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We describe a technique for the determination of the carrier lifetime (7) and the carrier mobilities
(Kn,pp) in semiconductors, namely, the moving-photocarrier-grating method. This technique utilizes
a moving intensity grating that is generated by the superposition of frequency shifted laser beams for
the illumination of the sample. This results in a spatial and temporal modulation of the generation
rate of photoelectrons and holes and, as a consequence, in a modulation of the photocarrier densities.
The amplitudes and phases of the resulting carrier densities, space charges, and electric fields are
calculated by solving the continuity and Poisson equations in the small signal approach. Their
dependence on grating velocity and grating period are analyzed in the lifetime and the relaxation-
time regimes. It is shown that a dc short circuit current js. results from the action of space charge
induced fields on the photogenerated electrons and holes that can be measured in an external circuit.
The validity of this analysis is demonstrated by comparing the expression for js,c with data obtained
for two a-Si:H samples that realize the lifetime and the relaxation-time regimes, respectively. Good
fits are obtained over a wide range of grating periods and grating velocities for material parameters

Un, Up, and 7 that compare favorably with values obtained from other measurements.

I. INTRODUCTION

The mobilities and the common lifetime of electrons
and holes in semiconductors are important parameters
that determine the performance of many devices, such
as solar cells or thin film transistors. There is a class
of experiments which rely on the spatial and sometimes
also the temporal evolution of a carrier distribution that
is initially nonuniform. The oldest such method is the
Haynes-Shockley experiment in which a light spot is used
to excite a photocarrier distribution that drifts in an ex-
ternal applied electric field.

Ritter, Zeldov, and Weiser have introduced the steady-
state photocarrier-grating (SSPG) technique for the de-
termination of the ambipolar diffusion length (Lampb) in
semiconductors.?3 This technique is now widely used for
amorphous silicon.*”” In the SSPG technique a sample
is illuminated by two coherent laser beams which form
a sinusoidal light intensity pattern with a spatial period
A. The conductivity of the sample is measured perpen-
dicular to the grating and compared to the conductivity
for homogeneous illumination. From the evaluation of
the different conductivities as a function of A the appar-
ent diffusion length L,p is obtained. Ritter et al. have
shown that space charges have to be taken into account
when the ambipolar diffusion length is to be calculated
from L,pp.8

A drawback of the SSPG method is the fact that the
ambipolar diffusion length is the square root of the prod-
uct of lifetime and ambipolar diffusion constant. Hence,
due to the lack of temporal information, SSPG does not
allow a separate measurement of lifetime and ambipolar
mobility. Consequently, SSPG is often combined with
time resolved measurements of the photoconductivity to
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determine the carrier lifetime.

The transient grating (TG) technique introduces the
temporal aspect by employing a short laser pulse
for the generation of spatially modulated photocarrier
densities.? 10 Their spatiotemporal development is moni-
tored by the time resolved measurement of the diffraction
intensity of a second laser beam. The decay of the mod-
ulated carrier densities in this case is a combined effect
of the blurring of the photocarrier grating by diffusion
and the simultaneous decay by recombination. Perform-
ing these measurements as a function of grating period
yields the ambipolar diffusion constant D and the photo-
carrier lifetime 7. However, the concentration of photo-
carriers created by the single laser pulses are usually well
above the densities encountered in normal device opera-
tion and the material parameters derived by this method
might thus not be relevant for this purpose.

Hattori et al. measured the frequency dependent pho-
toconductivity using a laser interference grating whose
amplitude is temporally modulated.!! The size of the in-
tensity used by Hattori is of the same order as that usu-
ally used in device operation. Combining this with con-
ventional (i.e., without illumination by the interference
grating) frequency resolved photoconductivity measure-
ments, Hattori was also able to obtain carrier mobilities
and lifetime.

We have recently extended the SSPG technique by us-
ing a moving interference grating for illumination result-
ing in a moving photocarrier grating (MPG).12:13 This
introduces the temporal aspect that is lacking in the
SSPG technique. We have demonstrated that with this
technique the mobilities and the lifetime of electrons and
holes can be determined individually from a measure-
ment of the short circuit current as a function of the
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velocity vg; and the spatial period A of the intensity
grating. The short circuit current is closely related to
space charges and the electric fields accompanying them
and we show in this paper how the space charges evolve
when the intensity grating moves. For that purpose we
calculate the amplitude of the modulated electron and
hole distributions and their phase shift relative to the in-
tensity grating. We show that for the standing grating
the electric fields connected with the space charges are
out of phase by 7/2 with the photocarrier densities. Due
to this fact no net current is measured in this case. For a
moving grating, however, there is a phase shift between
electron and hole distributions resulting in a component
of the electric field which is in phase with the modulated
photocarrier densities. This configuration gives thus a
current without an external field. The very existence of
the experimentally observed short circuit current requires
different electron and hole mobilities and the absolute
value and its sign makes the separate evaluations of u,
and p, possible.

Our experiment has some relation to the experiment of
Trofimov and Stepanov who use an interference grating
of sub-band-gap light that vibrates with a small ampli-
tude, resulting in an ac current that is measured time
resolved.'* The MPG experiment is different from their
experiment firstly because we use a continuously moving
laser interference grating and secondly because Trofimov
and Stepanov use the laser light for the excitation of elec-
trons from deep defects rather than for the creation of
free electrons and holes.

The MPG experiment discussed in this paper does not
require the high photocarrier densities of the TG experi-
ment. The temporal aspect is realized by the translation
of the intensity grating without changing its modulation
amplitude. Photocarrier mobilities and lifetime can thus
be extracted from the measured dc short circuit current
without the need to combine this measurement with time
or frequency resolved measurements of the photoconduc-
tivity.

In previous papers on the MPG technique we have
demonstrated its applicability for the determination of
the material parameters without detailed discussion of
the underlying theory.'?!315 This paper is in order to
present this theory and to give a comparitative analysis
of measurements on highly!2:'5 and weakly!® photocon-
ducting samples.

The paper is organized as follows. In Sec. II the ex-
perimental setup and the samples used for this study are
described. The theory for the evaluation of the experi-
mental data is given in Sec. III. The results of that sec-
tion are analyzed separately for the lifetime regime and
for the relaxation-time regime in Sec. IV, and in Sec. V
we apply our method to the determination of the mate-
rial parameters of two specimen of amorphous silicon in
the two different regimes.

II. EXPERIMENTAL DETAILS

A. Setup for the MPG method

The experimental setup used for the MPG method is
shown in Fig. 1. Except for the acousto-optic modulators
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FIG. 1. Experimental setup for the moving photo-
carrier-grating (MPG) technique. The HeNe laser beam
(hw = 1.96 €V) is split into two parts by means of a beam
splitter (BS). These are frequency shifted by the use of
acousto-optic modulators in order to impress a frequency dif-
ference on the two laser beams that interfere at the sample
surface. This results in a intensity grating that moves with a
velocity vg, along the surface.

(AOM’s) it is similar to the arrangement used for the
SSPG technique: A laser beam (wavelength \) is split
into two parts which interfere at the surface of the sample
under an angle 6. Thus, an intensity grating with spatial
period A = A\/[2sin(6/2)] is created. The modulation of
this grating can be made small using a neutral density
filter to attenuate one beam. Deviating from the SSPG
experiment we use two AOM’s that shift the frequencies
of the laser beams by Af; and Af,, respectively. The
resulting frequency difference Af = Af; — Af, causes
the intensity grating to move with a velocity vg, = AAf
along the sample surface. The intensity at the sample
surface (the. x coordinate) is given by

I(z,t) = Iy + AlI(z,t) = Iy + I cos [k (z — vget)]. (1)

Here, k is the spatial frequency (k = 2w /A). The homo-
geneous part Iy and the amplitude of the modulated part
I, of the intensity are related to the intensities I; and
I, of the two interfering laser beams according to

I() =11+I2, Im =2 11[2. (2)
The experimental quantity that we measure in this ex-
periment is the dc short circuit current that is induced
in the sample as a result of the moving intensity grating.
The short circuit current is typically in the 10712 A range
and we use an electrometer to measure this current.

B. Samples

We investigated two samples in order to study two dif-
ferent regimes. In the lifetime regime the recombination
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lifetime of photogenerated carriers 7 is longer than the
dielectric relaxation time 74;e; that is determined by the
conductivity o and the dielectric constant € of the sample
(Tdiet = €€o/0). The relaxation-time regime exists if on
the other hand 74ie1 > 7. The lifetimes of the samples
were determined as explained in Sec. V.

Undoped amorphous hydrogenated silicon (a-Si:H)
measured at room temperature served as a sample for
the lifetime regime; at a light intensity of 10 mW/cm?
this sample had 7/7q;e1 = 10. For the relaxation-time
regime study we used an n-type sample and measured at
120 K. At 80 mW /cm? this sample had 7/7g;e1 = 0.025.

The samples were prepared with plasma enhanced
chemical vapor deposition under conditions that yield de-
vice quality films. Before the measurements, the samples
were light soaked (20 h with 150 mW /cm? heat filtered
light) in order to avoid any changes of the sample prop-
erties during the measurements.'®

III. THEORY

We treat the problem of the MPG in a manner sim-
ilar to previous papers dealing with SSPG.%817:18 The
spatial modulation of the photogenerated electron and
hole distributions is considered by taking into account
the inhomogeneous generation rate as well as the diffu-
sion, drift, and recombination of the carriers following
their generation. In order to describe the case of the
moving photocarrier grating we have to replace the spa-
tially modulated but temporarily steady generation rate
of the SSPG by a time dependent generation rate:

G(z,t) = Go + AG(z,t) = Go + gcos [k (x — vget)]. (3)

Here, the amplitude of the modulation of the generation
rate g relates to the quantity I,, in Eq. (1), whereas Gg
relates to the homogeneous part of the intensity Io. We
are going to calculate in the one-dimensional approxi-
mation the space and time dependent electron and hole
densities, N(z,t) and P(z,t), respectively. The continu-
ity equations for these quantities are

ON(z,t) 1 Ojn(z,t)

ot . 9z + G(w,t) - R(.’L‘,t) ’ (4)
aP(.’B, t) _ 1 ajp(xv t) — x
5 = 5. TG - R@t), (5

where R(z,t) is the recombination rate. The current den-
sities j,(z,t) and jp(x,t) are the sum of the respective
drift and diffusion currents:

Jn(z,t) = epn(z,t)N(z,t)E(z,t) + eDnB__N(%,_t_)_ , (6)
Jp(x,t) = epp(x,t)P(x,t)E(z,t) — er?—I—%(;iQ , (7

where E(z,t) is the electric field. For crystalline semi-
conductors N (z,t) and P(z,t) are the respective free
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carrier densities. In noncrystalline semiconductors, the
class of materials used for the measurements here, any
photogenerated carrier might in general experience mul-
tiple trapping before its recombination. Thus, N(z,t)
and P(z,t) include free and trapped photocarriers in the
case of noncrystalline semiconductors which have a high
density of localized states extending from the band edges
into the gap. Moreover, the mobilities y,, and p,, are not
the free carrier mobilities, but rather average quantities
taking into account the multiple trapping process. In
such instances, the mobilities might depend on the car-
rier densities which is the reason for their space and time
dependence in Eqgs. (6) and (7). Under these conditions
the small signal mobilities y;, and y,, differ from the drift

mobilities according to!”1°
dptn du
ﬂ;=”n+NW, H;;zl—‘p+Pd_;' (8)

The effective diffusion constants D, and D, are related

via Einstein’s equation to the small signal mobilities u!,

and y! rather than to u, and p,:1"2°
/‘p ,u' P

kT kT
D, =y, "=, D, =u,~B%. (9)
e e
Combining Egs. (4)—(9) we obtain
ON(z,t) ON(z,t) OE(x,t)
o~ HnB@ ) Nz )50
kpT 8?N(z,t
+M;%$ + G(z,t) — R(z,1) ,
(10)
oP(z,t) 0P(z,t) OE(x, 1)
o - BT m Pl )
kT 82P(z,t
+u;,_i——-—8i—2—) + G(z,t) — R(z,t). (11)

For simplicity we set pun, = u;, and p, = p,, in the fol-
lowing as was done in papers dealing with SSPG%817
on amorphous semiconductors. This approximation is
equivalent to the assumption that the mobilities do not
depend on the generation rate [see Eq. (8)]. For crys-
talline semiconductors pn,p = p, , is usually fulfilled.

Reformulating Egs. (10) and (11) for the variations of
the relevant physical quantities from their homogeneous
values (AN = N — Ny, AP = P — Py, AR = R — Ry,
and AG = G — Gy), we get

OAN O0AN OF kT O°AN
ot pnko oz + 'um]\ig.vr,T + Hn Ox2
+AG - AR, (12)
OAP OAP OF kT 82AP
ot —Hb or "”PE + b e Ox?
+AG — AR. (13)

Here, we used Ry = Go and Ny = P, (global charge
neutrality), which is true if the dark carrier densities
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are small compared to the photocarrier densities, i.e., if
Odark < Oph. AR can be approximated by!”

AR = -2—1;(AN +AP). (14)

Note that for noncrystalline semiconductors 7 is the total
photocarrier recombination lifetime, not the free carrier
lifetime. Since electrons recombine with holes, by defini-
tion the recombination lifetime of electrons equals that of
holes. This also implies No = Py = Go7 (see above). The
electric field is the sum of the constant, externally applied
field Ey plus the space charge field (E = Eo + E.). It is
related to the carrier densities via Poisson’s equation:

OF _ 9B
dz =~ Oz

= é(AP — AN). (15)

The coupled differential equations (12), (13), and (15) are
difficult to solve, but for weak modulation it is expected
that the relevant physical parameters vary sinusoidally as
does G(z,t). In general, however, they will have variable
phase shifts with respect to the phase of the moving gen-
eration rate. This is taken into account by introducing
complex amplitudes, denoted here by lower case letters
(n, p, and ey):

AN (z,t) = 3{n(k,vg) exp [—ik(z — vgit)] + c.c.} , (16)

AP(xz,t) = 3{p(k,vg) exp [—ik(z — vgt)] + c.c.}, (17)

Eso(z,t) = 3{esc(k,vg:) exp [—ik(z — vget)] + c.c.}, (18)

where c.c. is the complex conjugate of the respective pre-
ceding term. The complex amplitudes n(k, vg:), p(k, vg:),
and e (k,vg:) can also be written in terms of their am-
plitudes and phases according to n(k, vg:) = |n|exp(ien),
p(k,vgr) = |plexp(ipy), and esc(k,vgr) = |esc| exp(ipe).
The differential equations reduce to a set of coupled linear
equations for the complex amplitudes where any prod-
uct between two complex amplitudes is neglected for the
weak modulation used here:

kT
n

ikvgen = —ikin Eon + pin No——(p — n) — pnk? ~2—
€€Q

+g—5-(n+9), (19)

. . e k T
thvgp = +ikpp,Eop — upPoa(p —n)— :U'pk2 £

+g - 5-(n+ D). (20)

In the following we discuss the case of zero applied ex-
ternal field (Eo = 0). The solutions of Egs. (19) and (20)
are given by (note that Ny = Py is used)

as + tag as + tag

where
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eN
anp =g (ksz + '6*60’0‘(/1/11 + I/'p)) )

eN(
ap =g (kan + ;;9(/1% ‘f—l.tp)) y

a; = gkvgr y
1 CN() k2
= ——(fn —(D, + D.
az = T eco (Bn + pp) + 27_( + D)
2€N0 2,2
+k (Dppn+Dnup)+kD D, — k*v, ,

a3 = ke (KD Dp) + S0t ) 47 ) - (22)

In order to obtain the short circuit current js. the drift
currents of the modulated carrier densities have to be
averaged over one spatial period A:

1 A
jsc = X A [eNnN(-'L', t) + e/.tpP(:l?, t)]E(.’I?, t)d(l? (23)

Note, that the diffusion currents do not contribute to
Jsc because they vanish when averaged over one period.
Inserting Egs. (16)—(18) into Eq. (15) we obtain e, as
the solution of Poisson’s equation written in its complex
form:
i e
sce = ——(p—n). 24
€sc k €€o (p ) ( )
The integration of js. performed with the complex am-
plitudes gives

e?(pn + /J'p)(

jsc(kv vgr) =1 4k660 ’I’L*p - ’I‘Lp*)
e2(pn + tp) .
= —*me()%pmﬂﬂ sin(pn — @p) » (25)

where * denotes the complex conjugate. The result for

Jsc finally is

C1Vgr

-SC k T = 9 26
by vee) = (26)
where the constants ¢;—c4 are given by
e’ 2,2
1= 5 —(pn + 1p)(97)°k*(Dn — Dp) ,
€€g
1 (b+1)? ’
— 2 2
b+1)° +2a(b%+1
c3=k2(1+a2+(+)+a( +)l2
2b
L e 1)% (b + 1)14
4b? ’
Cq4 = k47_2 ) (27)

with the following short-hand notations:
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T _ Noe(pn + )T _ Hn
Tdiel €€ ’ Hp

2D, D,
= =Zn7P | =+/TDk. 28
D, + D,’ T (28)

a = 5

IV. ANALYSIS
A. Modulated carrier densities

Before we analyze the result of Eq. (21), we emphasize
that for the MPG the amplitudes of the modulated elec-
tron and hole densities |n| and |p| differ in general, as do
their phases ¢, and ¢, relative to that of the intensity
grating. Let us first consider two ideal cases which are
generally not realized; in case A we assume ¢,=¢, but
|n] # |pl|, i.e., electron and hole densities are in phase
having different amplitudes. For case B the amplitudes
are assumed to be equal (|n|=|p|) but the electron den-
sity is phase shifted by a small amount with respect to
the hole density (¢, # ¢p). These two cases are sketched
in Fig. 2, where the carrier densities N and P, the space
charge density p, the electric field Fg., and the drift cur-
rent density jq. are plotted as a function of the spatial
coordinate z. Let us first discuss case A. If electron and
hole densities are in phase [see Fig. 2(a)] the resulting
space charge density (b) is also in phase with the carrier
densities. The electric field that relates to p via Poisson’s

CASE A CASE B

¥n # p, In|=pl

¥n = @p, Inl# 1Pl

N, P Apnp

- electron and hole ./
densities N7

P 90°
R 4
E ‘.

space charge

sc

NN

electric field

J i

electron + hole Jé [ -\ A A _ L

drift current :

X X

FIG. 2. Sketches of the spatially modulated densities of
photogenerated electrons and holes (a), the space charge den-
sity p = e(P — N) (b), the electric field resulting from the
space charge (c), and the sum of the electron plus hole drift
current density (d) as a function of the spatial coordinate z
along the grating. Two situations are depicted: case A corre-
sponds to different amplitudes of electron and hole densities
and equal phases, whereas case B is the situation when the
phases are different but the amplitudes are equal. Note that
the dc current density is zero for case A and nonzero for case

B.
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equation (c), however, is out of phase by 90°. The spa-
tially resolved drift current (jar = Jjdr,n + Jdr,p) Obtained
by multiplying Es. with the respective carrier densities
and their mobilities is plotted in Fig. 2(d). For case A,
Jar varies symmetrically around zero, i.e., its dc compo-
nent vanishes. This is due to the 90° phase shift between
E,. and the carrier densities.

The situation is different when a phase shift between
electron and hole densities exists (case B). In this case
the space charge density is shifted by —90° with respect
to the average of electron and hole distributions. As a
result, F,; turns out to be in phase with N(z,t) and
P(z,t) (note that Ap,p, = @, — @, is assumed to be
small). Hence, the drift current density (d) is no longer
modulated around zero but contains a finite dc compo-
nent jq. which can be measured as a short circuit current
in an external circuit.

In conclusion, differences in the amplitudes |n| and |p|
as well as differences in the phases ¢, and ¢, give rise to
internal electric fields; but only the latter give rise to a
short circuit current. Therefore we are going to analyze
the modulated carrier densities that build up due to the
moving intensity grating by discussing |n| and |p| as well
as ¢, and ¢,. We will do this separately for the lifetime
regime and for the relaxationtime regime in the following
subsections.

1. Lifetime regime

The undoped sample used for our measurements had
mobilities p,, = 0.077 cm2?/V's and p, = 0.005 cm?/V's
and the recombination lifetime was 7=2.1x107¢ s. These
parameters were obtained from fitting short circuit cur-
rents to the theoretical expression derived in Sec. III
(see Sec. V below). We use these values and A=3 pm,
Go=1.8x10%° cm™2 s71, and g/Go=0.5 to calculate |n|,
|pl; ¥n, and @p. The ratio of lifetime and relaxation time
a = T [Taie1 €quals 10 so that the condition for the lifetime
regime is fulfilled.

The amplitudes |n| and |p| are plotted in Fig. 3. Both

T T T T T

i, ipl (10 % cm™3)

1 1 1 1

0 1 2 3
Vgr (m/s)

FIG. 3. Amplitudes of the electron and hole densities |n|
and |p| as derived from Eq. (21) as a function of vg, for the life-
time regime. The material parameters of the undoped sample
of a-Si:H were used.
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This is un-
derstood by considering the blurring of the photocarrier
grating if the intensity grating changes over times short
compared with 7. The criterion for a significant blurring
is that the amount by which the grating moves during the

|n| and |p| decrease with increasing vg;.

time 7 is of the order of the grating period (vg,T = A).
The point where vy, = (7k)™! is marked with an arrow
in Fig. 3.

The phases of the electron and hole distributions rel-
ative to the phase of the generation rate are plotted in
Fig. 4. For a standing grating (vg,=0) electrons and holes
are in phase with the generation rate, whereas both dis-
tributions start to lack behind the generation rate with
increasing vg,. Eventually, for increasing vy, a phase shift
of —m/2 is approached.

From Figs. 3 and 4 it can be seen that both ampli-
tudes and phases differ for electrons and holes. Due
to the smaller hole diffusion constant the amplitude of
the hole distribution is larger than that for the electrons
and deviates by the largest amount for small values of
vgr- The phase difference Ap,, = ¢, — ¢,, however,
increases over the range of the velocities shown and the
electron distribution appears to be closer to the gener-
ation rate. In Fig. 5 these differences are plotted vs
vgr- The quantity .1 = 2(|p| — |n|)/(|p| + |n|), which
is the difference of |p| and |n|, normalized to their aver-
age, decreases with increasing vg;. Agn,, however, in-
creases from zero to a broad maximum around Vgr=2.4
m/s. This velocity coincides roughly with the velocity
defined by vg, = (Tgietk) ™!, a fact that will be discussed
below.

According to the discussion of Fig. 2 both quantities
(Vre1 and Ag,,;,) plotted in Fig. 5 give rise to a space
charge field: if Ayp,, were zero, the electric field would
be shifted by 7/2 with respect to n or p as is obvious
from the imaginary constant on the right hand side of
Eq. (24). The amplitude of the field |es.| is in this case

T T T T T

or l(kf)—l .

—7/4

©n, pp (rad)

—7/2
0 1 2 3

Vgr (M/s)

FIG. 4. Phases of the electron and hole distributions ¢,
and ¢, as derived from Eq. (21) as a function of v, for the
lifetime regime.
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FIG. 5. Normalized difference between absolute electron
and hole amplitudes [yt = 2(|p| — [n])/(Ip| + In])] (left
scale) and difference between electron and hole phases
(Apnp = @n — pp) (right scale) as a function of v, calcu-
lated from the data shown in Figs. 3 and 4.

proportional to Yiei(|n| + |p|) [see Eq. (24)]. If, on the
other hand, |n| and |p| are equal, the electric field is in
phase with the average of the electron and hole densities,
i.e., P = Bnp = (Pn + @p)/2. The amplitude |es| in this
case is proportional to Ag,,(|n| + |p]).

The amplitude |es.| and the phase of the space charge
field with respect to the average electron and hole phase
e — Py, Was calculated from the modulated carrier den-
sities. These quantities are plotted in Figs. 6(a) and
6(b), respectively. The electric field amplitude is largest
(= 170 V/cm) for vg, = 0 and decreases approximately
as |n| and |p|. From Fig. 6(Db) it is clear that a transition

a) o2 b)
E N

150 § mat
A s,
5 0
> 100 L
N’
2
S

50 |-

O 1 | 1 1 i -
0 1 2 3

Vgr (m/s)

FIG. 6. (a) Amplitude of the electric field as a function of
vgr. (b) Difference between the phase of the electric field e
and the average phase $,, of modulated electron and hole
densities in the lifetime regime.
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between a situation where the electric field is shifted by
/2 for vg; = 0 to a situation where the electric field is
in phase with the carrier densities occurs. According to
the discussion of Fig. 2 this corresponds to the transition
from case A (|n| # |p|) to case B (¢, # ¢p).

2. Relazation-time regime

In this section we are going to discuss the case of
the n-doped sample that was measured at 120 K. The
basis of the following discussion are the parameters
Un = 2.6 X 107¢ cm?/V's, p,/pp,=100, and 7=5x10"%s.
These parameters are again those obtained in Sec. V.
At a light intensity of 80 mW/cm? (corresponding to
Go=2x10%1 cm~3s71), the ratio of lifetime and dielec-
tric relaxation time is a=0.025 in this case, so that the
relaxation-time regime is realized. Moreover, the exper-
imental parameters A=0.4 pm and g/Go = 0.57 were
used. The amplitudes |n| and |p| are shown in Fig. 7
as a function of vg,. For the following discussion we di-
vide the velocity range into three regimes: In regime I
the intensity grating changes on a time scale long com-
pared to Tgjel, i.e., Vg < (kTaie1) "t, whereas in regime II
it changes on a time scale shorter than 74;¢) but still long
compared to the lifetime 7 [(k7qie1) ™! < vgr < (k7)71]. In
regime III we have vg, > (k7)™ . The inset of Fig. 7 de-
picts regime I and its transition to II on expanded scale.
Except for the different scale used for the velocity axis,
the overall dependence of the amplitudes shown in Fig.
7 is similar to the case of the lifetime regime (see Fig.
3). That is, |n| and |p| decrease with increasing veloc-
ity due to the blurring effect when the intensity grating
moves. The relevant scale on which this happens is again
defined by vg,=(k7)~! (see the arrow). However, in con-

il ipl (10° cm™3)

(@) @

1 1
0 25 50 75 100
Vgr (mm/s)

0

FIG. 7. Amplitude of the electron and hole densities |n|
and |p| as derived from Eq. (21) as a function of vg for
the relaxation-time regime. The material parameters of the
n-doped sample of a-Si:H at 120 K were used. The inset
gives an expanded plot for small velocities. Note the different
regimes I-III. For details see text.
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trast to the lifetime regime (Fig. 3) |n| and |p| are equal
for sufficiently high velocities (regimes II and III). This
is no longer the case for small velocities, as shown in the
inset of Fig. 7. The amplitudes deviate in opposite di-
rections from a curve that was extrapolated from higher
vgr (dashed line in Fig. 7). For vg = 0 the extrapolation
equals g7, i.e., the modulation amplitude of the genera-
tion rate multiplied with the lifetime. For a nonmoving
grating the average density [(|n]|+|p|)/2] is determined by
the equilibrium between generation and recombination
rates. This is so because in the relaxation-time regime
the drift and diffusion rates of Eqgs. (4) and (5) are small
compared to R and G. Due to the faster diffusion of the
electrons compared to the holes, |n| is reduced from g7
while |p| increases by as much to keep the recombination
rate unchanged [note that AR = (AN + AP)/27 from
Eq. (14)]. The difference between |n| and |p| is largest
for a nonmoving intensity grating (vg; = 0), as is the
space charge. If, however, the intensity grating moves
on a time scale of the order of the dielectric relaxation
time the diffusion-drift equilibrium can no longer be fully
established. As a consequence, the difference between
|n| and |p| is reduced with increasing velocity, i.e., when
regime II is reached, as can be seen in the inset of Fig. 7.

It is instructive to compare the velocity dependence
of the photocarrier amplitudes with their time depen-
dence after a modulated part of the the generation rate
is switched on at a certain time. We have analytically
solved the corresponding rate equations in order to obtain
|n| and |p| as a function of time. For the same parame-
ters as those used in Fig. 7, in particular 7/74;e1=C0.025,
the result is shown in Fig. 8. Initially, the buildup of the
photocarrier amplitudes occurs exponentially towards a
saturation value of g7 with a time constant close to 7.
This is due to the generation and recombination terms
in the rate equations. As long as the time is short com-
pared to Tqiel, || and |p| differ little. For increasing time,
however, electron and hole amplitudes depart from g7 in
opposite directions, due to their different diffusion con-
stants. The time scale on which this happens is defined
by T4iel, because the evolution of space charges occurs on

T T T
T ipl
R R e —=—==—=—==
< Inl T
g | g
3 0.5 | 4
go.
=
—_ 0 T .
£ | . .

0 Tdiel 2 Tdiel

time

FIG. 8. Buildup of photocarrier grating amplitudes |n| and
|p| in the relaxation-time regime after a modulated component
of the generation rate has been switched on at t=0. |n| and
|p| approach g7 exponentially with a time constant equal to
the recombination lifetime. Due to diffusion |n| and |p| start
to deviate from each other with a time constant equal to 7Tajel-
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this time scale. Note the complementary roles of grating
velocity in Fig. 7 and time in Fig. 8. Immediately after
the grating is switched on |n| and |p| are small, a situa-
tion that corresponds to the blurring of the photocarrier
grating when vg, > (k7)~! (regime III in Fig. 7). On the
other hand, the buildup of space charges that goes along
with |n|#|p| requires long times (Fig. 8) or small grating
velocities vgr < (kTgie1) ™! (regime I in Fig. 7).

The phases of the electron and hole distributions with
respect to the intensity grating, ¢, and ¢,, are plotted in
Fig. 9 as a function of vg;. Again, as for the amplitudes,
the overall behavior is similar to the lifetime regime, i.e.,
for v, = 0, ¢, and ¢, are zero and approach —m/2 for
large velocities on a scale determined by (k7). In con-
trast to the case of the lifetime regime the phase differ-
ence Ay, is negligibly small for vg, > (k7)™ (compare
Fig. 7). For small velocities (see the inset of Fig. 9) ¢,
and ¢, differ significantly. Although the general trend
is that both electron and hole distributions lack behind
the intensity grating, this is not true for the electrons for
small velocities vy, < (kTaie1)™!; in this range ¢, > 0,
i.e., the electrons move ahead of the intensity grating.

In order to explain this fact, let us consider what hap-
pens if the intensity is grating is not moving continuously
but if its phase is changed from zero to a small finite value
at t=0, i.e., if the grating is displaced by a small positive
distance Az<A. It is obvious that the corresponding
photocarrier distributions are in phase with the intensity
grating for ¢ < 0 and for ¢ - oo and we consider the
dependence of the phases ¢, and ¢, for an intermediate
time.

The phase shifted generation rate (for ¢ > 0) can be
decomposed into cos and sin components:

gcos(kz + kAx) ~ gcos(kz) + gkAzsin(kz).  (29)
This approximation is valid for Az < A. The discontin-

!

(k Taie) ™!

—7/4

¢n, ep (rad)

—7/2 ! L L
0 25 50 75 100

Vgr (mm/s)

FIG. 9. Phases of the electron and hole distributions ¢,
and ¢, as derived from Eq. (21) as a function of vy in the
relaxation-time regime. The inset shows the same expanded
velocity range as that of Fig. 7.
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uous phase shift can thus be understood as an additional
weak phase shifted generation rate switched on at time
t = 0. The corresponding sin component of the photo-
carrier distribution consequently builds up as shown in
Fig. 8, where the ordinate value g7 has to be replaced
by gTkAx. As seen in this figure, the sin components of
electron and hole distributions are close to grkAx for a
time well above 7 but still below 7451 and we calculate
the respective phases for this time. For the cos compo-
nent, which is the steady-state value of the amplitudes
(|7l (wge=0), and |p|(v,,—0)) we know from Fig. 7 that the
following relation holds:

|n|(vgr=0) <gr < lpl(vg,.—.o)- (30)

For the electron and hole phases which are to first order
the ratios of the respective sin to cos components we get

kA kA
grkAz grkdz

-
'”'(vgrzﬂ) g7

gTkAz
X P, 31
Ipl (UngO) 901’ ( )

®

Because the term in the center of this inequality (kAz) is
the phase shift of the intensity grating it is clear that the
electron distribution is ahead of the new intensity grating
for 7 < t < Tgjer- This is just the behavior found in Fig.
9 for Vgr R (k’Tdiel)_l.

From the electron and hole amplitudes and their phases
given in Figs. 7 and 9 we have again calculated the dif-
ferences yre1 = 2(|p| — |n|)/(|p| + |n|) and Apn,p. These
quantities are plotted in Fig. 10. As expected from the
discussion above, e has its maximum for vg, = 0 and
decreases with v, on a scale defined by (k'rdiel)_l. The
phase difference Ay,, on the other hand is zero for
vgr = 0 and has a maximum at around (kTg;e1)™!. The
fact that the maximum Ag,, is at a velocity defined by
(kTdie1) ! is not restricted to the relaxation-time regime
but was also observed in the lifetime regime (see Fig. 5).
This can be verified by the analytical derivation of the
velocity where A¢,, has its maximum using Eq. (21).

0.15 4

0.10 |-

Apnp (rad)

0.05

Yrel = 2(Inl- 1pl)/ (ni+ipl)

Vgr (mm/s)

FIG. 10. Differences ~y:e1 (left scale) and Apn, (right scale)
as a function of vg, in the relaxation-time regime.
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FIG. 11. Amplitude of the electric field as a function of vg,
in the relaxation-time regime.

We obtain
1 b+ 122 (bt 122
- = 1 = M
’U(A<Pnp‘max) deiel \/ + 2b a + 4b a?
(32)

If the grating period A is chosen large enough, ! be-
comes so small that the square root in Eq. (32) can be
approximated by 1. Under this condition Ayp,, peaks
at (kTgiel) "!. By inserting the parameters used for the
analysis here into Eq. (32), we find that the corrections
to (kTgie1) ~! are &~ 10% for the undoped sample (lifetime
regime) and = 1% for the doped sample (relaxation-time
regime) [see also the arrows at (k7gie1) ™' in Figs. 5 and
10]. Finally, we show in Fig. 11 the amplitude of the
electric space charge field |esc| as a function of v, for the
doped sample. It amounts to 800 V/cm for the nonmov-
ing grating, i.e., |es| is five times higher than in the case
of the undoped sample (compare Fig. 6), partly due to
the higher generation rate.

B. Short circuit current

The densities of photogenerated electrons and holes
that exist due to the illumination by the moving intensity
grating which were discussed in the preceding section are
not directly accessible in our experiment. As mentioned
in Sec. IV A, due to the phase shift between electron and
hole densities a short circuit current results which is the
quantity that we measure. The short circuit current den-
sity, as described by Eq. (26), is the ratio between one
term that is proportional to vg and another term that
is a sum of a constant plus a term proportional to vgr
plus a term proportional to vi. The function therefore
increases linearly with vy, for small values of vy, and de-
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creases proportional to v, 3 for sufficiently large veloci-
ties. Thus, a maximum 1n Jsc is implied at a finite vy ay
that depends on the constants ¢z, c3, and c4. Setting the
derivative of jsc(vg:) equal to zero we obtain for vipax:

o = \/—63+03\/1+120462/C§‘ (33)

664

Expanding the term /1 + 12c4c3/c2 into a power series
we obtain for 12¢4c/c2 K 1

Cz -2

c3 k2 1+ a2) (34)

vmax ~

According to Eq. (27) these approximations are valid if
l € 1, i.e., if A is chosen sufficiently large compared to
the ambipolar diffusion length +/Dr.

1. Lifetime regime

In the lifetime regime (a > 1) we can further approx-
imate Eq. (34) and obtain

Vmax = (k7)1 (35)

Under conditions where these approximations are valid
the carrier recombination lifetime can be determined di-
rectly from the velocity corresponding to the maximum
in the short circuit current. We have used this fact in or-
der to measure the lifetime as a function of light intensity
for a-Si:H (Ref. 15) in good agreement with conventional
measurements of 7 by time resolved decay measurements
of the photoconductity.?!

2. Relazxation-time regime

If the dielectric relaxation time is large compared to 7
(a € 1), Eq. (34) becomes

VUmax ~ (deiel)_l (36)

and, thus, vpnax is determined merely by 7giel, i-e., by
the photoconductivity of the sample. This was already
clear from Eq. (32) because the peak in Agp,, implies a
peak in js. according to Eq. (25). Note that the velocity
dependence of the product |n||p| that enters into Eq. (25)
gives only minor corrections to the peak position in the
relaxation-time regime for vg, & (k74ie1) ! (see Fig. 7).

3. Dependence of UVmax 0N T/Tajel

In order to check the validity of the approximations
made for vmax in the two regimes, we display (Vmaxk) ™!
as a function of 74ie1/7 = @™ ! in a log-log plot for a set
of values of [ in Fig. 12. In the lifetime regime (left-hand
side of the figure) (vmaxk) ! approaches 7, if I < 0.1, i.e.,
Eq. (35) is valid.
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FIG. 12. Log-log plot of (vmaxk)™! Vs Taie1/T according to
Eq. (33). Different curves correspond to different values of
1. The ratio of electron to hole drift mobility b was chosen
to be 15. The dashed line corresponds to the relationship
('Uma,xk)_1 == Tdiel-

In the relaxation-time regime (right-hand side of the
figure) the curves approach the relationship (vmaxk) ™! =
Taiel (dashed line), if [ is sufficiently small (! = 0.01 for
the range shown). This behavior is expressed in Eq. (36).

V. EVALUATION OF EXPERIMENTAL DATA

In this section we show how the material parameters
in, Up, and T are obtained by fitting the measured short
circuit current to the theoretical expression given by Eq.
(26). We do this in the next two sections for two samples
for which the conditions of the lifetime regime and the
relaxation-time regime are fulfilled, respectively.

A. Lifetime regime: undoped a-Si:H measured
at room temperature

For the undoped sample the photoconductivity when
plotted versus light intensity follows a power law with
exponent 0.78. This implies that the majority mobility
lifetime product p,7 depends on the light intensity (i.e.,
wnT o< Iy 0'22). Hence, we performed all measurements
discussed here at a fixed intensity Iy = 10 mW/cm?
by changing the grating period A only. The short cir-
cuit currents measured for A = 3 pm as a function of
vgr are plotted in Fig. 13 as circles. The short circuit
current is zero for vy, = 0 and increases linearly for
small values of vg,. After reaching a maximum for vg,
around 0.25 m/s, js. decreases steadily up to vy = 3
m/s, the highest velocity used, in agreement with the
discussion of Eq. (26) given above. Also shown in the
figure is the best theoretical approximation to the mea-
surements via Eq. (26) that was obtained by varying p,,
tp, and 7 and using the experimentally determined gen-
eration rate Go=1.8%x10%° cm~3s~! and a modulation
ratio of g/Go = 0.5. For better comparison of the exper-
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10 T T T T T
a-Si:H (undoped)
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FIG. 13. Undoped a-Si:H: Short circuit current density
measured with the setup of Fig. 1 as a function of vg. The
measured data are shown as circles. The upper solid curve is
the best fit using the analytical expression derived in Sec. III
[Eq. (26)], corresponding to the material parameters given in
the figure. Experimental data were normalized to the maxi-
mum by multiplication by 1.24. Also shown is the theoretical
curve of the second order contributions jsc,2 [Eq. (Al)] as
calculated in the Appendix. Note the different scaling.

imental and theoretical curve shapes we have normalized
both curves to the same maximum. For that purpose
the experimental values were multiplied with 1.24. The
values for p,, pp, and 7 given in Fig. 13 fit not only
the data for A = 3 um best but also a complete set
of measurements with different grating periods between
0.4 pym < A <9 pm.

The maximum short circuit current jsc max measured
for each grating period is compared in Fig. 14 with the

T T T T

a-Si:H (undoped)

—_
[==]
T

o
o0
T

jsc,max (normalized)
o o
» o
T T

0 1 1 1
0 2 4 6 8 10

A (pm)

FIG. 14. Undoped a-Si:H: Maximum short circuit current
as a function of grating period A. Dots are measured data
and the solid curve is the theoretical expression obtained by
using the material parameters of Fig. 13.
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theoretical current densities that are obtained by insert-
ing Umax [Eq. (33)] into the formula for js.. The two sets
of data have again been normalized by using the same
normalization factor of 1.24 that was used for Fig. 13.
The theoretical function reproduces the measured values
of jsc,max reasonably well; note that the curve was cal-
culated by inserting the material parameters that were
obtained by fitting the curve shapes jsc(vg) for all val-
ues of A, only; i.e., n, pp, and 7 have not been further
adjusted to get the agreement shown in Fig. 14.

We estimate the accuracy of the fitting parameters to
be 10% for 7, 30% for pn, and b = pun,/p, to lie between
10 and 25. If parameters outside the range given above
are chosen, the measured data are no longer reproduced.
The material parameters obtained for I, = 10 rnW/cm2
are summarized here for undoped a-Si:H

T=21x10"%s
Un = 0.077 cm?/V's

(£0.2 x 107%5) ,
(£0.02 cm?/Vs) ,

pp = 0.005 cm?/V's
(0.002 cm?/V's < p,, < 0.01 cm?/Vs).

For an independent check we calculate the photoconduc-
tivity by inserting the material parameters obtained by
the moving-photocarrier-grating experiment into

Oph = GoTte (l‘n + .u'p)

and obtain 0pp=4.9%10"% Q" ! cm™!. The photoconduc-
tivity that we measure for an externally applied voltage of
1Vis 2.4x107% Q1 cm™! which is in reasonable agree-
ment.

B. Relaxation-time regime: n-type doped a-Si:H
measured at 120 K

For the theory described in Sec. III to hold, Ny = Py
was assumed, which requires that the density of ther-
mally excited electrons and holes has to be well be-
low that of photogenerated electrons and holes, respec-
tively. This criterion was not met for the n-type doped
sample where the photoconductivity at room tempera-
ture was no longer large compared to the dark conduc-
tivity. However, at 120 K this criterion was fulfilled.
The photoconductivity for that sample at 120 K using
Iy = 80 mW /cm? was op, = 4.4 x 107° Q7 cm™!. This
is around 500 times smaller than op, for the undoped
sample at room temperature, implying that 74;e1 in turn
is 500 times larger (7gje1=2.4%x107% s). If the lifetime
does not differ significantly for the two samples we are
dealing with the relaxation-time regime in this case, an
expectation that is borne out by the analysis below.

We observed a linear relationship between the photo-
conductivity and the light intensity, i.e., the majority
carrier mobility lifetime product p,7 is constant. We
measured the short circuit current as a function of grat-
ing velocity for a grating period A = 0.4 ym and for two
light intensities (Ip = 80 mW /cm? and 240 mW /cm?, re-
spectively). The data are shown in Fig. 15 together with
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FIG. 15. Doped a-Si:H at 120 K: Experimental and theo-
retical short circuit current densities as a function of vg, for
two light intensities (lower curve: I, = 80 mW /cm?; upper
curve: Iy = 240 mW/cm?). For better comparison of the
curve shape, experimental data were normalized to the the-
oretical curve at its maximum by multiplication by 1.05 and
1.15 for 80 and 240 mW /cm?, respectively.

the respective theoretical curves calculated using Eq.
(26). Both sets of experimental data are fitted using the
same set of material parameters p,=2.6x10"% cm?/V's,
Up = pn/100, and T7=5x10"% s with the different gener-
ation rates inserted into Eq. (26). Thus it appears that
not only the u7 product but also i and 7 separately are
independent of the light intensity for this sample.

The photoconductivity calculated from the material
parameters given above and from the generation rate for
Iy = 80 mW /cm? is 0, =4.2x107° @~ cm™!. This good
agreement with the measured photoconductivity given
above can be considered as a check of the correct evalua-
tion of the MPG technique in the relaxation-time regime.

VI. CONCLUSION

In this paper we have discussed physical mechanisms
that underlie the moving-photocarrier-grating technique
for the determination of the lifetime and the mobilities
of photogenerated electrons and holes in semiconductors.
The intensity pattern used for the generation of photo-
carriers is obtained by the superposition of two frequency
shifted laser beams yielding an intensity that depends si-
nusoidally on space and time. As a result of the different
diffusion coefficients for electrons and holes space charges
build up that result in a modulated internal electric field.
This field acts on the photocarriers resulting in a short
circuit current, the quantity that we measure in our ex-
periment as a function of grating velocity and period.
Fitting experimental data for amorphous hydrogenated
silicon by the analytical expression for the short circuit
current derived in this paper we determine p,,, p, and 7.
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The result is in good agreement with the u7 product de-
duced from the photoconductivity measured at the same
light intensity, a fact that gives us confidence in our eval-
uation of the MPG technique.

The advantage of the MPG method is that it does
not require complementary data as time or frequency re-
solved conductivity measurements in order to obtain a
complete set of material parameters. We want to empha-
size here that, although temporal information is obtained
from our experiment, the measured quantity is a dc quan-
tity simplifying the setup for the electronic measurement
considerably.
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APPENDIX A: HIGHER ORDER CORRECTIONS
TO THE SHORT CIRCUIT CURRENT

For the experiments a modulation ratio of the order of
g/Go=0.5 was used. Since this ratio is not small com-
pared with unity, the application of the small signal ap-
proximation might be questioned. In order to estimate
the corrections from the first order theory described in
Sec. III we include second harmonic terms, i.e., those
with spatial period A/2. The inclusion of these terms
into Egs. (12) and (13) and the calculation of the sec-
ond order correction to the short circuit current density
Jsc,2 along the line of calculations of Sec. III yields the

following expression:
/ 1",,3
Clvgl‘ + Clvgr

=17 2 /4 2 432
(CZ + CSUgr + C4’Ugr)(c2 + C3vgr + c4vgr

jsc,Z(k» Ugr)

the Deutsche Forschungsgemeinschaft under Project No. (A1)
LE634/4-1-126193. where
1
4,414.6
gretksr
s = =L (o + 1) (D = Dp)*{ 124ty D Dy(D = DI
2 (660)
eNo 2 2 1 4
+ p’nl"p[l‘l/"nDp + 4(ﬂnD'n, + leDp)] (Dn - Dp)‘e’e: + 2/1'nﬂp(Dn - DP)Z—’T k
e2N¢ 3eN e?NE
5t o (i (D, -D ] 3D, — udD 9| k2 "= " 3_— "0 2
+|: P ip (K + t1p) % ( p) (660)2 + (BnDp — 1y n)ZTGEo + (n — ttp) (Bn + pp) 27(ce0)? J (A2)
4,47.4.6
gie*k*r 1
f = ==———5 (kn + ptp)(Dn — Dp)z{ﬁunup(Dn — Dp)k* + —(u7, — #ﬁ)kz} ; (A3)
2 (e€o) 27

and where the constants ¢z, c3, and ¢4 are those defined in Eq. (27), whereas ch, c}, and ¢} are obtained by substituting
k by 2k and I by 2lin Eq. (27) for ¢z, c3, and cq4, respectively.

For the undoped sample we have inserted the material parameters as obtained in Sec. V into Eq. (A1) and obtained
the plot of jsc,2(vgr) shown in Fig. 13 as the lower curve. For clarity jsc,2 was multiplied by —10. It can be seen that
these corrections are negative and only in the percent range. For the doped sample higher order corrections are even

less important.
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