prop-
agation effects and semiconductor many-body effects for
various excitation conditions, especially under the condi-
tion that the excitation-induced signal is generated. Fur-
thermore we can distinguish FWMS contributions which
are generated by pulse propagation from those caused by
many-body effects. This topic is especially interesting
because the previous studies were restricted either to the
full semiconductor Bloch equations neglecting propaga-
tion or to a local field model including pulse propagation.

In the present paper we analyze different experimen-
tally relevant conditions, such as resonant excitation of
the 1s exciton and of the continuum states for a set of
different intensities. The signals are investigated as a
function of the sample length and we discuss the coupling
mechanisms responsible for the observation of the various
propagation effects. The paper is organized as follows.
In Sec. II we outline the basic equations and discuss the
temporal and spatial analysis of FWM configurations. In
Sec. III we present numerical results assuming resonant,
spectrally sharp low intensity excitation of the 1s exciton
absorption peak. We analyze the basic mechanism of the
observed propagation effects with special emphasis on the
dependence of the FWMS on the sample length. In Sec.
IV the analysis is done for the excitation of continuum
states. The intensity dependence of the FWMS is inves-
tigated for different spectral detunings in Sec. V. Our
results are summarized in Sec. VI and in Appendix A we
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present details of an approximate analytical solution for
the FWMS propagation if the excitation takes place at
the 1s resonance. Appendix B shows that for low inten-
sity excitation at the exciton resonance the previously
used local field model yields results in good agreement
with the full calculations.

II. BASIC EQUATIONS

To calculate the FWM components of the optical field
we start from the scalar wave equation for a planar semi-
conductor structure:
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where E is the optical field. Here, the total polarization
P, acts as a source term in the wave equation and has
to be extracted from the semiconductor Bloch equations
(SBE). The coordinates z,z describe the linear dimen-
sion, where L is the thickness of the sample in propa-
gation direction. As usual in a FWM experiment the
surface of the sample (z = 0) is illuminated by two plane
wave light pulses with different propagation constants in
the z direction:
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1 . . . ,
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(2)

where the input pulse shapes A;(t,z = 0), A2(t,z = 0)
are known and assumed to have a Gaussian shape. The
temporal delay between both pulses is given by 7, where
a negative 7 implies that the pulse —1 arrives before the
pulse +1 at the entrance of the sample. We restrict our
considerations to a plane wave expansion for the polar-
ization and the optical field:

1 ) ) )
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Ptot = E Z Pne——'ink,e——'ik,z—{—ith + c.c. ) (4)
v n

where the envelopes A,, P, are slowly varying Fourier
components in time and space and wy, is the carrier fre-
quency of the pulses.

The ansatz (4) for the polarization and the optical field
is inserted into the wave equation to extract the signal in
the four-wave-mixing direction. Neglecting nonresonant
terms we obtain a set of equations describing the prop-
agation of the light field envelope A, in the directions
—k,z — nkgyx:
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For the incident pulses n = +1, —1 the propagation equation reads
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whereas the equation for the FWMS n = 3 is given by
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Note that new spatial coordinates (z, = nk,x + k,z) have been introduced. These coordinates represent the plane
wave character of the solution and allow us to neglect the second spatial and temporal derivatives of the slowly
varying envelopes A, (slowly varying envelope approximation). In this paper we restrict our considerations to the
experimentally relevant limit of small angles between the two incident beams, i.e., k,/k, — 0. First, the finite value
of k; /k, is used to split the SBE and the wave equation into a set of equations for the different propagation directions.
Once determined we solve this set of equations in the limit k. /k, — 0.

The resulting wave equations in the limit of small angles (k,/k, — 0;z, = z) are
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Here, the Rabi frequency Q,, = d'?" has been introduced as the product of dipole matrix element d and the envelope
of the electrical field and K = 2u0|d|?w? /(a3hk?). The source terms on the right-hand side (RHS) of the propagation
equations (8) and (9) are determined by the polarization traveling in the corresponding directions. In principle, we
solve the set of equations in infinite order of n. From a simplified point of view, one could say that for the incident
pulses n = —1,1 the wave equations are almost the same as for pulse propagation in a single direction, however,
the polarizations P_; ; are influenced by the coupling to the FWMS. The incident pulses, n = +1, create via the
SBE at each sample point a density grating, which diffracts polarization components into the FWM direction. These
polarization components in turn create a field which travels through the sample in the FWM direction [see Eq. (9)].

To calculate the polarization components P, which act as source terms in the different wave equations, a Fourier
analysis of the semiconductor Bloch equations has to be carried out. The expansion of the SBE leads to the following

general set of equations for the Fourier components:2:3:2
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where v}, is the statically screened Coulomb matrix ele-
ment. These equations form together with the wave equa-
tion a set of partial differential equations of first order.
They are solved numerically in infinite order for the char-
acteristic Fourier components withn = 0, +1,+2,4+3. As
usual in pulse propagation studies, the numerical treat-
ment of this system is carried out in a traveling frame:

n=t—z/wy, £=2z. (12)

Since we use reduced wave equations rather than the
full Maxwell wave equation, only one boundary condition
for each propagation direction has to be fulfilled. At the
boundary, €;,€, are given by the incident pulses. The
initial value of the field 3 is zero at the boundary (z =
0) for all times. This field is built up inside the sample by
the interference of the two incident pulses. All numerical
calculations in this paper are carried out for material
parameters of GaAs. The dipole moment is 3 eA, with
e as the electronic charge and the binding energy of the
exciton is 4.2 meV.

III. EXCITONIC EFFECTS

In this section we study low-intensity resonant exci-
tation of the 1s exciton. We assume Gaussian pulses
with 300 fs duration (intensity FWHM) to assure reso-
nant excitation of the 1s exciton and no overlap with the
continuum states. The phenomenological dephasing time
is chosen as 2 ps.

First, we describe the polariton beating at a single
resonance system which is in the time domain impor-
tant to understand low-intensity single pulse propagation
as well as propagation effects in the time-resolved and
time-integrated FWMS. To illustrate that pulse prop-

[
agation effects are expected to play an important role
in finite samples, Fig. 1 shows the pulse distortion of
a Gaussian input pulse after propagation over 1 pm in
a GaAs bulk sample. The Gaussian input field ampli-
tude (dashed line) develops a node (solid line) resulting
in pulse breakup in the intensity (inset). This feature has
been observed experimentally and explained theoretically
as the interference of polariton modes.? To get a better
handle on the analysis of propagation effects in FWMS
we discuss the pulse breakup in the time domain. Since
we are interested in the origin of the pulse distortion we
have additionally plotted in Fig. 1 the polarization source
term (short dashed line) which yields the first correction
in z to the input field:

INTENSITY

FIELD AMPLITUDE

1 L L L

TIME (ps)

FIG. 1. Field amplitude for incident pulse (medium dashed
line), polarization (short dashed line), and resulting field after
the propagation (solid line) over 1 pm in GaAs. The inset
shows the intensity of the propagated optical field.
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AA = A(t,z) — A1(t,z=0) = —'L'K/ dz' P,
0
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As can be seen in Fig. 1, the imaginary part of the
polarization (short dashed) yields for resonant excitation
of the exciton a negative contribution after the pulse.
According to Eq. (13) the negative polarization leads to
an additive negative contribution to the amplitude of the
propagating pulse, explaining the development of nodes
in the time-dependent pulse intensity after propagation
through the sample. For longer samples the number of
nodes increases because the distorted field amplitude acts
as a source when the field continues to propagate in the
sample. Consequently further nodes and peaks occur for
further propagation, where the height of the subsequent
peaks is always proportional to the area of the respective
previous one. Hence, overall the oscillating structure is
damped.

With regards to the FWM signal we expect distortions
not only because of possible interference and damping ef-
fects of the distorted pulses but also because of the non-
linearities in the FWM process itself. To quantitatively
study the combined influence of many-body and propa-
gational effects we solve the equations for a sample length
L =2 pm. Figure 2 shows the computed time-resolved
FWMS for different time delays 7 between the incident
pulses. We clearly recognize characteristic propagation
effects, known from single pulse propagation: The prop-
agation leads to a signal for negative time delays and to
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FIG. 2. Time-resolved FWMS for a long sample (2 ym) for
different time delays 7. The FWMS shows a similar behavior
as a single pulse propagating through the sample. The inten-
sity for the second pulse is 0.015 Rydberg energies (Ry) and
for the first, 0.0015 Ry.
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time-delayed components, i.e., break up in the time do-
main. In Ref. 6 similar features in the spectral domain
have been reported as a consequence of pulse propaga-
tion effects and of exciton-exciton interaction in the local
field approximation. In our calculation which contains
the full SBE, these results are confirmed if we excite the
1s exciton resonance with spectrally sharp pulses. Note
that the computed FWMS are modulated with the same
frequency dependence which is expected for single propa-
gating pulses (Fig. 1). This behavior may be explained if
we imagine that at the beginning of the sample a pulselike
FWMS is generated, which then propagates through the
sample. We have verified this interpretation by numer-
ically switching off the propagation of the pump pulses
after the generation of the FWMS in the first part of the
sample. These results obtained for resonant excitation of
the exciton within the SBE are similar to recent two-level
calculations.®

- To discuss the length dependence of the propagation
effects we now study time-resolved FWMS for different
sample lengths between 0 and 4 pum and fixed delay
7 = 0.3 ps (see Fig. 3). The figure clearly shows that the
signal develops one strong peak which decays into several
peaks for increasing propagation length. We observe the
strongly peaked signal in the range of 1-2 pm with a
maximum around 1.5 pm. This structure can be under-
stood as follows. For short samples the pulse shapes are
basically not influenced by propagation since the spatial
coupling only enters as a prefactor [Eq. (8)] for the ampli-
tude, i.e., a quadratic length dependence of the FWMS.
For longer samples the distortion and therefore interfer-
ence effects become more important and the simple ar-
gument for short samples fails. The propagation-induced
interference effects as well as the absorption of the sample
result in a decay of the signal after the first local max-
imum. Figure 3 shows that for longer samples not only
the peak value decreases with increasing length, but also
the temporal decay of the signal becomes a function of

.
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FIG. 3. Time-resolved FWMS (TR FWM signal) at differ-
ent positions in the sample for a fixed time delay 7 = 0.3 ps.
Propagation induced modulations develop with increasing
sample length. The temporal structure of the FWMS is gov-
erned by its own wave equation. Same pulse intensities have
been used as in Fig. 2.
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the sample length. For samples in excess of 2 um we see
a growth of subsequent peaks in the time domain. Based
upon our numerical analysis we can clearly conclude that
for longer samples the propagation of the FWMS itself
clearly governs the observed signal. Note that after 2 um
an echolike FWM component is built up. This compo-
nent results from the slightly excited continuum states
and is neglected in two-level and local field approaches.
A detailed discussion of this signal is given in Sec. V.

In Fig. 4 we show time-resolved signals for the sam-
ple lengths 0.07 ym, 0.3 pm, and 0.7 um. Fitting these
curves with an exponential decay we obtain a relaxation
time of 0.9 ps for a 0.07 um sample whereas a 0.5 ps decay
is observed for a 0.7-pm-thick sample. The original de-
phasing time of T, = 2 ps, which is an input parameter in
our calculations, marks a limiting value for thin samples
as it corresponds to a long time decay proportional to
e~ (2)/T2 1 This behavior shows that even for relatively
thin samples the decay time of the real time signal may
be different compared to the theoretical limit given by
T,/2.

In Appendix A we present the derivation of an approx-
imate formula for the spatial and temporal behavior of
the FWMS for long propagation lengths:

JE2¢/Kz(t —T)]

Q32 =49 Q5 72 727

t—T71
K=z

(t>71), (14)

where Q5 is the amplitude of the input pulse. This solu-
tion shows that for longer samples the signal develops de-
layed components and exhibits strong temporal and spa-
tial modulations. To investigate whether experimentally
observed modulations are due to propagation effects or
coherent dynamics, we suggest in the low-intensity limit
the following simple experimental test: First the tempo-
ral distortion of a single pulse should be measured. If
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FIG. 4. Time-resolved FWMS for 0.07 pm, 0.3 pm, and
0.7 pm samples. The curves are normalized and shifted so
that we obtain the maxima at the same time. The signals
are damped due to propagation effects. Same intensities have
been used as in Fig. 2.
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pulse reshaping effects are in the same order as the mod-
ulation of the FWMS, the FWMS is clearly influenced
by propagation effects (compare Figs. 1 and 2).

IV. CONTINUUM EFFECTS

In this section we study FWMS for conditions where
not only 1s-excitonic but also continuum contributions
are relevant. Basically we use the same parameters as
for the excitation of the exciton with the exception of a
shorter phenomenological dephasing time, T = 0.5 ps,
for the continuum states. Because of the interaction of
the light field with a continuum of states, echolike signals
are expected.? For excitation inside the continuum we
obtain a pure echolike signal at a temporal position close
to 27 = 2.5 ps as shown in Fig. 5. The signal increases
for the continued propagation through the sample up to a
length of 2 pm. After this distance the signal generation
process decreases and therefore the absorption becomes
more important. The spatial decay of the signal is much
weaker than that of the free induction decay due to the
smaller spectral weight of the continuum compared with
that of the excitonic resonance. No breakup of the echo
signal is observed.

A mixture of excitonic and continuum effects is ex-
pected for the excitation with a central frequency at the
semiconductor band edge because continuum states as
well as bound states are excited. Assuming a central fre-
quency of the laser at the band edge and a pulse delay
7 = 0.3 ps we obtain the FWM results shown in Fig. 6.
For small propagation lengths we see the development of
a signal which is more delayed than expected for an echo
(27 = 0.6 ps) and which is asymmetric with respect to
its maximum. The asymmetry arises, because we also ex-
cite slightly the 1s and the 2s excitonic resonances whose
contributions are more delayed than the echolike contri-
bution of the continuum states. Such effects may occur
if the dephasing time T3 is in the order of the time de-

TR FWM SIGNAL

FIG. 5. Time-resolved FWMS calculated for the same pa-
rameters as in Fig. 3 and 7> = 0.5 ps. The incident pulses
are tuned 3.6 Ry above the band gap for a delay time of
7 = 1.25 ps.
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TR FWM SIGNAL

FIG. 6. Time-resolved FWMS calculated for the same pa-
rameters as in Fig. 5. The incident pulses are tuned to the
band edge and a delay time of 7 = 0.3 ps.

lay 7. For increasing propagation length, an increase of
the signal amplitude up to 1.6 pm followed by a con-
tinuous decay without significant signal modification is
observed. With increasing length the signal temporally
narrows and becomes more symmetric. In addition to
this, a small delayed component occurs. Furthermore,
the maximum of the FWMS shifts to smaller times for in-
creased propagation length. The reason for this behavior
can be attributed to the different absorption coefficients
experienced by the continuum and the excitonic contri-
bution. The excitonic contribution is stronger absorbed
than the continuum contribution during their propaga-
tion through the sample. For this reason the FWMS
develops into a more echolike signal, shifting to smaller
times at 27 = 0.6 ps compared to the delayed excitonic
contribution.

V. INTENSITY DEPENDENCE

The excitation with low-intensity pulses as discussed
in the previous sections shows the basic linear propaga-
tion effects of the FWMS but the situation of low exci-
tation does not hold for all experiments. In this section
we investigate the intensity dependence of the FWMS
for pulses located at the 1s resonance. This is not a
strong restriction because for sufficiently high intensities,
the continuum states shift into resonance with the laser
pulse spectrum and become excited as well. Hence, for a
certain intensity of the input pulses we expect in general
two principal signal contributions for short samples: the
free induction decay signal of the excited 1s exciton and
an excitation-induced component after the second input
pulse. Whereas for resonant excitation of the exciton the
excitonic signal is generated already at low intensities,
the echolike signal originates from the band-gap renor-
malization, shifting the continuum into resonance with
the exciting pulses.® The absolute contribution of the ex-
citonic and the continuum part depends on the strength
of the band-gap renormalization. For strong excitation
the FWMS is dominated by the echolike signal, whereas
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for low-intensity excitation the excitonic part yields the
main contribution.

First, we concentrate on the case where due to a mod-
erate excitation a mixture of the two signal contributions
is generated. Our results show the described situation for
small sample lengths in Fig. 7. The FWMS develops two
peaks at the beginning of the sample: one excitonic and
one echolike contribution. Surprisingly, the relative am-
plitude of both contributions is modified significantly for
increasing sample lengths. At the entrance of the sample
the excitonic signal dominates whereas after a propaga-
tion distance of about 2-3 um the echo component is
predominant. Both components first increase and then
develop a maximum which is followed by a decrease. The
free induction decay signal of the exciton reaches its max-
imum at smaller propagation lengths and decays faster
than the echo component. At a certain sample length the
FWMS only consists of an echolike signal; the excitonic
signal has vanished completely. Hence, if the FWMS is
detected for a certain sample length, the corresponding
signal would suggest Coulomb effects which are different
in their absolute strength, depending on which sample
length the experiment is carried out.

The analysis shows that our results for increasing prop-
agation distance are easily explained by the different ab-
sorption coefficients of exciton and continuum states. For
increasing sample lengths the coupling of the polarization
and the optical field leads to the increase of the FWMS
proportional to its propagation distance. In addition to
the generation of the FWMS we have to take into ac-
count also the absorption of the signal during its prop-
agation. The different signal components, excitonic and
echolike, arising from different parts of the spectrum are
differently absorbed during their propagation. Because
the free-induction-decay component is mainly absorbed
by the excitonic resonance with a relatively high oscil-
lator strength, it is strongly decreased in comparison to
the echolike signal. The shape of the FWMS appears as
a result of the dynamic interplay of generation and ab-

TR FWM SIGNAL

o

(2

FIG. 7. Time-resolved FWMS calculated for the same pa-
rameters as in Fig. 3. The intensity of the incident pulses
is increased compared to the parameters of Fig. 3: 0.0175
Ry for the first pulse and 0.035 Ry for the second. The tim
delay is 7 = 1.6 ps. :
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FIG. 8. Time-resolved FWMS calculated for the same pa-
rameters as in Fig. 3. The intensity of the first incident pulse
is increased compared to the parameters of Fig. 7 up to 0.035
Ry and 7 = 1.6 ps.

sorption of the different signal components.

If the input intensity is increased further, a pure echo-
like signal (27 = 3.2 ps) is obtained at the beginning of
the sample because the continuum states are fully shifted
into resonance with the pulse spectrum (Fig. 8). With
increasing propagation length, a signal component for
earlier times is observed in addition to the echolike com-
ponent. To appreciate this feature one has to take into
account that the input pulses are absorbed while trav-
eling through the semiconductor. For this reason the
band-gap renormalization is reduced at longer distances
and the input pulses may interact more strongly with
excitonic resonances which cause a more significant ex-
citonic contribution to the signal after the second pulse,
but before the bulk part of the echo-signal (Fig. 8). This
additional signal component occurs before the echolike
signal in Fig. 8 (27 = 3.2 ps).

VI. CONCLUSION

In this paper we have solved the semiconductor
Maxwell-Bloch equations for a four-wave-mixing geome-
try. In the low-intensity regime, we show that the major
propagation effects of the FWMS of semiconductors ex-
cited at the exciton resonance are due to the propagation
of the signal itself, i.e., polariton formation. For resonant
excitation of the exciton an approximative expression for
the four-wave-mixing signal is given. For higher excita-
tion intensities, where band-gap renormalization occurs,

0. — 3@ 2yT Zd ! _ﬁ_ i%(z‘z')
Q3 QOKe -[) z (az’e + )
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the balance of absorption of the FWMS and generation
by the input pulses determines the shape and strength
of the signal. In particular, the ratio of excitonic and
echolike signal strongly depends on the sample length.
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APPENDIX A

Starting point of our derivation are Eqgs. (9) and (B5)
including the substitution of the populations with the ap-
propriate polarizations fi = |P|2. This exchange is cor-
rect for weak excitations and on the time scale less than
the dephasing time. For simplicity, we set the exciton-
exciton exchange integral §; = 0. This yields simplified
dynamical equations for the 1s exciton, including state
filling:

0 . R
EEP;; = —ZQ3 + ZﬁzPl Png —_ ’7P3 N (Al)
9
9z

= —iKP; (A2)

where B, = 7 characterizes the state filling process of the
exciton.

After a Fourier transformation one obtains an equation
for the Fourier components of Q3:

Qg(w,z)-—— —iK / dz'()ei"if?(z‘z’), (A3)

w+v Jo

where Q is the Fourier transform of the nonlinear source
term in Eq. (A2). Furthermore we use the results of
Crisp!? for the field of single propagating pulses at dif-
ferent propagation distances z.

Q) = Qoe” T O(n)Jo (z[Kzn]%) , (A4)

where g is the pulse maximum at z = 0. Inserting this
known pulse shape into Eq. (A3) the following expression
for 5 is obtained:

l,/ dne” e~ \/n(n — T) (A5)

z

xJy (20K} ) (21K (n—)]E) Jo (2K (n = n]F)
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where 7 accounts for the delay time.

Performing a partial integration with respect to z’ it-
eratively we get a series for the FWMS. In the following,
we restrict ourselves to contributions close to resonance

<1 % — 0 and develop an approximate solution for large

z. Therefore we neglect all terms in higher order of %
and w of the expansion of Eq. (A6).

Finally we obtain after a Fourier transformation for
the FWMS the asymptotic expression

n—T

af? = B3 23 2 =27 |

J22y/Kz(n—7)). (A6)

Note that this expression is very similar to a single pulse
shape, propagating in a resonant medium. This result is
in agreement with our numerical calculations.

APPENDIX B

In this appendix we show that with suitably chosen
state filling and exchange parameters the simplified equa-
tions in the local field approximation yield results which
almost quantitatively reproduce the results of the full
MSBE as long as we restrict the analysis to excitation
at the exciton resonance and relatively low pulse intensi-
ties. These approximations have been used successfully
to explain several features in semiconductor FWM (Ref.
1) and especially polariton propagation effects in FWM.®

Neglecting all contributions except the 1s-exciton res-
onance, the semiconductor Bloch equations may be writ-
ten in the following form:

%1: — —iQ+iAP +iB0n + B Pn (B1)
BTL . * *
5 = {@P—qP). (B2)

For GaAs the parameters in the equations are (3; =
26/3 x 0.00638 fs~! and B2 = 7.'! The explicit num-
bers can be obtained by expanding the full SBE in exci-
tonic wave functions. We obtain the polarization on the
right-hand side of the Maxwell equation as Pyoy = 2d p

7\'(10
Inserting the Fourier expansions for the polarization and
the optical field into polarization and density equation
yields

QI_Jl_v“_l:iApl =i 1, (B3)
at ) i)
ona ., .
_aig = i(QP_; —Q_,P}), (B4)
OP; . . . .
7 =iAP; —iQ3 + Zﬁzﬂ_lnz + 'Lﬂlpj_’nz. (BS)

To describe the coupling of the polarization to the elec-
tric field, we again use the reduced Maxwell equation
with the appropriate Coulomb enhancement factor: K =
2uo|d|?w? /(Tradhk?).

The equations for the polarization again form with the
wave equations for the corresponding fields a coupled set
of partial equations (RE) which has to be solved numeri-
cally. The numerical treatment is carried out as described
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FIG. 9. The time-resolved FWMS has been calculated
within the local field approximation for the 1s exciton using
the same parameters as in Fig. 3. The shape of the FWMS
(Fig. 3) is approximately reproduced.

above. Whereas the equations for the components —1
and 1 may now be calculated in a closed form, the FWMS
is calculated with the corresponding source terms from
the propagation of the pulses in the direction —1,1 and
the coupling of the signal itself. To test the quality of
Egs. (B1) and (B2) in comparison to the full MSBE,
we show in Fig. 9 the time-resolved FWMS for different
propagation lengths. Comparing with the solutions of the
full MSBE in Fig. 3 shows good qualitative, almost quan-
titative agreement indicating that under the carefully
chosen conditions we can analyze the FWMS with the
numerically less involved reduced equations [Egs. (B1)
and (B2)] (RE) rather than the full MSBE. This calcula-
tion confirms the approximations made for the excitation
of the 1s signal in Ref. 6. Comparing Figs. 9 and 3, the
only difference between the reduced and the full calcula-
tion is the lack of the small propagation induced echolike
signal within the local field model, which can be seen in
Fig. 3 after about 2 pm.

We want to extend our study to time-integrated

~J L
p 0.3
& .3um
n F 1.5um
|._
P-4
[TTR
n
=z
<
[
'_
8 0.1um
3
0.7um
- L . 1 1 A

-2 0 2 4 6
DELAY TIME (ps)
FIG. 10. Transient FWMS including propagation effects

for different sample lengths. For numerical convienience, the
reduced equations are used.
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FWMS. Because of the significant CPU time needed for
this we will use the RE. The resulting time-integrated
FWMS are shown in Fig. 10. Due to the chosen ex-
citation conditions they are very similar to those ob-
tained in Ref. 6. Whereas the short sample results re-
produce the well-known shape dominated by interacting
excitons,! we obtain for longer samples a substantially
faster decay caused by propagation effects. Furthermore,
we clearly see a modulation of the time-integrated signal,
where the first dip in the curve occurs at the time delay
7 of 2 ps. Even though the modulation frequency of the
time integrated signal shows the same length dependence
as the frequency of the modulations in the real time, it
has a different origin. The qualitative structure of the
time-resolved FWMS is given by the propagation effects,
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whereas its height is mostly determined by the overlap
of the incident pulses. For small 7 there is an overlap at
the entrance of the sample and for increasing propagation
distances the overlap still exists, because both incident
pulses experience basically the same shape modulations.
Therefore pulse overlap at each point of the sample con-
tributes to the signal. This situation, however, changes
for larger 7. In this case overlap is only generated by
the propagation-induced shape modulations after a fi-
nite propagation distance. The overlap of different pulse
pieces depends strongly on the delay time. Hence, for
different 7 constructive or destructive interference can
be generated and the oscillations in the time-integrated
signal for large 7 are caused by the resulting interference
of the distorted pulses at the end of the sample.
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