PHYSICAL REVIEW B

VOLUME 51, NUMBER 16

15 APRIL 1995-II

Calculations of local and gap modes in III-V semiconductors based on ab initio descriptions
of the host crystals

David A. Robbie and Michael J. L. Sangster
J.J. Thomson Physical Laboratory, University of Reading, Reading RG6 6AF, Berkshire, United Kingdom

Pasquale Pavone
Institut fiir Theoretische Physik, Universitdt Regensburg, D-93040 Regensburg, Germany
(Received 28 December 1994)

Localized vibrations of substitutional impurities in III-V semiconductors are analyzed using three
different models for the host crystals: the Keating model, the bond charge model, and a scheme based on
recent ab initio calculations. The two empirical models lead to remarkably different predictions for local
mode frequencies with results from the ab initio method lying in between. The host isotope fine struc-
tures of 12C,, and !'B,, local modes in GaAs are best accounted for in the calculations using the ab initio
scheme. Estimates are made of the frequencies of some gap modes in AlAs and GaSb and of the width

of fine-structure patterns in the latter.

I. INTRODUCTION

In a number of recent papers, simulations of local vi-
brational modes associated with light impurity atoms in
III-V semiconductor host crystals have been used to
model and interpret high-resolution measurements ob-
tained by Fourier transform infrared spectroscopy: see,
for example, Sangster et al.! and references to related
work given in that paper. In these simulations the intera-
tomic interactions in the host crystals have been
represented by the Keating model’ and local mode fre-
quencies have been found as the highest eigenfrequencies
for small clusters centered on the impurities and embed-
ded in frozen crystal surroundings. After appropriate
changes have been made for the atomic masses of the im-
purities, adjustments of the force constants around these
defects have to be made to obtain agreement with experi-
mental frequencies. Further information on force con-
stant changes has been found by examining the fine struc-
ture of local mode lines arising from distributions of host
atom isotopes: this approach was first used by Leigh and
Newman.?

It was assumed in the earlier work! that the results ob-
tained did not depend sensitively upon the model used for
the host crystal as long as the high-frequency portion of
the lattice mode spectrum was adequately represented.
The main purpose of this paper is to demonstrate that
this assumption is not true. This emerged in an attempt
to extend the studies by using impurity gap modes as an
additional source of information on force constant
changes. Such extensions can clearly be carried out only
for host crystals that display a gap between the acoustic
and optical parts of the phonon spectrum. The model for
the host must give a good fit to both limits of the gap as
well as to the highest frequencies. The two-parameter
Keating model is too simple to satisfy all these conditions
and extensions to achieve these fits did not produce credi-
ble models. We then turned to the bond charge model
(BCM) introduced by Weber* for homopolar semiconduc-
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tors and extended for III-V applications by Rustagi and
Weber.? For a simple model with few parameters this has
been remarkably successful in reproducing experimental
phonon dispersion curves including recent comprehen-
sive neutron-scattering measurements for GaAs by
Strauch and Dorner.® As we shall demonstrate in Sec.
II1, this model for GaAs produces results for local mode
calculations that are dramatically different from those
found with the Keating model. In particular, when the
frequencies for '2C,:GaAs local modes are calculated us-
ing the two models and allowing for changes of mass only
(i.e., with no changes in force constants) the estimates
differ by around 50 cm~!. The adjustments to force con-
stants, which then have to be made to secure agreement
with experiment, are consequently very different in the
two cases.

These conclusions raise important questions concern-
ing the interpretation of force constant changes around
impurities. A possible method for deciding between
models for the host crystal would be to compare the de-
duced force constant changes with those obtained from
ab initio defect calculations. (An illustration of this ap-
proach of linking empirical models to self-consistent cal-
culations is the study of local modes from nitrogen de-
fects in diamond by Sangster, Kiflawi, and Wood’ which
makes use of the ab initio work of Briddon, Heggie, and
Jones.?) In the present paper another type of ab initio ap-
proach is adopted. Dispersion relations for semiconduc-
tors have been calculated by a density-functional linear-
response technique by Giannozzi et al.’® Their work in-
cluded the III-V semiconductors GaAs, GaSb, and AlSb,
for all of which neutron-scattering measurements are
available, and AlAs, which cannot be grown as a bulk
single crystal but which, in the form of an epitaxial layer,
is of great interest as an end member of the range of
AlGaAs mixed crystals. In the three cases for which
comparisons with experiment are possible the agreement
is extremely good. The method yields full dynamical ma-
trices on a mesh of reciprocal-lattice vectors and, from
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this, real-space interatomic force constants can be found
by Fourier analysis. Thus a model for the perfect crystal
can be deduced directly from the ab initio calculations,
which, in effect, interpolates between the selection of
reciprocal-lattice vectors for which the detailed calcula-
tions have been carried out. If the force constants
describing the short-range interactions (i.e., without
Coulombic contributions) decay sufficiently rapidly, the
interpolation scheme is exact. Here the interpolation
procedure is used as the best available model for the host
crystals. Since the effective interatomic force constants
are not restricted to a small number of neighbors and
Coulombic terms are included, the cluster type of calcu-
lation that has been used for Keating models for host
crystals is no longer convenient. Instead we use defect
Green’s-function techniques to deduce the localized mode
frequencies. The perfect lattice Green’s functions are
found by standard methods from the frequencies and
eigenvectors given by the ab initio interpolation scheme.
Localized modifications to force constants are specified
by changes in bond-stretch and bond-bending force con-
stants: for easy comparison with earlier results, these
changes within the defect space are described in terms of
the Keating model.

The methods and procedures are discussed in the next
section. We establish there that, when the Keating model
is used, the implementation of the Green’s-function tech-
niques leads to results that are identical to those found
earlier from cluster calculations. In Sec. III results are
presented for the 12C,, and !'B, local modes in GaAs, in
Secs. IV and V local and gap modes in AlAs and GaSb
are considered.

II. TECHNICAL MATTERS

In this section we first discuss briefly the three descrip-
tions used for the host crystal. We then go on to the nu-
merical techniques, which we use in later sections.

A. Models for the host crystal

1. Keating model

All our earlier work using cluster calculations"'® was
based on the model introduced by Keating.? In its origi-
nal version there were only two force constants: a stretch
constant a and an angle bending constant 8. The most
obvious extensions to the model is to include an angle-
angle correlation and, for III-V semiconductors, to allow
for differences in the angle-bending constant at the two
types of site. Coulomb forces can be added, but cannot
be incorporated in the present version of our cluster pro-
gram. The model and procedures for fitting to experi-
mental data have been extensively discussed in our earlier
papers and elsewhere.

2. Bond charge model

The BCM for GaAs that we have used in the calcula-
tions reported here is BCMS5 in the paper by Strauch and
Dorner.% (The parameters are listed in their Table 11 and
the agreement with experiment for a closely related mod-
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el is shown in their Fig. 6.) In the model covalent bond-
ing is represented by an added charge on the nearest-
neighbor bonds. For homopolar crystals this is placed at
the midpoint,*!! but for III-V crystals the charge is
placed closer to the group-V atom,’ dividing the bond in
the ratio 3:5.

3. Parametrization of ab initio calculations

Full details of the procedures for calculating phonon
dispersion in semiconductors by the density-functional
linear-response technique have been presented in the pa-
per by Giannozzi et al.® The technique yields the full
dynamical matrix at any selected wave vector q and can
be adapted to give the dielectric tensor and the effective
charges on atoms. These charges are used to extract the
long-ranged Coulombic part of the dynamical matrix.
From the remaining short-range parts calculated at a
mesh of points in the symmetry reduced Brillouin zone, a
set of (real-space) interatomic force constants is obtained
by Fourier transformation. The set includes interactions
between all pairs of atoms within a certain range. The in-
teractions are included if, when one of the atoms is con-
sidered as the origin, the other is not outside an fcc
Wigner-Seitz supercell (a rhombic dodecahedron) with
linear dimensions four times larger than the correspond-
ing primitive cell. When the second atom lies on a face,
edge, or vertex at the surface of the supercell, an ap-
propriate weighting factor is introduced to account for
the number of shared surrounding supercells. The mag-
nitudes of the force constants fall off with the interatomic
separation but, to recover results at the restricted set of q
points for which dynamical matrices have been calculat-
ed, it is important to include all of the terms within the
supercell. This set of force constants together with the
constants for the Coulombic interactions is then used as
an interpolation scheme to provide eigenvectors and fre-
quencies for all other q points. This is the procedure that
was used in the original paper’ to obtain phonon-
dispersion relations. In this paper, in addition to the
eigenfrequencies we require the eigenvectors from the in-
terpolated matrices.

B. Numerical techniques

As mentioned in the Introduction, the cluster method,
which was used earlier! for calculations of defect local
mode frequencies based on Keating models for the host
crystals, cannot readily be adapted for corresponding cal-
culations based on either the BCM or ab initio descrip-
tions of the host. We use instead standard Green’s-
function methods. In Sec. IIB 1 we outline the steps in
the calculation of the perfect lattice Green’s functions
that we will require.

One of our main interests will be in comparing the host
isotope fine structures calculated on the basis of the three
models. For the cluster simulations of the fine structure
for C,, and B, in GaAs reported earlier five calculations
are required, one for each of the distinct arrangements of
nearest-neighbor Ga isotopes (*°Ga and "'Ga). The cor-
responding calculations using defect Green’s-function
methods again involve five separate runs with distinct



51 CALCULATIONS OF LOCAL AND GAP MODES IN III-V . ..

choices of mass changes in the nearest-neighbor contribu-
tions to the defect matrix. This is discussed in Sec. II B2
and we show there that the earlier results for '’C,:GaAs
are recovered to high accuracy by this technique.

In Sec. IIBC we discuss an approximate method for
obtaining the fine-structure patterns as perturbations of a
fully symmetric (T, ) arrangement of neighbors. This fol-
lows closely the work of Leigh and Newman.) We
demonstrate, again for 2C,:GaAs, that no significant
loss of accuracy results from this treatment and, because
of the great simplifications that it introduces, we use it in
the analysis of fine structure patterns in Sec. III B.

1. Perfect lattice Green’s functions

Green’s functions for the pure host crystals have been
defined and discussed in many standard works: see, for
example, Maradudin et al.'> and Bilz, Strauch, and
Wehner.!3> Unfortunately, a variety of conventions for
signs and phases is to be found. We adopt the following
definition for the Cartesian Green’s function relating the
negative of the a component of the displacement
response of an atom (IK), labeled by a cell index / and a
species index K, to the 3 component of a sinusoidal force
of frequency w on an atom (I'K"):

1
G s IK;I'K" ;0)= ————
B @ N(MgMg)'
w,(Klqj)wp (K'|qj)
04 qj)—(0+i0)?

Xexp{iq-[rIK)—r(I'K")]} , (1)

X2

q,j

where w,(K|qj) are normalized eigenvectors of the
(Fourier-transformed) dynamical matrix for wave vector
q and branch j [see Eq. (2.1.60) of Ref. 12]. Our
definition of the Green’s function agrees with that in Eq.
2.4.44b of Ref. 12 apart from an overall change of sign.
The infinitesimal positive imaginary addition to « yields
the retarded Green’s function when the sinusoidal time
dependence is represented by exp(—iwt). The functions
may be expressed in terms of their real and imaginary
parts [cf. Eq. (8.4.14) of Ref. 12)]: the real part is the
principal part of the above expression and the imaginary
part is given by

ImG 4K ;'K ;0)= ——"
B N(MKMK')I/Z
X Sw,(Klgjw}(K'|q))
9,J

Xexp{iq-[r(IK)—r(I'K")]}
X 8(w’—w*(q))) (2)

and is clearly zero outside the bands of allowed frequen-
cies. The standard procedure for calculating these func-
tions is to obtain first the imaginary part from a sample
of wave vectors q in the reduced Brillouin zone and then
to calculate the real part through the connection provid-
ed by the Kramers-Kronig relations. In our calculations
we sample 3142 points in the symmetry-reduced (%) Bril-
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louin zone and histogram the imaginary part into 800
bins equally spaced in frequency and covering the al-
lowed bands. We shall denote the contribution to the ith
bin, centered at w;=(i —1)Aw, where Aw is the bin
width, by (7/20)R (K ;I'K").

For our applications we are only interested in
G, 5(IK;I'K";0) at frequencies outside the allowed per-
fect lattice phonon bands and, at these frequencies, the
Green’s functions are purely real and given by
n RigUK;I'K'")
GlK;I'K'0)=3 ——F—5— (3)

i=1 ;o

with the summation over the n bins. We shall need
Green’s functions for all atom pairs (/K ;/'K’) for which
the interactions will be modified by the presence of the
defect. In all calculations reported here, this defect space
is restricted to the site at which the impurity substitution
takes place and its nearest neighbors. This defines a
15X 15 Cartesian matrix Green’s function, which we will
write as G(w). In cases for which the defect has full T,
symmetry this can be exploited by choosing symmetry-
adapted displacements and the corresponding Green’s
functions (which are particular linear combinations of the
Cartesian functions). For determining the frequencies of
localized modes in such cases only Green’s functions of
I'|s symmetry are required.

2. Defect matrices for calculations
of host isotope fine structure

Standard arguments show that G'(w), the defective lat-
tice counterpart of the matrix Green’s function G(w) in-
troduced above, can be written as

G'(0)=[1+G(w)-D(w)] 'Glw) , (4)

where D(w) is the defect matrix that accounts for
differences between the perfect and defective lattices.
Here we have to consider differences in masses of atoms
and also in force constants. For the latter, we express the
differences in terms of changes in force constants of the
Keating type: 6ca, the change in the nearest-neighbor
bond-stretching constant, and 8B, the change in the
(predominantly) bond angle constant with the impurity as
apex. The extra forces introduced by the impurity act
only on the impurity itself and its four nearest neighbors,
i.e., only on atoms within the defect space. The construc-
tion of the 15X 15 Cartesian defect matrix is discussed in
the Appendix. The frequencies of localized modes,
whether above the maximum lattice frequency or in a gap
between acoustic and optic modes, are at poles in G'(w)
and these are given by the condition

I+ G(w)-D(w)|=0. (5)

Figure 1 shows this (15X 15) determinant plotted as a
function of frequency in the vicinity of the '2C,:GaAs
local modes with the Keating model for the host crystal
and the force constant changes exactly as in the paper by
Leigh et al.,'* Figure 1(a) is for the C,, arrangement of
nearest-neighbor isotopes, two light and two heavy iso-
topes (2/,2h). The three crossings through - zero at
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582.4430, 582.6899, and 582.9362 cm ™! agree excellently
with the corresponding results of Leigh et al,'*
582.4370, 582.6840, and 582.9303 cm™!, respectively.
Note that the splittings between the lines agree exactly to
the quoted accuracy, but that there is an overall shift of
0.0059 cm™!. This minor discrepancy can easily arise
from the size of the bins (Aw=0.375 cm~!) used in the
histogram.

Figure 1(b) shows the corresponding plot for the
(31,1h) case, one of the two arrangements with C;, sym-
metry. The two higher frequencies of Fig. 1(a) now be-
come degenerate. [The plot for the (1/,3h) case is simi-
lar, with the degenerate modes at the lower frequency.]
The two mode frequencies for the case illustrated are at
582.5864 and 582.9560 cm ™!, again in agreement with
the cluster calculation apart from the small shift.

In Fig. 1(c) the full line shows the determinant for the
triply degenerate (4h) T; symmetry case. Here the cross-
ing through zero is a point of inflection at 582.4032 cm ™!
(cf. 582.3973 cm™! from the cluster calculations). For
this T; case we have also carried out the corresponding
calculation using one of the three identical 3X3 I';5 parts
of the symmetry-adapted Green’s-function matrix (see
the Appendix). These results are also shown in Fig. 1(c)
by the broken line, the frequency at which the deter-
minant is zero agreeing exactly with the Cartesian result.
Simplification would also have resulted from applying
symmetry to the C;, and C,, cases, but we have not

/(V\\//

T T T T T T
582.4 5825 582.6 582.7 582.8 582.9 583.0
Frequency (em™')

/ .

T T T T
582.6 582.7 582.8 582.9 583.0 583.1
Frequency (cm™')

©)

T T T T
582.4 5B82.45 582.5
Frequency (cm™')

FIG. 1. Graphic solutions to Eq. (5): (a) for two light and
two heavy (21,2h) Ga neighbors, (b) for (31,1k), and (c) for (4h).

Full lines are for Cartesian Green’s functions and the broken
line in (c) is for fully symmetrized Green’s functions.
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developed this. The T, symmetry results are of particu-
lar importance in two ways: (a) for some host crystals
that we shall be considering (e.g., AlAs) there is no choice
of nearest-neighbor isotope and (b) in the approximate
method for the host isotope fine structure, to be outlined
in the following subsection, we expand about a fully sym-
metric arrangement of isotopes.

3. Approximate method for the calculation
of the isotope fine structure

This method has been discussed by Leigh and New-
man,’ who point out the close similarities to earlier work
on the theory of vibrations in molecules. They show that
if for a particular arrangement of nearest-neighbor iso-
topes there is a local mode at frequency « with eigenvec-
tor u, then, to first order, the change in frequency result-
ing from changes in the masses of the four neighbors is
given by

o _
[0}

4
—1'3 8m, Sul, . 6)

n=1 a

The eigenvector components u,,, give the actual (i.e., not
mass-reduced) displacements of the neighbors normalized
in the conventional way:

S Smuul,=1, 7

where the first summation is now over all atoms in ithe
crystal.

The particular unperturbed arrangement chosen has
the full T; symmetry with all four neighbors having the
average mass of the two Ga isotopes, which we denote by
mg,. All dm, in Eq. (6) are then equal in magnitude. A
choice has to be made from the degenerate eigenvectors.
Leigh and Newman take the eigenvector with the impuri-
ty displacement in the z direction and write the displace-
ment of the (111) Ga neighbor as (v,v,w)/V mg,. Dis-
placements of the other neighbors are related by symme-
try. The expressions for the approximate fractional
changes in o for the various isotope arrangements are
then given as follows: (i) 7; symmetry (all four masses
changed by 8m, which can be either positive or negative)

%’=—2(2v2+w2)8m/mGa , (8a)

(ii) C;, symmetry (mass change 8m on one neighbor,
—&m on the rest with 8m again either positive or nega-
tive)

S0 —(4v —w)wdm /mg, (singlet)

o |(3vi+20ow +wdm /mg, (doublet) (85)

and (iii) C,, symmetry (mass change of 8m on two neigh-
bors and —&m on the other two)
S
~a—)~——i2(v +2whdm/mg, or0. (8¢c)
In their treatment of the isotope fine-structure, Leigh
and Newman® then found values for the eigenvector
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terms v and w from a cluster calculation. As already stat-
ed, this route is also open to us for calculations based on
the Keating model for the host crystal, but not for either
the BCM or the models based on ab initio calculations.
We therefore use an alternative method in which the con-
tributions to the eigenvectors are given by the residues at
the poles in the real parts of Green’s functions at the lo-
cal modes.

For a defective lattice the loss of translational symme-
try means that the normal modes of vibration can no
longer be classified by a wave vector q and a branch index
Jj: we shall label them with a single index p. In Eq. (1) we
make the following replacement for the @ component of
displacement of the atom (/K ) in the pth mode:

(NM ) V2w (K|qjexpliq-r(IK)]—&,(IK|p)
and the counterpart of Eq. (1) is then °
6K K 0)=S §a(lKlp2)§B(12K p) ,

p wp @

where the sum is over all 6N modes and we have noted
that the eigenvector components are now all real. These
elements of the defective lattice Green’s-function matrix
are, of course, found from the perfect lattice functions
through Eq. (4). Near the frequency of a localized mode
the term in the summation corresponding to the localized
mode is dominant, the remaining contributions showing
only a slow variation with frequency. By careful analysis
close to the pole (which must be very precisely located) a
value may be found for §a(lK|p)§B(l’K’|p) with p corre-
sponding to the local mode. Individual eigenvector com-
ponents, and hence the values of v and w, which we re-
quire, are then found by carrying out the process for
different elements of the matrix G'(w) (using either the
Cartesian form or the I'js part of the corresponding
symmetry-adapted matrix).

As a check, we have compared the results for v and w
found by this method with the terms in eigenvectors from
cluster calculations (specifying the host lattice and defect
modifications with identical Keating parameters). For
12C,:GaAs and "B, :GaAs the values agree to better
than one part in 25 000.

Finally, we compare the fine-structure pattern for
12C,:GaAs calculated by this approximate method with
the results from cluster calculations.!* We find that the
approximation gives results for the frequencies of the
nine lines that are all marginally higher than the cluster
results, the discrepancies all lying between 0.0012 and
0.0017 cm ™~ !. Note that this discrepancy is smaller than
the 0.0059 cm ™! found in Sec. II B2 to be the difference
between the Green’s function and the cluster calcula-
tions. Since the approximate method is also based on a
Green’s-function calculation for the unperturbed eigen-
vector, this improved agreement must be fortuitous. It
arises mainly from choosing the unperturbed
configuration to be that with all Ga nearest neighbors
having the arithmetic mean mass. From Table 1 of Leigh
et al.' it can be seen that, with this assumption, the cen-
tral frequency is reduced by 0.0048 cm ™!, almost cancel-
ing the 0.0059 cm ! attributed to binning error in the
Green’s-function method.

&)
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III. RESULTS FROM COMPARISONS
OF THE THREE MODELS FOR GaAs

In Sec. III A we shall consider predictions of the local
mode frequency for >C,::GaAs when only the change in
mass of the impurity is taken into account. Then in Sec.
III B we shall look for the additional changes in force
constant required for reproduction of experimental re-
sults, including host isotope fine structure.

A. Calculations of '2C,,:GaAs local mode frequency
using mass change only

When only the mass change of the C,, impurity is con-
sidered (and all four Ga nearest neighbors are taken to
have the same mass) the defect space is restricted to the
impurity itself and the matrices in the symmetry-adapted
version of Eq. (4) are 1X1. The condition for a local
mode Eq. (5) then becomes

1+[ReG (T 5:0)](—Ama?)=0 (10)

in the notation of the Appendix. The solution using the
ab initio description of the host lattice is displayed graph-
ically in Fig. 2: the intersection is at 527.14 cm~'. The
corresponding results for the Keating model and the
BCM are very different: 498.33 and 551.27 cm !, respec-
tively. It is clear from the forms of the intersecting
curves in Fig. 2 that small changes in the high-frequency
part of the Green’s function can result in these major
shifts in frequency. The most important difference be-
tween the models seems to be in the distinctions made be-
tween the Ga and As atoms. In our Keating model both
are treated similarly apart from the minor difference in
mass which leads to slightly preferential motion of the
Ga atoms in high-frequency modes. This results in the
perfect lattice self-Green’s-functions for Ga and As
atoms being very similar. On the other hand, in the
BCM the added charge is placed closer to the group-V

Greens Function (mN™')

— T T T T 1
o] 100 200 300 400 500
Frequency (cm™')

FIG. 2. Real (full line) and imaginary (dashed line) parts of
G (T 5:0), the perfect lattice Green’s function for an As atom
in GaAs from the ab initio calculations. The dash-dotted curve
shows (Amw?)~! for a carbon impurity and the graphical solu-
tion of Eq. (10) is indicated by the vertical line.
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atom (see Sec. IT A 2) and this leads to a large enhance-
ment of the motion of the As atoms in optic modes. This
relates closely to the disagreement found by Strauch and
Dorner® in GaAs between experimentally determined
eigenvectors at the X point and those calculated from the
BCM. As a consequence of this enhancement the high-
frequency tail of the real part of the self-Green’s-function
for the As atom is accentuated and the frequency at
which Eq. (10) holds is increased. Giannozzi et al.® show
that their eigenvectors at the X point in GaAs agree with
experiment. Since the local mode prediction from the
same ab initio results falls between those from the other
two models, it may be concluded that in GaAs there is
some enhancement of the As motion in optic modes, but
this is less extreme than that produced by the BCM.

Another less important difference between the models
is that Coulombic interactions are ignored in the Keating
model. This removes the splitting in the high-frequency
peak of the imaginary part of the Green’s function
present in both BCM and ab initio calculations (see Fig.
2). The large differences that we have found for these
three mass change calculations imply that the force con-
stants required to obtain agreement with experiment will
be very different in the three cases.

B. Fine structure on local modes in GaAs

As in earlier work'* we consider changes in two force
constants corresponding to bond stretching and bond-
angle bending around the impurity. These changes are
described in terms of the Keating model force constants
a and S for ease of comparison with earlier work. The
form of the defect matrix is given in the Appendix. We
determine the two force constant changes 8a and 88 for
2C,, and ''B,, in GaAs by fitting to (i) the measured fre-
quency of the central line and (ii) the splittings between
the components of the five line pattern. In our calcula-
tions using the approximate method of Sec. II B 3 the fre-
quencies of all components of the pattern depend on only
two parameters v and w in Eqgs. (8). The implied relation-
ships between the splittings are in accord with experi-
ment (see Ref. 14).

In the first stage we make an arbitrary choice for 8§83
and find the change da that gives the correct frequency
for the central line. In these calculations we take all four
Ga neighbors of the impurity to have the arithmetic
mean mass since, in the approximate method, this gives
the central frequency. Figure 3 shows combinations of
da and 68 that reproduce the central frequencies for
12C,, (full line) and ''B,, (broken line) when each of the
three models for the GaAs host lattice is used. The ex-
pected differences between the models is readily apparent.

In Fig. 4 we present results, obtained by the approxi-
mate method discussed in Sec. II B 3, for the host isotope
fine structure of the '2C,, and !'B,, local modes. In each
part of the figure the horizontal lines give the experimen-
tally measured frequencies. The broken lines show the
calculated frequencies as functions of the force constant
change 88, the change 8a always being taken (as in Fig.
3) to give the correct value for the central component.
The outer lines of the five line patterns are each found as
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weighted averages of three unresolved components as dis-
cussed in the paper by Leigh et al.!* Figures 4(a) 4(b),
and 4(c) give the results for ?C,, based on the Keating,
bond charge, and ab initio models, respectively.

As stressed in earlier calculations, the Keating model
requires substantial stiffening of the bond-angle force
constant to achieve the correct overall width of the fine-
structure pattern (the constant 3 for the host crystal is
5.0775 Nm™!). In contrast, the BCM requires only a
modest increase and when the Green’s functions from ab
initio calculations are used, an intermediate value (around
9.5 Nm™!) is needed. The fact that only a small change
is needed for the BCM calculations is in line with the
preferential strengthening of interactions around host As
atoms. Again the ab initio results indicate that this
strengthening is exaggerated in the BCM.

For Keating models it proved difficult to find force
constant adjustments that gave simultaneous fits to all
lines of the '2C,:GaAs pattern (see Ref. 14). This is ap-
parent in Fig. 4(a): the value of 883 required for a fit to
the outer components is around 2.5 Nm ™! greater than
that for the inner lines. There are similar difficulties with
the BCM where the inner lines now require the larger
change 88 [Fig. 4(b)]. All components are reproduced to
high accuracy with a single change 63 when the ab initio
Green’s functions are used.

Figure 4(d) shows results for !B, with all three mod-
els for the host crystal. The conclusions that may be
drawn are similar to those for the '2C impurity, but in all
cases the values required for 83 are lower. An apparent
difference between the two impurities is that whereas for

Sa (Nm™')

68 (Nm™")

FIG. 3. Combinations of force constants 8a and 88, which
reproduce local mode frequencies for '2C ,, (full lines) and !'B,,
in GaAs (dashed lines). The upper, middle, and lower pairs of
lines are for Keating, ab initio, and bond charge models, respec-
tively.
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12C in all models both inner lines predict the same value
for 8B, this is not true for !'B. (There is no such
difference for the outer composite lines.) In fact the
higher-frequency inner line for !'B is poorly determined
experimentally and an increase in the experimental fre-
quency of under 0.01 cm ™! would remove this difference.

The negative change in 83 required for the BCM seems
unrealistically large when compared with the correspond-
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ing Keating model B for the host crystal (5.0775 Nm™!).
This may be due in part to the excessive strengthening of
the interactions around the group-V atom in the BCM.
Only a small negative change is required when the ab ini-
tio model is used.

In Ref. 14 it was found that, using values for 8a and 83
obtained by fitting to the host isotope fine structure for
the majority isotope, the impurity isotope shifts (!3C,2C)

(b)

~—_
———_

-1

Frequency (cm

—_—

-
-
—
-

-
-
—
-
—
—

68 (Nm™")

FIG. 4. Host isotope fine structure of local modes in GaAs: (a) '2C,, with the Keating model for the host crystal: (b) 12C,, (BCM);
(c) 1>Cp (ab initio); (d) ''B,, with Keating model (dashed line), BCM (dotted line), and ab initio model (dash-dotted line). Horizontal

lines show the experimental values.
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and (1°B,''B) were too large by around 0.4 cm ™ !. It was

also shown that, if the interactions in the defective crystal
can be described by a plausible harmonic model, these
discrepancies should not have been found. This implies
that a satisfactory explanation of both host and impurity
isotope effects will require consideration of anharmonic
effects. This conclusion would have been undermined if
either the BCM or the ab initio models (both of them
plausible harmonic models) had removed the discrepan-
cies. In fact, the impurity isotope shifts produced by
these models are all slightly larger than those reported in
Ref. 14.

IV. LOCAL MODES AND GAP MODES
FROM C IN AlAs

The characterization of defects in AlAs is of consider-
able recent interest due to the use of the material as a
component in vertical surface emitting lasers.’> AlAs is
also of interest as an end member of the Al,Ga,_, As al-
loy sequence, which is of importance in heterostructure
device fabrication. The material can only be grown by
epitaxy, usually on a GaAs substrate, and has to be con-
tained within sandwich layers. As a result, measurements
of the phonon-dispersion relation by neutron scattering
are not possible, although some information is available
from Raman-scattering studies by Monemar.'® AlAs was
included in the range of semiconductors studied by Gian-
nozzi et al.® and, in view of the success of their ab initio
calculations for the closely related material GaAs, it is
reasonable to assume that their procedure provides a
good description.

For AlAs there is a gap in the density of modes be-
tween 216 and 332 cm ™! on the basis of the ab initio cal-
culations. In principle, impurity modes localized with
frequencies within the gap could act as a further source
of information on force constant changes around defects.
In this section we consider C,¢ in AlAs for which both
local and gap modes occur. (We use the term local mode
in the restricted sense of a mode with frequency above
the maximum lattice frequency.) Since both constituents
of AlAs have only one naturally occurring isotope, we are
not concerned here with any of the host isotope fine-
structure effects considered in Sec. III B: we shall return
to these in Sec. V. No measurements of gap modes are
available due to absorption by the substrate. The
12C,:AlAs local mode has been detected by Davidson
et al.’®at 630 cm™ L.

The results of our calculations are displayed in the
three parts of Fig. 5. Figure 5(a) is the AlAs counterpart
of Fig. 3 and shows the combinations of the force con-
stant changes 8a and §f3 that reproduce the measured lo-
cal mode frequency for >C,,:AlAs (630 cm ™~ !) when the
host crystal is represented by the interpolation scheme
deduced from the ab initio calculations.” The force con-
stants are adjusted to ensure that condition (5) is satisfied
at the measured frequency. The Green’s-function matrix
used is the 3X3 T, symmetry-adapted matrix, as dis-
cussed in Sec. IIB2 and the purely real components of
this matrix are found as before from Eq. (3). In Fig. 5(b),
the frequency predicted for the gap mode for these sets of
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FIG. 5. Local modes and gap modes in AlAs: (a) combina-
tions of force constant changes 8a and 83, which reproduce the
12C,, local mode frequency, (b) corresponding gap mode fre-
quencies for '2C, (full line) and *C,, (dotted line), (c) 1*C,; lo-
cal mode frequency from ab initio calculations (full line) and
Keating model (broken line).

8a and 8B is shown as the full line. [The results are
displayed as a function of 883, the corresponding values of
Sa being given in Fig. 5(a).] The prediction depends rath-
er sensitively on the choice for §3, indicating that if mea-
surements of both local and gap modes were available for
a particular center they would accurately determine both
stretch and angle force constant changes around the im-
purity. In the same part of the figure the predictions for
the gap mode for the '3C isotope is shown as a broken
line. It is not surprising that the dependence on impurity
isotope mass is so small: the light impurity participates
very little in the mode. In Fig. 5(c), the frequency pre-
dicted for the '3C,:AlAs local mode for the various
choices of §f3 [and the corresponding 6a from Fig. 5(a)] is
shown. As expected this is shifted substantially from the
630-cm ™! line for the 2C isotope since the eigenvector in
this case is dominated by the impurity displacement.

In an earlier paper'® AlAs was modeled with a Keating
model. We also carried out the above set of calculations
with Green’s functions obtained from this Keating model
and found surprisingly little difference from the ab initio
results. The counterparts of Figs. 5(a) and 5(b) would
show practically no change from the figures presented
and in the interests of clarity are not included. The pre-
dictions of the local mode frequency for *C:AlAs based
on this Keating model are shown as the broken line in
Fig. 5(c). The consistency between the two models is
probably in large measure accidental since the limits of
the gap in AlAs from the Keating model (205-321 cm ™ !)
are quite different from those found by the ab initio
methods.
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V. LOCAL MODES AND GAP MODES
FROM IMPURITIES IN GaSb

Ab initio calculations of the phonon-dispersion relation
for GaSb are also included in the paper by Giannozzi
et al.’ They found excellent agreement with the experi-
mental data of Farr, Traylor, and Sinha.!” For our pur-
poses this crystal is of particular interest as both atoms
are present in two isotopic forms: ®Ga (60%) and "'Ga
(40%) as before and '?!Sb (57%) and '’Sb (43%). Hence
fine structure is to be found for substitutions on either
site. No experimental information is available either on
gap modes or on the fine structure of local modes in this
material. Three examples of local modes are cited by
Gaur, Vetelino, and Mitra!® drawing on experimental
work by Hayes,!® Alg,:GaSb, Pg,:GaSb, and Asg,:GaSb,
but the available spectroscopic techniques (and probably
the quality of the crystal) did not allow for resolution of
any fine structure. Of these three cases Pg,:GaSb is the
most likely candidate for having a gap mode. We find
that when only the mass change is included, the predicted
local mode frequency (321.2 cm™!) lies very close to the
measured frequency (324 cm™!), but there is no gap
mode. In order to obtain a gap mode with a simultane-
ous fit to the local mode frequency, the bond-angle force
constant 88 has to be increased to at least 5 Nm ™! with a
small compensating negative da. (The local mode fre-
quency depends principally on 8a and the gap mode fre-
quency principally on 88.) This indicates that a gap
mode is unlikely and, if it occurs at all, it will lie very
close to the bottom of the gap.

In the absence of experimental results for comparison,
we have carried out a few calculations to investigate what
fine structure might be expected in gap modes. The gap
in GaSb is narrow, lying between 161.4 and 182.9 cm !
according to the calculations. We have considered a Cg,
impurity, treated first as a pure mass defect and then
making force constant changes Sa and 883 as for C,, in
GaAs. We have used the full 15X 15 Cartesian Green’s-
function matrix found from the parametrization of the
GaSb ab initio calculations. As before, mode frequencies
are found for the five distinct nearest-neighbor isotope ar-
rangements and these give nine frequencies of which the
highest three and lowest three are averaged into single
lines, which we take to be unresolvable. For gap modes
the decay of the eigenvector with distance from the im-
purity is much slower than that for the local mode and
account should perhaps be taken of the different possible
choices of second and further neighbors, but we have
made no allowance for this. Results for the local and gap
mode five line patterns are summarized in Table I.

TABLE 1. Host isotope fine structure of local and gap modes
in '2Cg,:GaSb (frequencies in cm ™).

Mass change only

local 483.95 484.09 484.21 484.33 484.47
gap 162.23 162.34 162.46 162.59 162.73
Mass change, 5a=5.85 Nm™!, §8=9.64 Nm ™!
local 543.93 544.06 544.16 544.26 544.40
gap 165.68 165.87 166.07 166.27 166.49
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The fine structure predicted for the local mode is simi-
lar to its counterpart in C,::GaAs. The overall width is
around 0.5 cm ™!, becoming slightly narrower when the
force constant changes are introduced (principally due to
the change 83) and the pattern is almost symmetric. For
the gap mode the overall width is comparable, but be-
comes appreciably broader when the force constant
changes are added. The result that the widths for gap
and local modes are comparable is not an immediately
obvious one. The displacement of the impurity is dom-
inant in the local mode and small in the gap mode. From
this one would expect the nearest-neighbor displacements
to be of greater significance in the gap mode with a con-
sequent increase in the width of the fine-structure pat-
tern. However, this will be opposed by the reduction in
the nearest-neighbor displacement implied by the slower
decay with distance from the impurity of the gap mode
eigenvector. The fine structure for the gap mode shows
much less symmetry about the central line than that for
the local mode: the lower-frequency components are
more bunched together. This indicates that the approxi-
mate method used in some of our analysis of local mode
fine structure would not be appropriate for gap modes. It
should be noted that these gap modes lie close to the bot-
tom of the gap (161.4 cm™!). We have also investigated
the substitution of a heavier atom on the Ga site
Ing,:GaSb, which gives a gap mode nearer the top of the
gap (182.9 cm™!). Allowing only for the mass change, we
find a gap mode at 176.6 cm ! with an overall width of
about 0.3 cm™!. The smaller width in this case is to be
expected from the smaller fractional change in mass be-
tween the nearest-neighbor isotopes. The pattern is more
symmetric than the Cg, results given in the table, al-
though there is some slight bunching, this time on the
high-frequency side.

V1. CONCLUDING REMARKS AND SUMMARY

The main result to emerge from this work is that
theoretical predictions of local mode frequencies depend
to a surprisingly high degree on the model used for the
host crystals. This sensitivity follows from the differences
between the mode eigenvectors given by the various mod-
els. Even when empirical models predict lattice frequen-
cies in excellent agreement with experiment, there is no
guarantee that the corresponding eigenvectors, and hence
the Green’s functions, are correct. The same point was
made very clearly in a paper by Leigh, Szigeti, and
Tewary:?° what is different in the present paper is the
demonstration that models that have enjoyed widespread
acceptance (such as the Keating model and the BCM) can
produce such a wide range of predictions for defect mode
properties. This is perhaps most clearly seen in Sec. IIT A
where comparisons are made of predictions when only
changes of mass are included. We are forced to conclude
that, for the prediction of the properties of localized
modes at least, empirical force constant models for the
host crystal are not reliable. Only for methods based on
ab initio calculations does agreement between calculated
and measured dispersion relations provide a guarantee
that eigenvectors, and therefore Green’s functions, are
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given to comparable accuracy. This is because the fre-
quencies and eigenvectors are produced together from
the full set of force constants that are the direct output of
the ab initio calculations.

We have used standard Green’s-function techniques
(often described as the Lifshitz method) to incorporate
existing and highly successful ab initio calculations for
the dynamics of the perfect lattice into the analysis of vi-
brations in defective lattices. The elegance of the Lifshitz
method lies in its exploitation of the translational symme-
try of the perfect lattice to achieve major computational
simplifications. Applications have generally been based
on models such as the shell model or the BCM, but com-
plete first-principles calculations of defect dynamics can
also follow the same route. The first stage, finding the
perfect lattice Green’s functions, has been demonstrated
here. The remaining step would involve evaluating force
constant changes by consistent ab initio methods rather
than adjusting to fit experimental data as we have done in
this paper.

An approximate method for calculating the isotope fine
structure is tested and used to demonstrate the superiori-
ty of the ab initio Green’s functions in reproducing the
fine-structure patterns for local modes.

The same methods are then used to investigate gap
modes in AlAs and GaSb. These studies are necessarily
speculative due to the absence of experimental data, but
they indicate (a) how measurements of gap mode frequen-
cies could serve to determine force constant changes and
(b) the width of the fine-structure patterns of gap mode
lines to be expected from host isotope effects.
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APPENDIX: GREEN’S FUNCTIONS
AND FORCE CONSTANT MATRICES

Two types of Green’s-function matrix (and the corre-
sponding defect matrix) are considered in the main text:
(a) Cartesian matrices and (b) symmetry-adapted matrices
of which we generally require only the part transforming
as the vector representation I';5. These matrices are re-
quired within the defect space of the substitutional im-
purity and its four neighbors. Details of the transforma-
tion matrices relating the 15X 15 Cartesian matrices to
their symmetrized counterparts are to be found in several
places. Here we shall use the matrix transformation
given by Bilz, Strauch, and Wehner!? in their Table 22.3
corresponding to the symmetry-adapted displacements
shown in their Fig. 22.4. The symmetrized Green’s-
function matrix has block diagonal form with the follow-
ing blocks: (i) three equivalent 3 X3 blocks correspond-
ing to the three rows of the I';5 representation

G1(Fs0) Gp(Tise) Gi(Tso)
Gp(Ti50) Gpu(Tise) Gu(Thisw) |,
G13(F1510)) G23(F1510)) G33(F15:(0)

where the indices distinguish between the three oc-
currences of the representation in the labeling scheme of
Ref. 13; (ii) a single diagonal I'; element G (T j:w); (iii)
two equivalent diagonal Ty, elements G (T ,:0); and (iv)
three equivalent diagonal I',s elements G (I'y5:0).

When all four nearest-neighbor atoms are of the same
isotope with mass difference m | from the reference mass
used in the Green’s-function calculations, the full T,
symmetry is preserved. The corresponding blocks of the
symmetrized defect matrix are then

V2(—28a+8B)
V28a—8B/V2 |,
28a+8B—w?om,

The changes in nearest-neighbor force constants 8a and 83 follow the usual Keating model description and 8m,, is the

change in mass of the impurity atom.

The corresponding Cartesian matrices are readily generated by application of the transformation matrix listed by
Bilz, Strauch, and Wehner.!® This is still only for the fully symmetric isotope arrangement of nearest neighbors. For
other choices of nearest-neighbor isotopes (which result in symmetry lowering) obvious adjustments to the mass
changes in the diagonal terms have to be made, but no adjustments are made to the force constant changes.
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