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We present first-principles coherent-potential-approximation calculations for the fcc FeNi alloy.
We have found that this system is characterized by a competition between a low-spin (LS) and a high-
spin (HS) state, and we have calculated this energy difference as a function of alloy concentration.
For fcc Fe we find that several magnetic states are locally stable whereas for the FeNi alloys only one
magnetic state is stable. In agreement with previous theories for explaining the Invar effect in the
FegsNiss alloy, we find that at this concentration the LS and HS states are very similar in energy. The
calculated magnetic moment, equilibrium volume, and bulk modulus agree well with experimental
data, and we predict that the Griineisen constant exhibits an anomaly at a Ni concentration around

25%.

The Fe-Ni system displays many interesting properties
and no doubt most of the attention has been focused
on the Invar behavior of this alloy.! Since this almost
100 year old discovery, many more alloys and even some
compounds have been found to have almost no thermal
expansion, thus qualifying as Invar systems.? Another in-
teresting aspect about the Fe Ni;_. alloys is the change
of crystal structure from bec for the Fe-rich alloys to fcc
for the systems with larger Ni concentration. To compli-
cate the situation further the magnetic moment for the
iron-nickel alloy initially follows the Slater-Pauling curve
in the bcc phase but right after the stabilization of the
fcc structure the magnetic moment is first almost zero,
and then with a further increase of the Ni concentration
it increases sharply. At even higher Ni concentrations
the moment again follows the Slater-Pauling curve. The
change of the crystal structure and the complicated be-
havior of the magnetic moment at alloy concentrations
corresponding to the Invar alloy have been speculated
to be crucial aspects of the explanation of the invariant
thermal expansion.

A number of theoretical models for describing the In-
var effect have been proposed.2 One of the earlier phe-
nomenological models is due to Weiss® who introduced
the so-called 2v state model, where two magnetically or-
dered states, one ferromagnetic and one antiferromag-
netic, have different equilibrium volumes but very simi-
lar energy. The thermal excitation of the two-component
system, including excitations to the low-volume state,
was thus proposed to compensate the anharmonic effect
of the lattice vibrations, thus explaining the Invar effect.
Later theoretical work, based on ab initio band structure
calculations, has in general confirmed this picture,4 4
although the type of magnetic order for the low-volume
state is still under discussion. These calculations led to
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the following model: In pure fcc Fe a low-spin (or param-
agnetic) state, with a relatively low equilibrium volume,
is a locally stable state, while at expanded volumes a
high-spin state is stable. The resulting binding energy
curve as a function of volume is formed by the two cross-
ing branches corresponding to the low-spin (LS) and the
high-spin (HS) states. As the Ni concentration increases,
the difference in energy between the LS and the HS states
decreases, and at a certain concentration the HS state be-
comes stable. Based on this model Moruzzi® ! gave a
qualitative explanation of the Invar effect and a number
of other properties of Invar alloys.

Although a rather large body of theoretical data has
been accumulated for the Fe.Ni;_. alloys, no ab initio
calculations have been presented describing the variation
of the total energy of the paramagnetic (PM) and fer-
romagnetic (FM) states as a function of alloy concen-
tration. The concentration dependence of the PM-FM
energy difference was, for example, estimated by a linear
interpolation between the values obtained for pure Fe
and Co.1° The lack of first-principles calculations of the
PM-FM energy difference of these alloys is most prob-
ably due to the fact that treating a random alloy the-
oretically is not an easy task. In most of the previous
theoretical treatments one has instead replaced the alloy
with a perfectly ordered compound, e.g., FezNi.10:12714
Although the results presented in Refs. 10, 12-14 seem to
reproduce much of the experimental data for the FesNi
compound, one worry with this approach is the neglect of
disorder. Also, by this approach one is faced with the ob-
vious drawback of being able to treat only systems with
specific Fe and Ni concentrations (unless a huge supercell
is considered).

Despite the above mentioned difficulty in describ-
ing the electronic properties of random alloys, a num-
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ber of calculations which considered a random Fe-
Ni alloy have been performed recently in the frame-
work of the Korringa-Kohn-Rostoker coherent-potential-
approximation (KKR-CPA) method. For example, John-
son et al.1®18 have calculated the electronic structure of
the Invar FegsNiss alloy and determined the magnetic
moment as a function of concentration and volume. Also,
Akai and Dederichs'” have calculated total energies of the
random fcc FeNi alloy in the concentration interval close
to the Invar region and reported the possibility of the
existence of a state with local moment disorder (LMD).
Therefore, it is very desirable to perform a CPA total en-
ergy calculation for the random Fe.Ni;_. alloy over the
complete concentration interval 0 < ¢ < 1, since only
by doing this can one calculate the ground state prop-
erties without having to rely on too crude approxima-
tions for the alloy state, and thus investigate the validity
of the Weiss model (modified so that one replaces the
antiferromagnetic state with a nonmagnetic or low-spin
state). Another motivation for the present study is the
above mentioned, intriguing behavior of the equilibrium
ground state thermodynamic and magnetic properties as
a function of alloy concentration.

In this work we thus present results of first-principles
local-spin-density (LSD) calculations of the total en-
ergy, magnetic moment, and thermodynamic ground
state properties of the fcc random Fe.Ni;_. (0 <
¢ < 1) alloy obtained by the fully self-consistent
all-electron, scalar-relativistic, linear muffin-tin orbital
(LMTO) method.'® 23 The disorder was treated in the
framework of the single-site CPA. All calculations, in-
cluding those for the pure elements, were performed by
the Green’s function technique rather than by diagonaliz-
ing the corresponding Hamiltonian. Even though charge
transfer effects are small in the Fe-Ni system, their influ-
ence was taken into account by the correction term to the
Madelung potential and energy, as proposed in Refs. 24,
25. The complete method is described in detail in Ref. 26
with the exception that here we calculate the potential
functions directly from the solutions to the Schrodinger
equation at each energy on the contour without the usual
expansion in terms of potential parameters.

We note that in order to calculate accurate total en-
ergies we had to use the fixed spin moment (FSM)
method®® which is essential for regions where there is
a transition from a PM to a FM state, for reasons which
we will explain below. We did not consider the possibil-
ity of an antiferromagnetic state or a LMD state in this
work. Moreover, we employed the Vosko-Wilk-Nusair
parametrization?” for the exchange-correlation energy
density and potential, and the basis set included s, p,
and d orbitals only. The k-space integral was calculated
in the 1/48th part of the Brillouin zone at 240 k points
of the fcc lattice. All energy integrals were evaluated
on a semicircular contour in the complex energy plane
by means of 16 energy points. The convergence criteria
for the total energy was 0.001 mRy. In order to deter-
mine equilibrium ground state parameters as a function
of volume we used an exponential function fit, proposed
by Moruzzi et al.28 The minimization of the total energy
as a function of magnetic moment for a fixed volume was

done by a cubic spline interpolation, except for the vol-
umes where the magnetic moment corresponding to the
lowest total energy is small. For these volumes we em-
ployed a Landau expansion of the energy Ei., in even
powers of magnetic moment M (up to the fourth power),

Eiot(M,V) = Eor(0,V) + a(V)M? + B(V)M*, (1)

where Ei04(0,V),a(V), and B(V) are volume-dependent
parameters which are determined by fitting (least squares
minimization) Eq. (1) to the values of Ei calculated for
different (small) magnetic moments (keeping the volume
V fixed). In Ref. 29 it was shown that this approach gives
the correct volume dependence of the magnetic moment
close to the PM-FM transition.

First, we describe the results of the FSM calculations
for a few selected alloy concentrations. In Fig. 1 we show
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FIG. 1. Total energy (relative to the equilibrium energy)
as a function of constrained magnetic moments for pure fcc
Fe (a) and fcc Fer4Nize alloy (b) at different Wigner-Seitz
radii Rws. The inset in panel (a) shows the curve for pure
fcc Fe at Rws=2.54 a.u., and has the same axis labels as
the main figure. In the inset calculated values of the total
energy are shown by the open circles, while the solid drawn
line represents a least squares fit by means of Eq. (1).
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the total energy as a function of the constrained mag-
netic moment (Lagrangian multiplier) for pure Fe and
the random Fe74Niye alloy, calculated at several lattice
constants. It is seen in Fig. 1(a) that for pure fcc Fe the
energy has local minima at several magnetic moments,
depending on the volume. This behavior is understand-
able from the shape of the canonical state density for the
fcc lattice,®7 and has already been found in the previ-
ous studies of the binding energy of fcc Fe.®'1? Note that
this complicated behavior of the total energy makes the
convergence of the conventional floating (not fixed) spin
moment calculations extremely poor, and we have found
that the only way to obtain a reliable total energy of the
present system is to apply the fixed spin moment method.

The observed dependence of the energy on the mag-
netic moment and the volume is in agreement with the
results of Refs. 8, 10, where also three types of solutions
[paramagnetic (PM), low spin (LS), and high spin (HS)]
were reported. However, unlike previous studies we have
found that the state with a small magnetic moment of
about 0.2up gives the lowest total energy for fcc Fe at
Wigner-Seitz radii between 2.63 a.u. and 2.565 a.u., al-
though the energy difference between this state and the
PM state is extremely small (of order 0.01 mRy) and is
almost the same as the convergence criteria for our cal-
culations. Therefore, it is essential to use the Landau
expansion (1) in this volume interval. By doing so we
can partially remove the numerical inaccuracy of our cal-
culated energies. As an example of how well this fitting
works we show in the inset in Fig. 1(a) the calculated
and fitted energies of fcc Fe at a Wigner-Seitz radius of
2.54 a.u.

We find that the transition from the FM state to the
PM state is continuous, exhibits a square-root singular-
ity [see Fig. 2(a)] predicted theoretically in Ref. 29, and
takes place at a volume which is slightly larger than the
equilibrium volume. So in agreement with previous stud-
ies the ground state of pure fcc Fe is found to be para-
magnetic (remember that the antiferromagnetic solution
was not considered in this work). Moreover, since the
energy difference between the FM and the PM solutions
is extremely small for Wigner-Seitz radii below 2.63 a.u.,
in the following discussion we will refer to the state with
magnetic moment in the range 0 < p < 0.5up as the
low-spin (LS) state, while we will refer to the state with
magnetic moment in the interval 0.7up < p < 1.55up
as the intermediate-spin (IS) state, and the state with a
magnetic moment 2.0up < u as the high-spin (HS) state.
As the volume is increased from the equilibrium value
one observes in Fig. 2 first-order transitions from the LS
state over the IS state to the HS state. The first-order
character of these LS-IS-HS transitions results in the ex-
istence of three crossing branches of the binding energy
curve [see Fig. 2(b)] which means that the corresponding
first derivative has discontinuities at the crossing points.
Note from Fig. 2(b) that the energy difference between
the LS and the IS states is also very small.

Next, we show that the behavior of the total en-
ergy and the magnetic moment as a function of volume
is changed significantly in the case of a random alloy
(Fe74Nigg). First, one observes in Fig. 1(b) that for the
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FIG. 2. Average magnetic moment [(a) and (c)] and total
energy (relative to the equilibrium energy) [(b) and (d)] as a
function of Wigner-Seitz radii Rws for pure fcc Fe [(a) and
(b)] and fcc FersNige alloy [(c) and (d)]. Solid drawn lines
with solid symbols correspond to the global minimum of en-
ergy as a function of constrained magnetic moment, dashed
lines with open symbols represent a local minimum, and dot-
ted lines are extrapolations of the corresponding branches of
the binding energy curve to volumes where these states are
not stable even locally. In (a) and (b) circles are used for the
low-spin state, triangles denote the intermediate-spin state,
and squares are for the high-spin state.

fcc Fer4Nigg alloy there is only one (global) minimum; at
zero magnetic moment or at a finite moment, depending
on volume. Metamagnetic states do not occur, due to
the smearing of the state density in the alloy by the dis-
order. This results in a continuous change of the average
magnetic moment as a function of volume [see Fig. 2(c)]
with the square-root singularity at the PM-FM transi-
tion (found at a Wigner-Seitz radius of 2.565 a.u.), as
expected from the analysis presented in Ref. 29. Sec-
ond, the difference in energy between the LS and the HS
states decreases when the concentration of Ni increases,
and is almost zero for the Fe;4Niyg alloy, as shown in Fig.
2(d). The behavior of the binding energy curve is also
different [Fig. 2(d)] since there is no crossing of different
branches any more, as was the case for pure fcc iron. In
Fig. 2(d) we also display two energy curves (dotted lines)
where the moment was fixed to be either zero or to the
value corresponding to the energy minimum of the HS
state (u = 1.98up). Notice that at volumes in between
the LS and HS equilibrium volumes the ground state en-
ergy is significantly lower than the two dotted curves in
Fig. 2(d). Notice also that in Figs. 2(b) and 2(d) we
have made use of three different ways to represent the
total energy curves: solid drawn lines with solid sym-
bols, dashed lines with open symbols, and dotted lines.
The solid drawn curve represents the global minimum
whereas the dashed curve represents a local minimum.
The dotted curve is simply an extrapolation of the ener-
gies for the corresponding states and for this curve the
energy can always be lowered even by an infinitely small
modification of the magnetic moment (in contrast to the
dashed, metastable curve).
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The results of the FeNi alloy are important when an-
alyzing the model used by Moroni and Jarlborg!* for
calculating the thermal expansion coefficient of an or-
dered FesNi compound (simulating the Invar alloy). In
their model Moroni and Jarlborg considered only ther-
mal excitations which conserve the volume, e.g., from
the high-spin state to the low-spin state. However, the
present CPA calculation shows that for Fe.Ni;_. alloys
this mechanism is not possible, since for volumes where
the high-spin state has the lowest energy the low-spin
state is not even locally stable [Figs. 1(b) and 2(d)].
The theory provided by Mohn et al.,'? which considers a
Landau-Ginzburg expansion of the total energy seems to
avoid such difficulties.
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FIG. 3. Average magnetic moment (a), lattice parameter
(b), bulk modulus (c), and low-temperature Griineisen con-
stant (d) as a function of alloy concentration of fcc Fe;_.Ni..
Solid circles are calculated results. Bulk moduli for Fe74Nizg
obtained for the LS (open square) and HS (open triangle) ar-
tificial binding energy curves [dotted lines in Fig. 2(d)] are
presented in (c). The experimental data for the average mag-
netic moment (open circles at room temperature, open trian-
gle at T = 77 K, Ref. 30), lattice parameter (dotted line at
room temperature, dot-dashed line at T' = 473 K, Ref. 31),
and bulk modulus (open circles at T = 4.2 K, Ref. 32) are
also shown.

It is also obvious that the described behavior of the
binding energy curve for the fcc FeNi alloy should lead
to anomalies in the ground state magnetic and thermo-
dynamic properties. In Fig. 3 we demonstrate that this is
the case, by presenting the calculated and experimental
data for the magnetic moment, equilibrium volume, bulk
modulus, and Griineisen constant as a function of alloy
concentration. The calculated points were extracted at
the volume where the total energy is lowest. Notice that
the experimental data are only shown for the fcc struc-
ture, which at room temperature is stable in the Ni con-
centration range 65-100 %, while the theoretical results
are given for the fcc alloy in the complete concentration
interval (we did not consider the bcc alloy in this work).
Starting with the magnetic moment it is clear from Fig.
3(a) that in the Ni-rich region where the HS state is stable
both the theoretical and experimental curves follow the
Slater-Pauling curve and the agreement between theory
and experiment is excellent. In the iron-rich region there
may exist a very small local moment on the Fe and the Ni
atoms (for the alloy with 25% Ni they are 0.0008.5 and
—0.0023pp for the Fe and Ni atoms, respectively). For
all Fe-rich alloys we find that the Fe and Ni moments are
directed antiparallel and that the net moment is exactly
zero. For a Ni concentration of ~ 26% we calculate a first-
order magnetic phase transition from a paramagnetic to
a ferromagnetic state, because at this concentration the
HS state becomes more stable than the LS state as we
show in Fig. 4 where the energy difference between the LS
and HS states is plotted as a function of alloy concentra-
tion. Experiments at room temperature show, however,
a second-order transition, from a HS state to a state with
zero average magnetic moment, at a concentration of
~ 35% of Ni. We will return to this disagreement later.

Next we observe that, in agreement with expectations,
for calculations based on the LSD approximation, the
equilibrium volume is underestimated and the bulk mod-
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FIG. 4. Energy difference between the low-spin and the
high-spin states in FeNi alloys as a function of Ni concen-
tration. Solid line with solid circles: calculated results.
Dot-dashed line with open circles: the linear interpolation
between the points for the pure fcc Fe and Co used in Ref.
10.
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ulus is overestimated. However, the trends displayed by
these properties as a function of alloy concentration are
described very well by our CPA theory [see Figs. 3(b) and
(c)]. Both the lattice parameter and the bulk modulus
exhibit a linear behavior as a function of concentration,
except for the alloy concentration where there is a transi-
tion from the LS to the HS state. Due to magnetovolume
effects, the HS state is expected to have a larger equilib-
rium volume than the LS state, in agreement with the
calculations of Fig. 3(b). The decrease of the bulk mod-
ulus at the LS — HS transition can partly be explained
by magnetovolume effects [compare the open square and
open triangle in Fig. 3(c)]. However, the change of the
magnetic moment of the HS state as a function of vol-
ume [Fig. 2(d)] decreases the curvature of the HS energy
curve, which lowers the bulk modulus further. To illus-
trate this effect we show in Fig. 3(c) the bulk modulus
of the random Fe,4Nise alloy evaluated from the fixed
spin moment calculation in Fig. 2(d) (dotted curve with
a moment fixed to 1.98u5). The so-obtained bulk mod-
ulus is considerably higher than the value obtained from
the ground state energy curve.

In Fig. 3(d) we show the concentration dependence
of the low-temperature Griineisen constant, which en-
ters the Debye-Griineisen model for the calculation of
the thermal expansion?® and is defined as

14 82P/8V2
7LT——1—§Wa (2)

where P is the pressure and V is the volume. Notice that
around the concentration where the LS to HS transition
occurs the Griineisen constant is highly anomalous. The
origin of this anomaly lies in the second-order character of
the transition from the LS to HS state. As a result of the
rapid, but continuous change of the magnetic moment,
the increase in the energy is anomalously small when
the volume is decreased from the HS equilibrium volume
[see Fig. 2(d)]. Such a behavior of the binding energy
leads to a small, and even a negative, value of the low-
temperature Griineisen constant. This in turn, according
to the Debye-Griineisen model, should lead to an anoma-
lous negative thermal expansion at temperatures well
below room temperature. Note that a two-state model
based on conventional HS and LS state energy curves [for
instance, with the same shape as the two dotted curves in
Fig. 2(d)] fails to explain the low-temperature behavior
of the thermal expansion coefficient since in this case the
low-temperature equilibrium properties are determined
by either the LS or the HS solutions only. As a result the
theoretical thermal expansion coefficient is always posi-
tive at low temperatures,'%14 in contrast to the experi-
mental observation that it is negative.?

We now return to the alloy concentration where the
transition from the LS state to the HS state occurs,
and focus on the disagreement between the theoretical
(26%) and experimental (35%) values. Omne possibility
for this is of course that it is the usual discrepancy be-
tween a first-principles, parameter-free calculation and
reality. However, there might exist a different reason for
the disagreement. In connection to this let us first ana-
lyze the results presented by Moruzzi, who, when study-
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ing the Invar problem in his LS-HS model,!° arrived at
the conclusion that the energy difference between the LS
and the HS solutions should be zero at about 35% of
Ni, in agreement with experimental data. However, he
used a linear interpolation between the values obtained
for pure Fe and Co in order to estimate the transition
concentration of the alloy. On the other hand, one can
see in Fig. 4 that the concentration dependence of the
LS-HS energy difference, as obtained by our CPA calcula-
tions, has a parabolic shape. This is to be expected from
simple band filling arguments of a rectangular density
of states model, proposed by Friedel.3® Here the d elec-
trons contribute to the bonding energy with an amount
UbordPM — _(W/20)N4(10 — Ny), where W is the alloy
bandwidth. This term has a quadratic dependence on
the number of d electrons, N4. Similarly, in the model of
saturated ferromagnetism, where a complete filling of the
majority spin band is assumed, the bonding energy can
be written as U;"md’FM = —(W/10)Ngovn(5 — Ngewn),
and this term also has a parabolic dependence on the
number of spin-down electrons, N$°%». The difference
U;""d’PM — U;""d’FM is also a parabolic function of the
band filling, in agreement with our first-principle calcula-
tions (Fig. 4). The excellent result of Moruzzi, concern-
ing the concentration for the occurrence of the LS — HS
transition, thus seems to be somewhat fortuitous.

Let us now investigate some possible explanations for
the observed disagreement between theory and experi-
ment. We first point out that we do not expect that
short-range order effects are responsible, because in the
FesNi compound, which corresponds to maximal short-
range order, the HS solution is already more stable than
the LS one.!®12714 Instead the reason might be due to
the fact that the experimental values of the lattice pa-
rameters and the average magnetic moments, presented
in Fig. 3, were obtained at room temperature, whereas
our calculations were performed at zero temperature. To
investigate this hypothesis we compare in Figs. 3(a) and
3(b) some experimental data of the lattice constant and
magnetic moment at different temperatures. Notice that
concerning the lattice constant the transition is shift-
ing to higher Ni concentration as the temperature is in-
creased. Also, at low-temperature the magnetic moment
of the FegsNizg alloy is considerably higher than the value
reported at room temperature and the low-temperature
value is actually in very good agreement with our cal-
culations. This strong temperature dependence of the
magnetism in the Ni concentration range around 35% is
to be expected, since the Curie temperature drops to low
values at these concentrations.

The experimental data in Fig. 3(a), when consider-
ing also the low-temperature value of the FegsNige alloy,
may indicate that the LS — HS transition is first order,
in agreement with our calculations. Also, the critical
concentration at which this transition occurs is moved
to lower Ni concentrations when the temperature is low-
ered and is approaching our calculated value. As the
temperature increases, the metastable states can be ther-
mally populated, and the transition from paramagnetism
to ferromagnetism becomes less abrupt, and may even be-
come of second order. We thus propose that the observed
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disagreement between theory and experiment concerning
the LS to HS state is due to temperature effects. It is also
possible that some other phases are present in the Invar
alloys. For example, Akai and Dederichs!” reported the
possibility of the existence of a state with local moment
disorder (LMD) which in their calculations was found to
be more stable compared to the FM state at the Invar
concentration. In this case one should expect even more
complicated behavior of the binding energy curve, and
since the equilibrium volume for the LMD state lies be-
tween that of the LS and that of the HS states,'” the
less sharp transition of| say, the lattice parameter can be
expected.

In conclusion we have reproduced a number of exper-
imental data for FeNi alloys, such as magnetic moment,
equilibrium volume, and bulk modulus. The transition
from a LS state for the Fe-rich alloys to a HS state for
the Ni-rich alloys is calculated to take place at a Ni con-
centration of 26% which is in fair agreement with the
experimental concentration of 35%. We argue that the

discrepancy might be due to thermal effects. The LS —
HS transition results in an anomalous Griineisen constant
at the critcal concentration and this in turn should result
in a small negative thermal expansion at low tempera-
tures, in agreement with experiment. The magnetism in
fcc Fe is found to be characterized by several metamag-
netic states whereas for the FeNi alloy only one state (LS,
IS, or HS) is stable.
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