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Pulse propagation and many-body efFects in semiconductor four-wave mixing
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The semiconductor Maxwell-Bloch equations are solved to study the simultaneous inHuence of
pulse propagation effects and Coulomb many-body interaction on the four-wave-mixing signal of
semiconductors. Temporal and spatial modulations as well as the decay of time-resolved and time-
integrated signals are analyzed for various excitation conditions. It is shown that propagation effects
may significantly modify the line shapes depending on sample thickness and excitation conditions.
In most cases the signaI is more inHuenced by its own propagation than by the propagation of the
input pulses. Exciton-polariton effects are recovered in the low intensity limit. For relatively thin
samples an increased temporal decay is observed whereas for thicker samples the propagation effects
lead to strong beats in real time. For higher intensities, where an echolike structure is generated,
the competition of signal generation by the pump pulses and absorption by the semiconductor
determines the output.

I. INTRODUCTION

Recently, several experimental and theoretical studies
examined the inQuence of Coulomb many-body efFects on
the time-resolved and time-integrated four-wave-mixing
signals (FWMS) emitted by semiconductor slices. It
was shown that Coulomb exchange contributions, which
are contained in the optical Bloch equations for the semi-
conductor, cause time delayed components in the time re-
solved FWMS. Furthermore, it has been predicted that,
in contrast to FWM in atomic systems, signals at nega-
tive time delays arise as a consequence of the Coulomb
many-body interactions among the electronic semicon-
ductor excitations. Most of these results were obtained
for thin samples and do not include pulse distortion ef-
fects induced by light propagation through the sample.

On the other hand, it was shown that polariton ef-
fects in linear pulse propagation lead to significant pulse
distortions. These effects have been investigated exper-
imentally measuring time-integrated FWMS. The cor-
responding experiments have been modelled using cou-
pled Maxwell-Bloch equations where the semiconduc-
tor is treated by the two-level atomic dynamics or by
reduced semiconductor Bloch equations which include
many-body Coulomb interactions only in the so-called
local-field approximation. Other investigations, which
discuss propagation induced features in FWM followed,
see, e.g. , Refs. 7 and 8. A general conclusion from the
studies including propagation aspects is that under suit-
able conditions pulse reshaping and propagation induced
distortions may contribute to the signal and lead to fea-
tures which in some aspects resemble the Coulomb in-
duced FWM signatures. For instance, negative time de-
lay signals are observed if the Coulomb many-body effects
are neglected but propagation effects of the light pulses
in a finite size sample are included in the calculation.

tIn particular it was found that oscillating time inte-
grated signals are induced by polariton formation in thick

samples. ' ' Prom these studies it can be seen that prop-
agation effects may be of great importance under certain
experimental conditions.

In extension of the previous studies we discuss in this
paper propagation. effects in FWMS using the semicon-
ductor Maxwell-Bloch equations (SMBE). The equa-
tions consist of (i) a set of reduced wave equations for the
different propagation directions of incident and FWMS
pulses and (ii) the semiconductor Bloch equations (SBE)
which describe the dynamics of the polarization which
acts as a source for the field components. This ap-
proach allows a simultaneous description of pulse prop-
agation effects and semiconductor many-body effects for
various excitation conditions, especially under the condi-
tion that the excitation-induced signal is generated. Fur-
thermore we can distinguish FWMS contributions which
are generated by pulse propagation from those caused by
many-body effects. This topic is especially interesting
because the previous studies were restricted either to the
full semiconductor Bloch equations neglecting propaga-
tion or to a local field model including pulse propagation.

In the present paper we analyze different experimen-
tally relevant conditions, such as resonant excitation of
the 18 exciton and of the continuum states for a set of
different intensities. The signals are investigated as a
function of the sample length and we discuss the coupling
mechanisms responsible for the observation of the various
propagation effects. The paper is organized as follows.
In Sec. II we outline the basic equations and discuss the
temporal and spatial analysis of FWM configurations. In
Sec. III we present numerical results assuming resonant,
spectrally sharp low intensity excitation of the 18 exciton
absorption peak. We analyze the basic mechanism of the
observed propagation effects with special emphasis on the
dependence of the FWMS on the sample length. In Sec.
IV the analysis is done for the excitation of continuum
states. The intensity dependence of the FWMS is inves-
tigated for different spectral detunings in Sec. V. Our
results are summarized in Sec. VI and in Appendix A we
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present details of an approximate analytical solution for
the FWMS propagation if the excitation takes place at
the 18 resonance. Appendix 8 shows that for low inten-
sity excitation at the exciton resonance the previously
used local field model yields results in good agreement
with the full calculations.

II. BASIC EQUATIONS

To calculate the FWM components of the optical field
we start from the scalar wave equation for a planar semi-
conductor structure:
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where the input pulse shapes Ai(t, z = 0), A2(t, z = 0)
are known and assumed to have a Gaussian shape. The
temporal delay between both pulses is given by w, where
a negative T implies that the pulse —1 arrives before the
pulse +1 at the entrance of the sample. We restrict our
considerations to a plane wave expansion for the polar-
ization and the optical field:
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where E is the optical field. Here, the total polarization
Pt t acts as a source term in the wave equation and has
to be extracted from the semiconductor Bloch equations
(SBE). The coordinates z, z describe the linear dirnen-
sion, where I is the thickness of the sample in propa-
gation direction. As usual in a FWM experiment the
surface of the sample (z = 0) is illuminated by two plane
wave light pulses with diferent propagation constants in
the x direction:

where the envelopes A, P are slowly varying Fourier
components in time and space and ul. is the carrier fre-
quency of the pulses.

The ansatz (4) for the polarization and the optical field
is inserted into the wave equation to extract the signal in
the four-wave-mixing direction. Neglecting nonresonant
terms we obtain a set of equations describing the prop-
agation of the light field envelope A„ in the directions
—k, z —nk x:
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For the incident pulses n = +1,—1 the propagation equation reads
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whereas the equation for the FWMS n = 3 is given by
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Note that new spatial coordinates (z = nk x + k, z) have been introduced. These coordinates represent the plane
wave character of the solution and allow us to neglect the second spatial and temporal derivatives of the slowly
varying envelopes A (slawly varying envelope approximation). In this paper we restrict our considerations to the
experimentally relevant limit of small angles between the two incident beams, i.e. , k /k, ~ 0. First, the finite value
of k /k is used to split the SBE and the wave equation into a set of equations for the different propagation directions.
Once determined we salve this set of equatians in the limit k /k, m 0.

The resulting wave equations in the limit of small angles (k /k, ~ 0; z = z) are
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Here, the Rabi frequency 0 = "&" has been introduced as the product of dipole matrix element d and the envelope
of the electrical field and K = 2ILio ~d~ ul /(aohk, ). The source terms on the right-hand side (RHS) of the propagation
equations (8) and (9) are determined by the polarization traveling in the corresponding directions. In principle, we
solve the set of equations in infinite order of n. From a simplified point of view, one could say that for the incident
pulses n = —1, 1 the wave equations are almost the same as for pulse propagation in a single direction, however,
the polarizations P i ~ are infIuenced by the coupling to the FWMS. The incident pulses, n = +1, create via the
SBE at each sample point a density grating, which difI'racts polarization components into the FWM direction. These
polarization components in turn create a field which travels through the sample in the FWM direction [see Eq. (9)].

To calculate the polarization components P which act as source terms in the difI'erent wave equations, a Fourier
analysis of the semiconductor Bloch equations has to be carried out. The expansion of the SBE leads to the following
general set of equations for the Fourier components:2

i—n& ——) [O~]*Pk „~—n~ [Pk „]*+ ) vi ) [(Pe+i, )* Px „+ —Pa+i „+ (Pi, )*)
m k' m
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)
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where vk is the statically screened Coulomb matrix ele-
ment. These equations form together with the wave equa-
tion a set of partial diff'erential equations of first order.
They are solved numerically in infinite order for the char-
acteristic Fourier components with n = 0, +1,+2, +3. As
usual in pulse propagation studies, the numerical treat-
ment of this system is carried out in a traveling frame:

rj = t —z/(dl, , ( = z (12)

III. EXCITONIC EFFECTS

Since we use reduced wave equations rather than the
full Maxwell wave equation, only one boundary condition
for each propagation direction has to be fulfilled. At the
boundary, O&, O~ are given by the incident pulses. The
initial value of the field As is zero at the boundary (z =
0) for all times. This field is built up inside the sample by
the interference of the two incident pulses. All numerical
calculations in this paper are carried out for material
parameters of GaAs. The dipole moment is 3 eA, with
e as the electronic charge and the binding energy of the
exciton is 4.2 meV.

I

agation efFects are expected to play an important role
in finite samples, Fig. 1 shows the pulse distortion of
a Gaussian input pulse after propagation over 1 pm in
a GaAs bulk sample. The Gaussian input Geld ampli-
tude (dashed line) develops a node (solid line) resulting
in pulse breakup in the intensity (inset). This feature has
been observed experimentally and explained theoretically
as the interference of polariton modes. To get a better
handle on the analysis of propagation efI'ects in FWMS
we discuss the pulse breakup in the time domain. Since
we are interested in the origin of the pulse distortion we
have additionally plotted in Fig. 1 the polarization source
term (short dashed line) which yields the first correction
in z to the input field:

INTENSITY

IJJ
C)

I—

CL

In this section we study low-intensity resonant exci-
tation of the 18 exciton. We assume Gaussian pulses
with 300 fs duration (intensity FWHM) to assure reso-
nant excitation of the 18 exciton and no overlap with the
continuum states. The phenomenological dephasing time
is chosen as 2 ps.

First, we describe the polariton beating at a single
resonance system which is in the time domain impor-
tant to understand low-intensity single pulse propagation
as well as propagation eKects in the time-resolved and
time-integrated FWMS ~ To illustrate that pulse prop-

I

2 4
TIME (ps)

FIG. 1. Field amplitude for incident pulse (medium dashed
line), polarization (short dashed line), and resulting field after
the propagation (solid line) over 1 pm in GaAs. The inset
shoves the intensity of the propagated optical field.
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FWMS. Because of the significant CPU time needed for
this we will use the RE. The resulting time-integrated
FWMS are shown in Fig. 10. Due to the chosen ex-
citation conditions they are very similar to those ob-
tained in Ref. 6. Whereas the short sample results re-
produce the well-known shape dominated by interacting
excitons, we obtain for longer samples a substantially
faster decay caused by propagation efFects. Furthermore,
we clearly see a modulation of the time-integrated signal,
where the first dip in the curve occurs at the time delay
w of 2 ps. Even though the modulation frequency of the
time integrated signal shows the same length dependence
as the frequency of the modulations in the real time, it
has a difI'erent origin. The qualitative structure of the
time-resolved FWMS is given by the propagation efFects,

whereas its height is mostly determined by the overlap
of the incident pulses. For small w there is an overlap at
the entrance of the sample and for increasing propagation
distances the overlap still exists, because both incident
pulses experience basically the same shape modulations.
Therefore pulse overlap at each point of the sample con-
tributes to the signal. This situation, however, changes
for larger w. In this case overlap is only generated by
the propagation-induced shape modulations after a fi-
nite propagation distance. The overlap of difI'erent pulse
pieces depends strongly on the delay time. Hence, for
difFerent 7 constructive or destructive interference can
be generated and the oscillations in the time-integrated
signal for large w are caused by the resulting interference
of the distorted pulses at the end of the sample.
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