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Ab initio correlation calculations for different semiconductors performed with the local ansatz
are reported. The results include binding energies as well as equilibrium lattice distances and bulk
moduli. Furthermore, we investigate how the results are in6uenced by the use of pseudopotentials.
Prom the detailed correlation functions the strength of the effective local interactions within a bond-
orbital model are determined. These vary strongly for the different materials. Comparisons to other
correlation schemes are made, and shortcomings of some local-density-approximation results are
explained.

I. INTKGDUCTIGN II. THE CGMPUTATIGN SCHEME

While for many years the ab initio treatment of elec-
tronic correlations in solids seemed to be out of reach,
the progress in computer technology in the last decade
has made this task tractable, several methods hav-
ing been developed to this end. Starting from com-
putations for the homogeneous electron gas, Green's-
function Monte Carlo calculations were performed for
simple metals. ' Monte Carlo variational calculations
based on a Jastrow ansatz have been done for solids
like diamond or graphite. ' We have developed a lo-
cal ansatz (LA), which starts from a self-consistent-field
(SCF) calculation for the system under consideration and
subsequently takes correlations into account in a way
similar to quantum-chemistry methods. With this ap-
proach, we have investigated. molecules as well as three-
dimensional insulators and semiconductors, di8'erent
one-dimensional systems, ' and even metals.

Here, we shall report on a series of calculations for
diA'erent semiconductors based on the LA. This investi-
gation has become possible because, on the one hand,
the ab initio Hartree-Fock program CRYSTAL (Refs. 15
and 16) is now available, which allows us to do SCF cal-
culations with a much higher precision than available so
far and, on the other hand, the programs for the LA
have been improved substantially.

The paper is organized as follows. First, a short de-
scription of the method used is given. The third section
contains results for the ground state and. binding ener-
gies, the fourth section, for equilibrium lattice distances
and bulk moduli. In the fifth section, details of the corre-
lation functions are given and model atomic interactions
are derived &om them. Finally, a comparison with other
ab initio results is made. Some deficits of methods start-
ing Rom the homogeneous electron gas can be explained.

TABLE I. Outer exponents of the basis sets used.

Outer s exponent
Outer p exponent
d exponent

0.233
0.233
0.590

Si

0.120
0.120
0.350

0.105
0.105
0.320

Sn

0.109
0.074
0.200

For the SCF calculations the program CRYSTAL92

(Ref. 16) was used. All-electron calculations were per-
formed for diamond and silicon, while pseudopotential
calculations were made for the latter system as well as
for germanium and tin. In all cases, the basis sets were of
double ( plus polarization function quality. For the all-
electron case, these basis sets were taken from Ref. 18,
while the pseudopotentials and the basis sets for the pseu-
dopotential calculations were taken from Ref. 19. In ev-
ery case, the outer exponents of these basis sets needed to
be increased in order to contract the spatial extent of the
basis set and to decrease the variance in the eigenvalues
of the overlap matrix. This modification was necessary
due to the particular way in which the exchange potential
is computed in cRYSTAL92. For more details, we refer to
the discussion for the case of solid lithium. Table I dis-
plays the exponents of the two outermost basis orbitals
and the exponents of the polarization functions for the
different systems.

The correlations are accounted for by the LA. Within
this scheme, one makes the following variational ansatz
with the g's as parameters for the correlated ground
state:

0163-1829/95/51(16)/10556(12)/$06. 00 10 556 1995 The American Physical Society



AB INITIO GROUND-STATE CORRELATION CALCULATIONS. . . 10 557

I@--)=e 'l@s~p)

S=) q„o.,
(1)

(2)

g*(r) = ).~VA(r) (4)

where the f;(r) represent the basis orbitals. The opera-
tors have an obvious meaning. The first operator nitni~,
for example, when applied to l@scp), projects out all
configurations with two electrons in orbital g, (r). In con-
nection with the variational parameter rj, as in Eq. (1),
it partially suppresses those configurations. Similarly,
the operators nin~ describe density correlations between
electrons in local orbitals g;(r) and g~ (r). For the homo-
geneous electron gas, an ansatz with these two kinds of
operators leads to the Jastrow function. The operators
si s~ generate spin correlations.

Applying the operators to l@scp), one obtains a state
that contains, besides two-particle excitations, also the
original state and one-particle excitations. Since it is the
two-particle excitations that describe the correlations, we
want to keep only that part of the operators that gen-
erates them. This is achieved by forbidding contractions
within the operators when expectation values are com-
puted. The operators then reduce fluctuations in

l
ill scp).

The variational parameters g are chosen so that the
energy

(@corr lHl @corr)G-
(@corr l

@corr )

(@corr lHl @corr)c

is optimized. In the last equation, the subscript c in-
dicates that only connected diagram contributions are
summed up. This expression cannot be evaluated ex-
actly. The standard approximation is an expansion in
powers of g, up to second order, i.e. ,

(@corr lH l @corr )c

@SCF + Ecorr ) (7)

E,„—2) rl„(O„H)+ ) p„rI„(OHO„), . (8)
V &)P

Here, (A) means the expectation value of A within
lilrscp). This approximation works only if the correla-
tions are sufficiently weak. It is formally analogous to a
particular coupled electron pair approximation (CEPA-
0, Ref. 21) or linearized coupled cluster expansion, re-
stricted to doubly excited states (LCCD, Ref. 22) in
quantum chemistry but manages with relatively few op-
erators and is thus much less expensive.

What one has still to decide is how to choose the local
orbitals in Eq. (4) and how to combine them to correla-
tion operators. Here, knowledge on the physical nature of
the correlations can be used to a large extent. Generally,

nigni$)
O. = nn, ,

si sj.
Here ni and si are density and spin operators for an
electron in the local orbital,

we distinguish between three kinds of correlations, viz.
interatomic, intra-atomic, and polarization correlations.

By interatomic correlations, we mean those correla-
tions that arise due to bonding, i.e., due to the delocal-
ization of electrons. They are expressed by the above
operators when the local orbitals represent atomic or-
bitals. For the considered semiconductors, we have cho-
sen atomic hybrids, i.e. , an orthogonal hybridization of
the atomic valence s and p orbitals in bond directions.
The atomic orbitals were uniquely determined by the con-
dition that they are built from basis orbitals on the re-
spective atoms only and that they contain a maximal
part of the occupied space. These atomic hybrids were
then orthogonalized to each other.

Shorter range correlations are covered by so-called
intra-atomic operators. They are built from sets of lo-
calized subatomic states that are generated from basis
orbitals on a given atom only. Details for their construc-
tion can be found in Ref. 6. The possible choices of lo-
calized subatomic states depend on the available basis.
Within a basis of double ( plus polarization functions
quality, the maximal angular subdivision of the atomic
volume is a twelvefold nonorthogonal sp d hybridization
while the maximal radial subdivision is into three shells,
which we call inner, central, and outer. There are a few
open parameters connected with the formation of these
subatomic states. These were determined by maximizing
a partial correlation energy contribution. The operators
constructed by these orbitals are connected with individ-
ual atoms only.

There is also a set of medium range or polarization op-
erators that need to be added. When atoms come closer
to each other, they interact by an induced polarization.
Furthermore, when the electrons delocalize, then charge
fluctuations on individual atoms are screened by polar-
izations on the neighbors as well. Polarizations on indi-
vidual atoms are described by those local orbitals that
were constructed for the central shell in the intra-atomic
part. Induced polarizations are described by density op-
erators from pairs of polarization orbitals on two neigh-
bor atoms, while polarization screening of charge Buctu-
ations is described by operators formed from pairs con-
sisting of atomic orbitals (hybrids) on one atom and of
polarization orbitals on the second atom.

Even though the LA utilizes the local character of cor-
relations, it would be impossible to treat all relevant cor-
relations simultaneously. Therefore, the correlations are
taken into account in an incrementational scheme. The
correlation energy is expressed as an incremental sum
over contributions from diBerent sets of atom clusters,

N

&corr )
m=1

N N N

x~ ) ) . ) (z..„(~,-, ~,, ~, )),. ~

Jl 22 g 77K

with gi g gg g g g~, (9)

where the Az denote atoms, on and between which cor-
relatioii operators are formed and (the index, meaning
"increment" )
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(E, „(AiA2)), = E, „(AiA2)—E, „(Ai)—E, „(A2),
(»)

(E c„o(AiA2As)), . = Eco„(AiA2As) —(Eco„(AgA2)),.
—(E, „(AiAs)),—(E, „(A2As)),

Ecorr (Al) Ecorr (A2)

Ecorr (A3) &

inter intra polEcorr —Ecorr + Ecorr + corr (12)

Here, the second and third terms are defined as incre-
mental gains due to the newly added. operators, i.e. ,

etc. , are the energy increments, i.e. , the changes of the
correlation energy due to overlap efFects when correlating
all atoms in the cluster.

Translation invariance in a solid allows for further sim-
plifications. In Eq. (9), the sum (ji) can be replaced by
the number of atoms N. This handling has the addi-
tional advantage that local symmetry enters in the sim-
plest way. Let us take the case of diamond as an example.
In its structure, all atoms are equivalent, so only a single
cluster with one atom needs to be treated. Further, there
is only a single pair of neighbor atoms, a single pair of
next nearest neighbors (and a single three atom cluster
which contains the intermediate atom as well) and. only
one third neighbor pair (plus one three-atom cluster with
one intermediate atoms added and one four-atom cluster
with two oF them), which need to be included making use
of the crystal symmetry. Therefore, symmetry maximally
reduces the required. computations and. can be exploited
in a very simple way.

When a computation for a particular cluster is per-
formed. , then for all single-particle expectation values,
the exact expectation values in the solid are taken. How-
ever, for the coverage of the interaction part, in principle
summations over all interaction matrix elements between
the basis orbitals V~k~ in the full environment need to
be included. Here, the local nature of the correlation
operators allows a drastically simplifying approximation.
For the particular correlations on the set of atoms in the
cluster, the required matrix elements V,~A, ~ can, to a very
good approximation, be restricted to these atoms plus all
their nearest neighbors. Restricting the V~A, ~ in this way
makes all required computations easily feasible. Possible
corrections due to lacking V,~k~ are included in computa-
tions extending over larger clusters:

The correlation contributions are further separated
into difI'erent terms depending on which kind of opera-
tors is included on and between the difFerent atoms in
the cluster. Again, the notion of increments is used.
A erst separation is made with respect to interatomic,
intra-atomic and polarization correlations,

erators, which correlate electrons at difFerent distances,

E,'";; = E,'";;(on site) + ) E,'";;(neighbors).
neighbors

Again, these terms are understood in an incremental way,
the energy gained from certain neighbor correlations is
the gain obtained with all shorter range correlations in-
cluded. .

All these contributions are determined from a series
of cluster calculations. For on-site correlations, the
smallest cluster deals with correlations on the respec-
tive atom only, while for longer range correlations clus-
ters are needed. , which contain at least the two atoms
involved. For all semiconductors, it turned out to be suf-
ficient to constrict the interatomic operators between up
to next nearest neighbors. Longer range contributions
were partly computed. , partly estimated. Furthermore,
it was found to be suSRcient to restrict the set of clus-
ters to up to three-atom clusters, where two atoms are
the nearest neighbors to a third atom. Test calculations
were performed with a particular four-atom cluster.

By definition, intra-atomic correlations are represented
by operators defined for individual atoms only. The
dominant contribution therefore arises, when in addition
to the interatomic correlations on a single-atom intra-
atomic correlations are added. In a first approximation,
the total intra-atomic correlation energy is given as a
summation over those individual contributions. These
correlations on difFerent atoms are not fully separate from
each other, however, since the atomic charges show a size-
able overlap. Therefore, overlap corrections need. to be
determined from calculations where these intra-atomic
correlations are included on different atoms. It turned
out that overlap corrections between nearest neighbor
pairs are very small and that longer range overlap con-
tributions can be fully neglected. Therefore, the intra-
atomic correlation energy is given as

Eirrtra ) Eintra(A) ) Eo~ (A AI)
A. (x,w')

Here, each contribution contains by definition only the
incremental gains of the respective correlations. The sum
over pairs of atoms is restricted to nearest neighbor pairs.

The last correlation contributions are obtained from
polarization correlations. Here, operators between two
atoms are constructed from atomic orbitals or polariza-
tion hybrids on the difFerent atoms. These corrections
are small, and it is suKcient to cover them on the small-
est possible level, namely, as a sum over two-atom cluster
calculations. Then it holds that

Eintra Einter+intra Einter
corr corr corr

The individual contributions to the correlation energy
[Eq. (12)] difFer in their convergence behavior. The inter-
atomic correlations converge slowest. The corresponding
energy separates into contributions originating from op-

E::,', = ) E~:,', (A, A') .
A, A'

Here, the sum cannot be restricted to nearest neighbor
distances as was the case for the intra-atomic calculations
but usually up to third nearest neighbor contributions
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need to be added before convergence is reached. Again,
these polarization contributions are to be understood as
increments obtained due to the newly added operators.
It is important that the longer range interatomic cor-
relations between the respective two atoms are always
included. When making this separation, the treatment
of the polarization correlations can be restricted to the
handling of effective two-atom clusters, too.

In Fig. 1, the difFerent clusters treated are represented.
Dots indicate the atoms for which only interaction ma-
trix elements are included. Filled circles indicate atoms
where only atomic orbitals are generated for correlation
purposes and open circles indicate atoms where atomic
orbitals and intra-atomic orbitals are generated. As can
be seen, the required clusters are very small and pose no
problems for the standard quantum-chemistry programs,
which are used for the evaluation of the two-particle ma-
trix elements V,.~I,~.

III. CDB.RELATION AND BINDINC ENEKCIES

The individual contributions to the correlation energy
of the different systems are presented in Table II. They
are given in a.u. or Hartree per unit cell.

As can be seen, interatomic correlations contribute
25% to the correlation energy for diamond but contribute
less for the other compounds. Longer range correla-
tions converge quite rapidly. Contributions extending

FIG. 1. Schematic representation of the five difFerent clus-
ters for which interaction matrix elements for the basis or-
bitals V;~&& were generated. For atoms denoted by open cir-
cles, atomic and intra-atomic orbitals were constructed, and
for atoms denoted by 6lled circles only atomic orbitals were
generated. Dots indicate atoms who contributed only to the

beyond next nearest neighbor (NNN) correlations were
estimated.

Intra-atomic correlations contribute with roughly the
same amount to the correlation energy for the difFerent
solids. These contributions are almost perfectly additive,
i.e. , the overlap corrections are very small. Polarization
corrections come out smallest. 'While there is a sizeable
contribution stemming from nearest neighbors, the next
nearest neighbor terms add only 2—

3%%uo to the correlation
energy.

For two cases, viz. diamond and silicon, these en-
ergies can be compared with correlation energies from
cluster calculations with standard quantum-chemistry
programs. ' There, the correlation energy of the solid
was obtained from a series of C H or Si H clusters,
respectively. This was done in an incremental way, mak-
ing use of the representation of the occupied orbitals in
terms of bond orbitals for these systems. A first set of
calculations was performed with a basis set similar to the
one used here. The results are represented in Table II as
E, „(Sl).In the case of diamond, the result of the LA
is roughly 12% poorer. This is the same deficit as found
before for the case of C6o. This shortcoming of the LA
results from the strong reduction in correlation operator
space and in particular from the restriction to local or-
bitals constructed from basis functions on single atoms
only. For silicon, this deficit is larger. So far we do not
know whether this indicates an increased error of the LA
or whether possibly the result of the cluster calculation
is not yet fully converged. Therefore, we restrict to the
deficit of diamond. and C60, and assume for each system
a relative correction of 12%%up, which shall compensate the
shortcoming of the LA, AE, „(LA),and which leads to
the estimate of the exact result for the given finite basis,
E. „(fb).

From experience on calculations for small molecules,
we make an estimate of the finite basis size correction
AE, „(fb),leading to the final estimate of the valence
correlation energy in a complete basis set, E, „(cb).This
estimate is based. on a set of calculations of the correla-
tion energy for two electrons within an X —X bond. in
X2H6, with X =C, Si, Ge, Sn, with successively increas-
ing basis sets. The particular correlation energy obtained
within the basis used by us increases by 28%, 44%, 40%,
and 50%, respectively, when compared with the limit-
ing complete basis result. For more details, we refer to
Ref. 26. As can be seen, these finite basis size corrections
are significant; they result from the poorly converging
description of the very short range correlation cusp with
finite basis sets.

The above-mentioned cluster calculations for diamond
and silicon could be performed with an increased basis
set, namely, with two sets of d orbitals and one set of
f orbitals. ' As the results indicate [E, „(S2)in Ta-
ble II], with such a basis set, more than 90%%uo of the total
correlation energy can be obtained.

I et us turn next to the binding energies. They are
determined from the difI'erences of the total energies for
the solid and the individual atoms. The values are pre-
sented in Table III. The SCF binding energy E~(SCF)
is obtained by subtracting the atomic energies, obtained
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TABLE II. Contributions to the valence shell correlation energy of the 4th row elemental crys-

tals, (a.u. /u. c.), as obtained with the LA. A detailed description of the individual contributions is

found in the text. Results of other computations are given for comparison.

Interatomic correlations

E,'";";(on site)
Einter (NN)

AE,'"';;(longer range)
inter
corr

Intra-atomic correlations

@intracorr
Polarization correlations

E, ,', (NN)
E~,', (NNN)
AE~,', (longer range)

pol
@corr
Total correlation energies

E, „(LA)
AE, „(LA)
AE, „(fb)
Total valence correlation energy

Ecorr (cb)
Valence correlation energies
obtained by other methods

E. „(3astrow) (Ref. 5)
E, „(Sl)(Refs. 23, 24)
E, „(S2)(Refs. 23, 24)

—0.0798
—0.0048
—0.0035
—0.0015
—0.0895

—0.1182

—0.0141
—0.0135
—0.0057
—0.0333

—0.2410
—0.0299
—0.0750

—0.3459

—0.294
—0.275
—0.322

Si

—0.0336
—0.0047
—0.0015
—0.0006
—0.0405

—0.1054

—0.0197
—0.0090
—0.0038
—0.0325

—0.1784
—0.0221
—0.0890

—0.2896

—0.243
—0.215
—0.267

—0.0339
—0.0072
—0.0018
—0.0008
—0.0437

—0.0912

—0.0175
—0.0072
—0.0030
—0.0247

—0.1627
—0.0202
—0.0733

—0.2562

Sn

—0.0273
—0.0073
—0.0014
—0.0006
—0.0366

—0.0845

—0.0142
—0.0089
—0.0038
—0.0269

—0.14?9
—0.0183
—0.0830

—0.2492

within the original basis ' but without contraction of
the outer orbitals from the total energy of the solids.
A rough guess is made for the finite basis correction
AE~(SCF) leading to the Hartree-Fock (HF) limit of the
binding energies, E~(HF).

For the diamond case, the results presented here are
in good agreement with earlier calculations and esti-
mates. We estimate that AE~(SCF) = —0.008 6 0.004

a.u. /u. c. For the case of silicon, the results vary with the
pseudopotential used. With the one used in the earlier
calculation, an SCF binding energy for the same basis
of —0.240 a.u. /u. c. was obtained. An all electron calcula-
tion with carefully selected core orbitals and with a basis
of the same quality for the valence electrons led to an en-
ergy of —0.228 a.u. /u. c. From the latter calculations, it
is known that a second set of d-basis orbitals increases the

TABLE III. Binding energy contributions to the elemental crystals (a.u. /u. c.), obtained by the
LA, in comparison to the LDA binding energies and experiment. ezp indicates the zero-point
energy.

HF contributions

Ee(SCF)
EE~(SCF)
E~ (HF)
Correlation contributions

Egg (LA) —E~ (SCF)
AE~ (LA)
AE~ (fb)

Eg (cb)
E~(LDA) (Ref. 35)
Ea(LDA) (Ref. 33)
Ea(LDA) (Ref. 38)
EB(exp. ) —ezp

—0.398
—0.008
—0.406

—0.090
—0.024
—0.030
—0.547
—0.625

—0.555

Si

—0.223
—0.011
—0.234

—0.038
—0.016
—0.054
—0.342
—0.353
—0.370
—0.383
—0.345

Ge

—0.171
—0.011
—0.182

—0.042
—0.014
—0.042
—0.280
—0.265

—0.330
—0.285

Sn

—0.154
—0.011
—0.165

—0.038
—0.012
—0.039
—0.253

—0.283
—0.229
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binding energy by —0.007 a.u. for silicon. Therefore, we
assume the total basis set deficits for silicon, germanium,
and a tin to be AE~ (SCF) = —0.011+0.003 a.u. /u. c. In
addition, an uncertainty of the HF binding energy due to
the use of difFerent pseudopotentials of +0.005 a.u/u. c.
arises.

The correlation contribution to the binding energy is
obtained by subtracting from the total correlation energy,
obtained within the LA, E, „(LA),given in Table II, the
valence correlation energies of the individual atoms, ob-
tained within the LA for the same basis but with the orig-
inal exponents. It is represented as E~(LA) —E~(SCF)
in Table III.

The estimates of the LA shortcomings, AE~ (LA), and
the finite basis size corrections, AE~(fb) are added as
well. The explicitly computed correlation contributions
make up a sizeable fraction of all correlation contribu-
tions to the binding energy for the case of diamond, while
for the other systems, they amount to a rather small frac-
tion, and the largest part arises from the error estimates
of the LA and of the finite basis. This is connected with
the fact that interatomic correlations, which are appar-
ently rather well covered within the LA contribute less
to the energy for the heavier elements.

The estimates seem to be reasonable, as can be seen
from the final agreement of E~(cb) and the experimen-
tal electronic binding energies E~(exp), which represent
the experimental values corrected by zero-point vibration
energies.

For tin, already the SCF binding energy is relatively
large, and a final overestimation of E@(cb) by —0.03
a.u. /u. c. results. We can rule out that this originates
&om shortcomings in the correlation treatment but can-
not decide where on the SCF level it results from. These
doubts concerning the SCF calculation of a tin will be
a%rmed by the discussion of the bulk moduli below.

For silicon, not only a pseudopotential calculation was
performed but a second calculation was made with all
electrons included. The results for the valence electrons
came out to be very similar in both cases. Due to differ-
ences in the inner part of the basis sets, partial contri-
butions difFered by up to 10%%uo but the resulting valence
correlation energy for the all-electron case was above the
pseudopotential result only by +0.0086 a.u. /u. c. or 4%
of the LA result. These differences resulted almost com-
pletely from differences in the on-site (atomic plus intra-
atomic) contributions.

It is known that valence shell correlations are some-
what overestimated when pseudopotentials are used. For
the atomic limit, the valence correlation energy in the
all-electron case turned out to be 0.0025 a.u. or 3%
above the pseudopotential result. This leads to an over-
estimation of the binding energy for the pseudopotential
case of —0.0036 a.u. /u. c. or 3%%uo of the total correlation
contributions to binding. Altogether, the differences be-
tween pseudopotential and all-electron calculations for
the valence shell correlations are small compared with
other shortcomings of the computations. We cannot tell
whether these overestimations result from the differences
between the two wave functions close to the nucleus, i.e.,
the nodes for the all-electron case, or &om the virtual

availability of core orbitals for correlation purposes in
the pseudopotential case.

Finally, a short comparison to earlier computations
with the LA shall be made. For the case of diamond, a
calculation with the LA was published before. This com-
putation was based on an LDA calculation from which
the SCF ground state was obtained. The exchange en-
ergy and potential were then separately computed. The
resulting SCF energy and binding and the estimated HF
limit were in quite good agreement with the values ob-
tained here. The same holds true for the individual con-
tributions to the correlation energy. The results pre-
sented here differ only in the explicit inclusion and com-
putation of longer range correlations.

For the case of silicon, a similar calculation had been
performed before, too. Here, larger differences showed
up. Already on the SCF level, the binding energy was
overestimated by —0.02 a.u. /u. c. This was in part due to
another pseudopotential used, as mentioned before, and
in part due to an overestimate of finite basis set correc-
tions. For the correlation treatment, it turned out that
all individual correlation contributions that were com-
puted in the old work were systematically 10—20% too
large as compared with the present results. Since in the
present calculations the same correlation program was
used, this discrepancy can only be connected with an er-
ror in the addition of the separately computed exchange
potential in the previous computation. These two short-
comings of the old computation led to a surprising close-
ness of the resulting binding energy to the experimental
values in contrast to the new and error free results for
silicon presented here.

IV. EQUILIBRIUM LATTICE CONSTANTS
AND BULK MODULI

So far, the ground-state calculations were performed
for the experimental lattice constants. Next, the depen-
dence of the different energy contributions on the lattice
constants is analyzed. For this purpose, the basis set
and details of the handling of the intra-atomic correla-
tions are &ozen at the values obtained for the compu-
tation performed at the experimental lattice constant.
The computations are repeated for a set of lattice con-
stants, stepwise extended by 1'% each. Smaller lattice
constants were not used because they would lead to in-
creasing overlap problems in the SCF calculations. Al-
together, energies were computed for five points and a
parabola was fitted to these points, leading to the opti-
mal lattice constant, ap, and a curvature at this extremal
Point, c = st(a)~

The bulk modulus at the experimental lattice constant,
H(a, „~),was computed from these values as

Table IV contains the results of the optimal lattice
constants ap. When comparing the SCF results to the
experimental values, then it can be seen that in every
case, the lattice constant is slightly too large. The devi-
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TABLE IV. Equilibrium lattice constants ao and partial contributions for the elemental crystals

(A), as obtained by the LA, in comparison to other methods and to experiment.

HF contributions
ap(SCF)
Correlation contributions
Nap(inter)
Aap (intra)
Dao (Polar. )

ap(LA)

ap(LDA) (Ref. 35)
ap(LDA) (Ref. 36)
ap(LDA) (Ref. 37)

ao(Jastrow) (Ref. 5)

ap(exp)

3.580

+0.076
—0.039
—0.016

3.601

3.530

3.54(3)
3.567

Si

5.526

+0.093
—0.091
—0.040

5.488

5.408
5.373

5.4O(4)

5.431

Ge

5.755

+0.123
—0.075
—0.043

5.760

5.705
5.569

5.657

Sn

6.517

+0.124
—0.054
—0.049

6.538

6.547

6.489

ation amounts to 0.5% for C and Sn, and to 2.0% for Si
and Ge. Computations on small molecules indicate that
for the cases of silicon and germanium, a finite basis size
reduction of 0.5%%up is to be expected. Furthermore, differ-
ent pseudopotentials lead to variations in the equilibrium
lattice constants of +0.5%.

When turning to correlation corrections, then contin-
uous changes show up that are easily understood. In-
teratomic contributions systematically enlarge the lat-
tice constants by 2% in each case. This expansion can
be understood to arise from the fact that with inter-
atomic correlations, systematically antibonding orbitals
are occupied, while in the SCF ground state only bonding
orbitals were occupied. The dominant contributions to
these corrections come from the on-site correlations. It is
only for the heavier semiconductors with more and more
delocalized electrons that the longer range interatomic
contributions contribute to this trend, too.

A second set of correlations, namely, the intra-atomic
correlations have the opposite trend. They lead to a lat-
tice contraction of 1.2'% (diamond, tin) to 1.5% (silicon,
germanium). This is due to the inclusion of a short range
correlation hole that enables the electrons to avoid each
other at small distances more easily. It is plausible that
the largest correction shows up for the case of silicon.
Here, the unoccupied 3d orbitals are close to the Fermi
energy and contribute particularly strongly to the short
range correlations.

Polarization contributions, finally, lead to a further
contraction which is rather small for diamond (0.5'%%up) and
considerably larger (1'%%uo) for the other systems. In the
latter cases, the enhanced polarizability due to the prox-
imity of the unoccupied d orbitals to the Fermi energy
plays a role.

Contrary to the case of the energies, we did not try to
obtain an estimate of the defects in the equilibrium dis-
tances originating &om either the LA approximation or
the finite basis set deficits. As mentioned in the discus-
sion of the correlation energies, only 50'%%uo of the short
range correlation energy is obtained by the basis sets

used. A certain contribution of the error in the final
lattice constant, if compared to experiment, may arise
from this shortcoming, too. The actual error amounts to
between 10'%%uo of the intra-atomic contributions for silicon
and 50%%uo for germanium. This indicates that the lacking
short range contributions must inHuence the lattice con-
stants to a much smaller relative extent than they do for
the energies.

Correlation contributions to the lattice constant alto-
gether apparently cancel each other to a large extent.
The largest correction is a 1% contribution for the case
of silicon. The accuracy of these investigations is thus
eventually dominated by shortcomings of the SCF treat-
ment.

Finally, the results for the bulk modulus at the ex-
perimental lattice constant are discussed. The values for
the bulk modulus are given in Table V. As can be seen,
the SCF calculations overestimate the bulk modulus by
between 3% for n tin and 15% for germanium. Correla-
tions reduce the bulk modulus. Here, all different con-
tributions have a similar effect. The only difference is
that the interatomic correlations contribute 30% for the
case of diamond but very much less for the other cases.
The final values are in fair agreement with experiment
with exception of the case of o. tin. As mentioned above,
the SCF calculation for tin still seems to suffer &om mi-
nor errors. This suspicion is supported by the presented
results for the bulk moduli.

As for the equilibrium distances before, we did not try
to obtain a guess for possible corrections which care for
the shortcomings of the LA or the finite basis. As the
numbers indicate, there is not much room for such correc-
tions, indicating that these corrections are not relevant
for the bulk moduli.

V. CORRELATION PUNCTIONS

Correlation calculations performed with the LA allow
not only compute global quantities like the correlation



51 AB INITIO GROUND-STATE CORRELATION CALCULATIONS. . . 10 563

TABLE V. Bulk modulus B and partial contributions for the elemental crystals (Mbar), as
obtained by the LA, in comparison to other methods and to experiment.

HF contributions
Bscp(+ )
Correlation contributions
A Bint er (+exp)
+Bintrx(+exp)
&Bpoi '(tt. p)
Bi A (+exp)

Bi,D~(a,xp) (Ref. 35)
Bi,D~(a „p)(Ref. 3&)
BUDA(a „p)(Ref. 37)
BJastrow (Gexp) (Ref. &)

&exp

4.58

—0.09
—0.16
—0.00

4.33

4.90

4.20(50)
4.42

Si

1.117

—0.018
—0.099
—0.000

1.0GO

0.980
0.968

1.08(10)
0.988

0.868

—0.017
—0.077
—0.000

0.774

0.66
0.762

0.734

Sn

0.544

—0.010
—0.026
—0.000

0.508

0.509

0.53

energy, but also particular correlation functions. As has
been found several times before in computations with
the LA, the correlations in terms of the atomic orbitals,
and among them those on the individual atoms, are of
largest importance. For the applications presented here,
these are most simply described in terms of correlations
in single atomic hybrids and between pairs of them on the
same atom. This allows us to reduce the atomic correla-
tion description to two quantities, namely, the reduction
of charge fluctuations due to correlations within a single
hybrid, b„;(A)and in different hybrids i, j, A;j(A) on
the same atom A. Spin correlations will be disregarded
in the following. Formally, these correlation corrections
are given as

+ii = (@corr ~rtigrtig
~
@corr) (rtigrti$) ~

+ij = (@corr~rtirtj ~@corr) (rtirtj) ~

These quantities 4 are given for the difFerent solids in
Table VI as obtained from the correlation calculation re-
stricted to interatomic correlations. They depend only
slightly on intra-atomic and on longer range polarization
correlations as will be discussed later in more detail. It
can be seen that the atomic correlation corrections are of
similar strength for the difFerent solids although the cor-
responding correlation energies strongly decrease from di-
arnond to tin; this was discussed above. This difFerence

results from the fact that the correlation functions de-
pend on the ratio of interaction to band energies while the
corresponding correlation energies scale like these cor-
relation functions times the interactions. Both energy
scales decrease from diamond to tin as will be shown be-
low.

The first correlation correction 4;, can be directly used
to obtain the correlation strength for the atomic orbital
i. For the uncorrelated ground state of all these half
filled systems it holds that (n, tn;g) = 4. The corrections
therefore reduce the double occupancies by between 15%
for diamond and 12%%up for tin. Thus, all these solids are
weakly correlated.

The correlation corrections obtained from this ab ini-
tio calculation may be used to determine the interaction
parameters of a model Hamiltonian. This can simply
be done by constructing a model that contains just the
relevant degrees of freedom and by mapping particular
correlation features of the a6 initio results to this model.

The simplest model that can be used is a model for the
valence electrons only. It is a tight-binding single-particle
Hamiltonian with one parameter only which represents
the delocalization of the electrons when the atoms form
a solid plus an interaction part with two parameters for
efFective atomic interactions.

The simplest tight-binding model in a band-orbital ap-
proximation (BOA) has a single hopping term between

TABLE VI. Atomic correlation functions A;~ and parameters for a bond-orbital model Hamil-

tonian for the elemental crystals, as obtained from the LA.

Si Sn

Correlation functions
—0.0382
—0.0287

—0.0322
—0.0222

—0.0300
—O.G226

—0.0292
—0.0237

Model Hamiltonian parameters (eV)
t
U
J
U+2J

10.7
4.4
1.4
7.2

6.1
1.8
0.7
3.3

6.1
1.8
0.65
3.1

5.6
1.7
0.55
2.8
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two directed valence sp hybrids on neighboring atoms 1
and 2, which form a bond orbital. ' Its Hamiltonian
reads

HO — t (+Iy~aI2cr + Oz2~OI1~)
Ia

where the index I runs over the different bond. s.
In these semiconductors, each atom is surrounded by

four neighbors. The single-particle ground state of this
model Hamiltonian Hp is understood in terms of bond
orbitals which are formed by the corresponding atomic
hybrids pointing at each other. Since there are four elec-
trons per atom, all these bond orbitals are completely oc-
cupied. The one-particle ground state is thus written as
a superposition of orthogonal bond orbitals, represented
by the creation operators 6I

The latter are de6ned in terms of the corresponding two
orthogonalized atomic hybrids alp a/2

Since onIy atomic correlations are covered, it is suFi-
cient to con6ne oneself to an interaction part with atomic
terms only. With only two independent parameters al-
lowed for, it reads as

H, = ) {U+2J) ) n~, qn„,g
A

+— aAl'a' a Ale

lpga'crier'

(22)

+ a~I a~~ a%i 'aAl'
l gl'pro'

Ox(&, ~) =nxitnxlg,
02(A, I, l') = n~rn~~, (23)

with two variational parameters. Here, n~~ = P n~~
These correlation operators for the mod. el represent the
interatomic correlation operators of the ab initio calcu-
lation. Thus the interaction parameters U and J, in re-
lation to the hopping terms t, are fully determined by
requiring that the resulting correlation corrections of the
model A;; and Azj equal those of the ab initio calcula-
tion. For diamond, the parameters t were taken from an
earlier fit to the band structure, and for the other solids

Terms which are not biquadratic in l and l' do not con-
tribute to ground-state correlations within BOA, and
therefore have been dropped here. Here, a different set
of indices is introduced for the atomic hybrids. The in-
dices I,, l'(= 1, . . . , 4) refer to the different sps hybrids on
atom A.

The use of the minimal basis of atomic orbitals implies
that only interatomic correlations can be covered. Thus,
the correlation treatment can be restricted to two sets of
operators (spin operators are disregarded again).

they were rescaled according to the changes of the valence
bandwidth in comparison to the one of diamond.

The parameters t as well as the resulting values U and
J are given in Table VI. As can be seen, the interaction
terms U are very much smaller than the known atomic
interactions of the bare atoms U t, which are U t(C)=
14 eV, U t(Si)= 9.2 eV for two representative cases. The
interaction terms J, however, are more closely connected
to the atomic values I t, which are J t (C) = 1.9 eV and
J t(Si) = 1.3 eV. For more details, we refer to Ref. 31.

This strong reduction of U is not connected with any
screening because all correlations included for the par-
ticular ab initio result used are explicitly covered in the
model as well. Rather, this small U results from the
folding of the long range —Coulomb interaction into the
effective local term. It can be shown that for such a semi-
conductor model only two terms of a long range interac-
tion contribute, namely, the direct atomic interaction Up
which due to renormalization effects is actually expected
to be somewhat larger than the atomic interaction U q in-
troduced above and the Coulomb interaction U between
electrons in hybrids on neighboring atoms. It can be fur-
ther shown that in the BOA it holds that U = Up —U.
This explains the strongly reduced values of U.

For the interaction J, there is no such large compen-
sation. There is, however, a smaller correction due to
differences among the longer range contributions of the
Coulomb interaction, which can explain the reduction ln
comparison to the atomic terms.

When comparing the interactions U for the different
semiconductors, then it is seen that they do not scale
at all like the quantities t or J but that they are very
much smaller for silicon, germanium, and tin than they
are for diamond. This is due to the extended cores of the
heavier elements. These lead to an increase of the average
extension of the atomic orbitals beyond the one due to
the increase in the lattice constant alone. This changes
Up only a little but causes a relatively large change in the
difference value U. I et us point out again that this strong
reduction of the effective atomic interaction is not due
to screening effects or other tricky correlation features
but due to a simple folding of the long range Coulomb
interaction.

From more complete Ob initio calculations, it was
found that longer range polarization corrections do not
at all change the correlation functions L. Consequently,
they do not lead to modified interactions U either. At
a first glance, this Ending strongly contradicts the ex-
perience that additional charges in a semiconductor are
strongly screened by the highly polarizable environment ~

But considering that the value U represents a difference
between interactions, here it just means that these long
range polarizations reduce the interaction of two elec-
trons on the same atom, Uo, by (almost) the same total
amount as the interaction of two electrons on neighboring
atoms, U.

It was further found that very short range intra-atomic
correlations have a small effect. When added, they re-
duce the atomic correlation corrections by 5% in every
case. Consequently, the model interactions U and J are
reduced by the same relative amount. When consider-
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ing that these short range correlations were not very well
treated (i.e. , only half of the correlation energy connected
with them was obtained), then the final interactions U
and 1 are by 10 + 5% smaller than the values given in
Table VI.

These findings again indicate that effective interactions
for models can be determined with high accuracy from
ab initio calculations with the LA. For results on other
systems we refer to Ref. 32.

VI. COMPARISON WITH DIFFERENT
AB INITIO CALCULATIONS

Within the discussion of our ab initio results, we have
already made comparisons to earlier results obtained
with the LA and to results obtained from cluster calcula-
tions with standard quantum-chemistry methods. In this
section, we shall make comparisons to ab initio results
of very difFerent methods, which correlate the electrons
like in homogeneous systems. The one method is the
standard ab initio method for solids, namely, the local-
density approximation (LDA); the other is a Monte Carlo
Jastrow computation scheme.

The comparison to LDA results can be made for the
binding energies and for equilibrium lattice constants and
bulk moduli. All corresponding tables which contain the
results of the LA contain results of the LDA, as far as
available. The LDA results are from Refs. 33, 34 for
diamond and from Refs. 35—38 for the other systems.

As can be seen for the binding energies in Table III, the
uncorrected results of the LA, E~(LA) obtained in the
computations presented here, differ roughly by the same
amount from the experimental values E~(exp. ) as do the
LDA results Eg(LDA). However, the shortcomings of
the LA can, due to the intrinsic variational nature of this
ansatz, be easily estimated.

The LDA errors for equilibrium lattice constants and
bulk moduli are of the same order of magnitude as the
LA errors presented here. While for the bulk moduli the
LDA errors are not systematic, the equilibrium lattice
constants are too small compared with the experiment,
except for the case of tin. This is the typical deviation
expected for every LDA calculation. Here, one may con-
nect these systematic deviations of between 0.5% and
1% with particular correlation features. As found in our
calculations, different correlation contributions influence
the lattice constants difFerently. There are two groups of
correlations, which a homogeneous correlation treatment
cannot describe well. The first is the group of interatomic
correlations. For the homogeneous electron gas, there are
no atomic orbitals and therefore no enhanced interatomic
correlations. The second is the group of longer range po-
larization corrections. In a homogeneous system, there
is no longer range van der Waals like correlation. The
combined effect of these two groups of correlation cor-
rections is in every case a lattice enhancement of roughly
1'%%uo, which is of the same size as the LDA deficiency. Here,
it shall just be noted that LDA deficits in the treatment
of transition metals were connected before with similar
interatomic correlation contributions.

Computations with a Jastrow Monte Carlo method

were performed for diamond and silicon. ' This varia-
tional Monte Carlo scheme assumes the electrons to cor-
relate like they do in a homogeneous system. The optimal
variational ansatz for the correlated wave function under
this restriction was then found to be the one for an ho-
mogeneous electron gas with the density of the valence
electrons in the real system. The resulting correlation
energies, E, „(Jastrow), are given in Table II, too. They
bypass the results of the LA and lack only 15% to the
estimated exact result E, „(cb).In comparison to our
results, this computation profits from the fair description
of the short range part of the correlation hole.

The binding energies determined from these computa-
tions are not displayed in Table III, because they con-
tain a minor error. This error is not connected with the
correlation treatment, but with the estimated finite-size
corrections on the SCF level. For diamond for example,
a finite-size SCF binding energy of —0.342 a.u. /u. c. was
obtained. When including a finite-size correction, a final
value for the HF binding energy of —0.436 a.u. /u. c. was
estimated. This value is much too large as compared to
our estimate of the HF binding energy E~(HF), which is
—0.410+ 0.005 a.u. /u. c. A similar shortcoming occurred
for silicon.

The equilibrium lattice constants were identically the
same ones as for the LDA computations.

It is of interest to connect the deficiencies of the Jas-
trow results with immanent shortcomings of the homo-
geneous electron gas like treatment behind the Jastrow
ansatz. As for the LDA before, one would not expect a
very good coverage of the interatomic and of the longer
range polarization correlations. In fact, the slightly short
equilibrium distances indicate that the Jastrow ansatz
suffers here from the same shortcomings as the LDA. The
missing 15'% of correlation energy amount to roughly half
the combined interatomic and polarization energy contri-
butions for diamond but somewhat more for silicon.

There is in fact conclusive evidence from such a calcu-
lation for the C atom that the Jastrow ansatz lacks the
proper treatment of correlations in terms of atomic or-
bitals. For the C atom a particular correlation described
by atomic orbitals contributes 17% of the valence corre-
lation energy. This is a two-particle excitation of the 28
electrons into the single empty 2p orbitals. This correla-
tion is strong because the atomic 28 and 2p orbitals are
almost degenerate. It was found that when adding such
a particular correlation to a Jastrow ansatz computation,
still 60% of the original correlation energy contribution
could be gained. These results indicate that correla-
tions which really differ from correlations in the homoge-
neous electron gas are not well described by this scheme
either. Therefore, this scheme might not really offer an
improvement in comparison to LDA when correlations
are concerned.

For diamond, a Green's-function Monte Carlo calcula-
tion using a local pseudopotential could be performed.
It yields a much larger gain in correlation energy in
comparison to the Jastrow result for diamond than for
the C atom. The improvement of the correlation en-

ergy for diamond amounts to —0.025 a.u. /u. c., and the
correlation contributions to the binding energy increases



10 566 PARDON, GRAFENSTEIN, AND STOLLHOFF

from —0.126 a.u. /u. c. for the Jastrow computation to
—0.135 a.u. /u. c. Again, a comparison to the interatomic
correlation energy is suggestive. The Green's-function
error amounts to roughly 20% of this value. This is a
similar relative error as found for the C-atom computa-
tion with the same scheme. It was found that 30% of the
particular correlation in terms of atomic orbitals for the C
atom was still gained when this correlation was explicitly
added to a Green's-function Monte Carlo computation.

This is the first evidence that even Green's-function
Monte Carlo schemes will not be able to perform very
well for the particular correlations that arise due to in-
homogeneity. Possibly, correlations on the atomic scale
must be directly addressed as is done in the LA.

VII. CONCLUSIONS

We have presented in this paper results of ab initio
calculations for different semiconductors obtained with
the local ansatz. We could present results on equilibrium
lattice constants and on the bulk moduli, too.

As can be seen from the results obtained by our com-
putations, so far they do not represent a significant quan-
titative improvement as compared with the LDA results.
On the other hand; they allow a quantitative treatment of
those correlation contributions that deviate sizeably from
the ones of a homogeneous system. Here, even quanti-
tative connections to the deficits of schemes based on
homogeneous electron gas ideas like the LDA or Monte
Carlo Jastrow calculations could be made.

At present, the LA is the only ab initio correlation
scheme which can be equally applied to every kind. of
solid from ionic crystals to metals and to whatever di-
mension required: molecules, chains, slabs, and solids.
In addition, it has the advantage that its computer time
expenses are less than one order of magnitude larger than

the computation expenses for a preceding Hartree-Fock
calculation with the CRYSTAL program.

However, improvements for the LA are required first
to reduce its de6cits in comparison with a more complete
correlation calculation in the same basis. Here, correla-
tion results obtained from different clusters with stan-
dard quantum-chemistry methods with which the solid
case could be extrapolated serve as a reference case. Next
these computations need to be repeated with an enlarged
basis set. The cluster calculations just mentioned indi-
cate that more than 90% of the correlation energies and
corresponding binding energy contributions can be ob-
tained by a simple extension to basis sets containing two
sets of d functions and one set of f functions. While
such a calculation poses no problems for the LA, calcula-
tions including f functions are not yet possible with the
CRYSTAL program package.

In distinction to all schemes developed from homoge-
neous electron gas ideas, this method properly cares for
the inhomogeneity of real systems. Due to its particular
use of local operators and due to its segmentation of the
total correlation contribution into different parts, it al-
lows a quantitative description of those correlation func-
tions which are of particular relevance for real systems,
namely, correlations in terms of atomic orbitals. Here,
immediately a connection to model Hamiltonians can be
made, and the necessary effective interaction terms for
such models can be computed with high precision.
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