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We present the results of density-functional calculations of the dielectric function and the photoelastic
tensor —the susceptibility for strain-induced birefringence —in GaAs for photon frequencies below the
direct band gap. These calculations were performed in the Kohn-Sham local-density approximation in a
pseudopotential/plane-wave scheme which includes local-field effects and self-energy corrections. We
find that traditional special-points integration methods are inadequate for performing the Brillouin-zone
integrals involved in computing the photoelastic tensor. Very high resolution of the critical point at
k =0 is needed to obtain even the correct qualitative behavior of the photoelastic tensor. Accurate ex-

pansions of the integrand in spherical harmonics for small k and plane waves elsewhere in the Brillouin
zone were obtained and an integration approach which correctly integrates the expansions was used.
Dramatic improvement in the qualitative frequency dispersion of the photoelastic tensor, in comparison
with experiment, is obtained despite a large (50%) shift of the static value away from the measurement.
We also present the result of a calculation of the internal strain relaxation associated with strains along
the bonding [111]direction. These results are in excellent agreement with two previous ab initio calcula-
tions and with recent measurements.

I. INTRQDUCTIQN

Strain-induced optical and transport properties in
semiconductors are currently of interest for their
relevance to the design and characterization of electronic
and optoelectronic devices which often, by construction,
contain built-in strain. Osbourn greatly widened the
selection of materials to be used in the construction of de-
vices based on semiconductor heterojunctions by demon-
strating that substantial lattice mismatch between the
constituent materials can be accommodated without the
formation of dislocations if the layers comprising the
junction are sufficiently thin. The resulting strain alters
the electronic structure of the materials forming the junc-
tion and as such offers the experimentalist the opportuni-
ty to tune the electronic properties of the devices for
specific applications. For example, Temkin et al. intro-
duced a Si-based photodiode which had its absorption
edge strain shifted to the 1.3—1.5-pm window of optical
fibers used by the telecommunication industry. Strained
heterojunction devices are also of fundamental interest
since often they are so small —layer thickness on the or-
der nanometers —that quantum-size effects are impor-
tant. ' In order to fully understand the interrelation be-
tween strain effects and quantum-size effects, an under-
standing of strain in bulk semiconductors is essential.

Ab initio calculations of optical properties of semicon-
ductors, and in particular the dielectric function, ' are
also currently of fundamental interest with regard to is-
sues concerning improvements to the density-functional
theory of electronic structure. ' ' Density-functional
theory ' in the local-density approximation ' (LDA),
which has become the standard method for parameter-
free calculations in solids, yields accurate results for
many properties of atoms, molecules, insulators, semicon-
ductors, and metals, but fails for the static dielectric

function in semiconductors. Results obtained using
the LDA are consistently overestimated; discrepancies
with experiments are typically between 10% and 20%.
Levine and Allan's quasiparticle theory of optical
response is based on the assumption that the overestimate
of the dielectric function is due to a related failure of the
LDA: the underestimate of band gaps in semiconduc-
tors. Their theory corrects the LDA band gap with a
rigid upward shift of the conduction bands (and a corre-
sponding renormalization of the momentum operator)
and leads to agreement with experiment to within a few
percent. Other recent attempts to go beyond the LDA
include the use of gradient-corrected functionals' and
the suggestion that density-functional theory should be
reformulated to explicitly include electronic polariza-
tion. '

The focus of the present work is the first-principles cal-
culation of the photoelastic tensor ' —the susceptibili-
ty describing changes in the dielectric tensor induced to
linear order by an applied strain —for photon energies
below the fundamental band gap in bulk GaAs. These
calculations are based on Levine and Allan's quasiparti-
cle theory of optical response. The dielectric function is
calculated for the crystal in the presence of small strains,
and the eigenvalues of the photoelastic tensor are ob-
tained by taking finite differences of the dielectric func-
tion in the strained and unstrained crystals. This theory
has been previously applied successfully to the calcula-
tion of the photoelastic tensor in Si. While excellent
results —agreement with experiment to within a few
percent —are obtained for the dielectric function using a
standard 60-point k-space integration method, the pho-
toelastic tensor in GaAs required an integration tech-
nique to confront Brillouin-zone integrals over functions
which (l) oscillate between positive and negative values,
leading to substantial cancellation; and (2) receive large
contributions from a very small volume near the point
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k =0 (the I point) in k space. The frequency dispersion
of the photoelastic tensor is extremely sensitive to the
treatment of these integrals to the extent that not even
the correct qualitative dispersion is obtained when the
60-point mesh is used. The method leads to greatly im-
proved qualitative results for the frequency dispersion of
the photoelastic tensor, as well as a 50% correction to
the static p, 2

—p» component of the photoelastic tensor
compared to results obtained using the 60-point integra-
tion method. Unfortunately the improvement of the
dispersion is only qualitatively better and the 50%
correction worsens the static value. These results do,
however, demonstrate that details of the integration tech-
nique are very important, and suggests that efFects
beyond those included in our theory, such as spin-orbit
and particle-hole interactions, are far more important for
the photoelastic efFect than they are for the dielectric
function.

The frequency dispersion of the @44 eigenvalue of the
photoelastic tensor in Si was found, in a previous calcula-
tion, to be extremely sensitive to the degree of structural
relaxation in the presence of a strain along the [111]
direction. Accordingly we have performed a careful
calculation of the internal strain relaxation using total-
energy minimization.

II. CAI.CULATIGN

~~ij JijklI kl (2)

where pkl is the strain, c., - is the inverse dielectric func-
tion, and p;kl is the photoelastic tensor. Repeated in-
dices in Eq. (2) are to be summed. The photoelastic ten-

The ground-state band structure is solved using the
local-density approximation (LDA) in a pseudo-
potential/plane-wave basis using the program of Allan
and Teter. ' A 10-Hartree energy cutofF was used for
the plane-wave expansion, and Hamann's norm-
conserving pseudopotentials ' in the Kleinmann-
Bylander separable form were used. For the exchange-
correlation functional, we used Teter's parametrization
of the Ceperley-Alder exchange-correlation data. Ten
special k points ' were used to perform the Brillouin-
zone integrals involved in obtaining the ground-state
self-consistent potential. The frequency-dependent
dielectric function was then obtained from the ground-
state energies and wave functions using Levine and
Allan's quasiparticle formulation of optical response. In
this theory the LDA Hamiltonian is modified as

0 =a"DA+a P, ,k k k ck&

where the second term is a self-energy correction, 6k is
an energy shift, and P,k is the projection operator for the
conduction states. In practice we ignore the slight k
dependence of the energy shift [0.2 eV in GaAs (Ref. 25)],
and take 6=0.8 eV as suggested by 68' calculations.
Local-Geld corrections are also included in our calcula-
tions. '

Changes in the dielectric function resulting from small
applied strains are quantified by the following relation:

sor is a fourth-rank tensor symmetric in the pairs of in-
dices I ij ] and [ kl ] since it relates two symmetric
second-rank tensors. There are only three independent
components of the photoelastic tensor in cubic crystals:
pl»1 p1122 and p2323 In what follows we will use the
compressed notation: ' ' 11—+1, 22~2, 33~3,
23—+4, 13—+5, and 12~6.

The three eigenvalues of the photoelastic tensor are
p11+2p», p» —p», and p44, which correspond to the
strain eigenvectors: uniform volume change, tetragonal
shear strain, and trigonal shear strain, respectively. Sim-
ple expressions for the various eigenvalues of the photoe-
lastic tensor in terms of strain-induced changes in the
dielectric function follow from Eq. (2), and have been de-
rived in Ref. 28. The results are

Cp C

Pii P12 2(~ / )
+ (3)

ll
E, Cg

P12 Pll=
2(5l/l)

(4)

and

II

2so(5l /l )

In the above equations c. and cp denote the dielectric
function in the strained and unstrained crystals, respec-
tively. The quantities c~~ and c~ are the components of the
dielectric function in the strained crystal associated with
light polarized in directions parallel and perpendicular to
the strain axis, respectively. In Eq. (3), 5a/a is the
change in lattice constant and 51/l in Eqs. (4) and (5) is
the change in length measured along the strain direc-
tions. For readers who wish to compare the above equa-
tions with those of Ref. 28, please be aware that Eqs. (4)
and (5) correspond to shear strains —that is, volume-
conserving strains —whereas volume-nonconserving
strains were employed in the work of Ref. 28.

Calculation of the photoelastic tensor for bulk GaAs
proceeds by calculating the frequency-dependent dielec-
tric function for the unstrained crystal, at the experimen-
tal lattice constant (a =0.5498 nm), as well as the crystal
strained in the three ways mentioned above: (1)
symmetry-preserving volume changes, (2) the tetragonal
shear strain (i.e., the volume-conserving strain along the
[001] axis), and (3) the trigonal shear strain (i.e. , the
volume-conserving strain along the [111]axis). The finite
diff'erences indicated in Eqs. (3), (4), and (5) are then ap-
plied to the calculated quantities to yield the eigenvalues
of the photoelastic tensor. We use very small strains-
5a/a =0.0004—which correspond to a stress of roughly
10 dyn/cm which is well within the linear regime of the
experiments.

In the present study it was found that, unlike the
dielectric function, the photoelastic tensor in GaAs is ex-
tremely sensitive to the sampling of the critical point at
k=-0 (the I point), demanding the use of a sophisticated
integration technique which succeeds where traditional
special-points methods fail. The dielectric function and
the photoelastic tensors are obtained in terms of
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Brillouin-zone integrals —the integrals for the latter be-
ing given simply in terms of differences of the former [as
indicated by Eqs. (3)—(5)]. The integrands associated
with the static dielectric constant and the p &z

—p» com-
ponent of the photoelastic tensor are plotted in Fig. 1 as
functions of k along the [111]direction in k space. In the
units of this figure, the zone edge (the L point) is at
k =0.886 (not shown). Along other directions in k space,
similar behavior is observed. Also indicated in the figure
are the two sampling points nearest to k =0 when a 60-
point special k-point mesh [Monkhorst and Pack's (8,8,8)
mesh (Ref. 35)] is used; these are indicated by the
upward-pointing triangles. The downward-pointing tri-
angles indicate the corresponding points when a 110-
point special-points mesh [Monkhorst and Pack's
(10,10,10) mesh (Ref. 35)] is used. We see that both of the
integrands shown are strongly peaked near k =0, and
that neither of the special-points meshes are capable of
correctly sampling these peaks.

What is not obvious from Fig. 1 is that the situation is
drastically worse for the photoelastic tensor. In the case
of the dielectric function, the peak near the I point
represents only a very small correction, and the 60-point
mesh gives accurate results. For the photoelastic tensor,
the integration of the peak at I represents a 50% correc-
tion to results obtained using the 60-point mesh (to be
verified in Sec. III). For the frequency-dependent photoe-

1.00

GaAs

lastic tensor the difhculties near I become increasingly
more severe with increasing photon frequency, and the
integrand becomes singular at the direct band gap.

In addition to the radial dependence indicated in Fig.
1, the integrand contains considerable oscillation between
positive and negative values as a function of the direction
of k. This dependence is conveniently quantified by ex-
panding in spherical harmonics as

P(k)= gC, (k)Y, (8,$),
l, m

(6)

where the radial dependence is included through the k
dependence of the expansion coefficients C& (k), and the
function P(k) is understood to be the integrand which is
being expanded. The expansion coeScients were obtained
for a set of k values by numerically evaluating the projec-
tion integral

Ci (k)= J dQ YI* (0,$)P(k, 0,$) (7)

on a spherical mesh of radius k constructed to exactly in-
tegrate the orthogonality relation

J dQ Yi* (9,$)Yi, ,(0,$)=51 i,o

for all I and I' up to some maximum which depends on
the area density of points of the sampling mesh. ' In the
above equations, the coordinates (k, 0,$) are the
spherical-polar coordinates of the vector k, and d Q is the
di8'erential of solid angle. The first eight m =0
spherical-harmonic coefficients, C& o(k), for the photoelas-
tic integrand are plotted in Fig. 2 as functions of k. The
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FIG. 1. Integrands for the unstrained dielectric function and
the p&2

—p» component of the photoelastic tensor plotted as
functions of k along the [111]direction in k space, each exhibit-
ing a peak at k =0. The curves are normalized to unity at k =0.
The positions of the nearest two mesh points of a 60-point mesh
and on a 110-point mesh are indicated by the black triangles,
demonstrating that the 60- and 110-point meshes completely
miss the peaks. The integrand for the photoelastic tensor has a
similar shape to the one for the unstrained dielectric function,
but the ratio of the k =0 value to that at the first mesh point is
an order of magnitude larger than for the dielectric function.
Numbers of special points refer to the irreducible zone in full
cubic symmetry.
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FIG. 2. Spherical-harmonic expansion coefticients C~o(k) for
the integrand associated with the long-wave, static p&2

—p»
component of the photoelastic tensor for l =0—8 as functions of
k. All CI with the same l have similar behavior. The only
term which contributes to the integral, i.e., Coo, is at least an or-
der of magnitude smaller than the higher harmonics at all but
the smallest values of k (not shown}. A uniform mesh will have
dif5culty capturing the C(x) contribution accurately. All har-
monics except C(x) vanish in the limit k —+0 at least as fast as k,
while Coo goes to a constant (Ref. 44).
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oscillatory components are at least one to two orders of
magnitude larger than Coo(k) (and thus the angular aver-
age).

Special-points methods based on the Monkhorst-Pack
scheme (uniform meshes of k points) imply a Fourier in-
terpolation of the sampled integrand. This simply means
that the sampled function can be written as a plane-wave
expansion which is exactly integrated by the special
points. More explicitly, if we expand an arbitrary @-

space function P (k) as

P(k)= —g C eP
P

then the discrete orthogonality relation

g (e ' ')*e ' '=%5
k.

(10)

is satisfied, when evaluated on a uniform mesh of k points
k, for all p and q up to some maximum value. In Eq.
(10), N is the number of k points and the R's are direct-
space lattice vectors which are simply used here as formal
expansion parameters and have no further physical
significance. The expansion coe%cients C in Eq. (9) can
be evaluated in terms of the sampled integrand by using
Eq. (10) to project an approximation C as

C~= g(e ' ')*P(k, ) .
k.

A. The I -point region

Outside of a small spherical region centered around
k =0 which occupies roughly 2% of the zone volume, the
integrand is well represented by a plane-wave expansion
and can thus be accurately integrated using a suKciently
dense uniform mesh of k points. Inside the spherical re-
gion only CIIII(k) leads to a nonvanishing contribution to
the volume integral of P(k). Since the Coo(k) component
is proportional to the spherical average of P(k) over a
sphere of radius k, we define the radial function p(k) as

&4~k'C„(k)
(k)— (12)

where VBz is the Brillouin-zone volume. We then write
the three-dimensional integral of P(k) over the volume of
a sphere of radius k, I,„, in terms of a one-dimensional

If the sampling mesh is chosen to be sufTiciently dense
such that Eq. (10) is satisfied for all p in the expansion of
Eq. (9), then Eq. (11) exactly gives the expansion
coefficients C .

By substituting the approximate expansion coefficients
C„ into the plane-wave expansion of Eq. (9), we obtain an
approximation P(k) to the desired function P(k) at any
arbitrary k based on the known values P(k~ ) on the sam-
pling mesh. We say that the function P(k) is obtained by
Fourier interpolation from the values on the sampling
mesh. The function P(k) is used in what follows to
ascertain the e6'ectiveness of the uniform integration
mesh for various regions of the Brillouin zone.

Masking f

C)
C)C)

Radial function for photoelastic integrand

+o W
~Q"

1E * spherical meshes
o interpolated from 1012 special pts

/ & interpolated from 182 special pts

C)

CV

C)
I

I

:)/
I *+

C3 I I I I I I I I

I 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
k (units of 2~/o)

integral over the radial function:

d k P(k)= J dk p(k) .
0

1

~gz sphere
(13)

The radial function p(k) and two approximate radial
functions p(k) [defined with C~(k) substituted for Coo(k)
in Eq. (12)] obtained using Fourier interpolation from
two uniform meshes —one more dense than the other-
are plotted in the lower panel of Fig. 3. When the
lower-density uniform mesh is used, agreement between
p(k) and P(k) is obtained for k )0.35(2~/a ). When the
more dense uniform mesh is used, agreement is obtained
for k )0.2(2ir/a).

B. Two-mesh integration technique

Our integration method employs a hybrid description
in which the small-k region is represented by spherical-
harmonic expansions, and the rest of the zone is
represented by plane-wave expansions, with a smooth
transition between the two descriptions provided by a
masking function g(k). In other words, we write the k-
space volume integral of P(k) as

FIG. 3. Masking function g(k) [upper panel, Eq. (15)] and
converged radial function [lower panel, Eq. (12)] for the in-
tegrand associated with the static p&2

—p» component of the
photoelastic tensor neglecting local fields, compared with two
approximate radial functions. Agreement between the con-
verged and approximate radial functions in the region not
plotted —out to the zone edge at the L point [k =0.886(2Ir/a)
in these units] —is better than 99%. For a given approximate
radial function, the number given in the legend is the equivalent
number of points in the irreducible Brillouin zone for full cubic
symmetry of the uniform mesh used to construct the Fourier-
interpolated radial function. For the higher-density uniform
mesh (1012 points in the irreducible zone) the exact and approx-
imate radial functions match for k )0.2 (units of 2w/a) and for
the lower-density uniform mesh {182 points in the irreducible
zone) for k )0.3S.
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f d k P(k) = fd'k P(k)g(k)

+ f d'k P(k)[1—g(k)], (14)

1O5

Convergence of spherical —harmonic expansion

where we have simply added and subtracted the integrals
involving the masking function g(k). The first integral on
the right side of Eq. (14) is evaluated on a uniform mesh
of k points (special points), and the second term is evalu-
ated on concentric spherical meshes (with appropriately
chosen weights) which were used to project the radial
functions of Fig. 3. The function g(k) was chosen to
smoothly go from 0 to 1 in some range k' & k & k", which
is chosen such that for k)k" the integrand is smooth
enough to be integrated using the special points and for
k (k' the integrand is more efficiently integrated on the
spherical-shell meshes. For k' & k & k" both descriptions
must be adequate. The function g(k) is plotted in the top
panel of Fig. 3 and is defined as

g'(k) = —1+tanh
1

2
bx

(15)

C. %hf 80 pOlnts on eRch sph81'leal shcHP

where x goes linearly from —1 to 1 in the range from
k' «k «k". For k «k', g(k) =0, and for k ~ k" g(k) = 1.
The results are almost completely insensitive to the
choice of b in the range 0.05 & b & 20.

Ultimately we wish to have an integration method
which requires the smallest number of points. It is more
difficult to converge the radial function by directly sam-

p1ing with the spherical meshes as we go to progressively
larger k. For this reason, the extra computational ex-
pense involved in using 1012 special points instead of,
say, 182 is o6'set by the savings of needing fewer spherical
meshes. The method used to produce all results is based
on the use of 1012 special points, which uniformly span
the irreducible Brillouin zone, in conjunction with 11
spherical shells, at the k radii indicated in Fig. 3, each
having 80 points on the shell section in the irreducible
Brillouin zone, plus one point at k =0, for a total of 1893
points in the irreducible zone.

The degree of difficulty in integrating the small region
near k =0 is exemplified by the fact that we need 881
points to span this region, which accounts for roughly
2% of the zone volume (as determined by performing a
volume integral over the masking function and dividing
by the total zone volume) as compared with the rest of
the zone which is adequately sampled by 1012 special
points. As we wi11 see, order-1 corrections come from the
small region surrounding k =0.
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FIG. 4. Spherical-harmonic coefficient CIO, for the expansion
of the integrand associated with the static p» —p» component
of the photo elastic tensor, at three radii in k space:
k =0.01(2m/a) (the smallest spherical mesh radius), 0.25(2m/a)
(the midpoint of the matching region), and 0.45(2m/a) (largest
radius used for computing the radial function), plotted as a
function of l. For each radius, the expansion is considered to be
converged when the magnitude of the coefficient with highest
values of l is at least an order of magnitude smaller than the Coo
coefficient. For the smallest value of k, the expansion is well
converged by l =8. To converge the expansion for
k =0.25(2~/a) and 0.45(2m/a) requires l =30 and 50, respec-
tively.

region, and a point beyond the larger endpoint of the
matching region, respectively —typify the convergence of
Eq. (6). Higher I are needed to converge the expansion
for larger k. For example, the curve for k =0.25 was ob-
tained with 80 sphere points in the irreducible cubic Bril-
louin zone, whereas 624 points were needed to obtain the
curve for k =0.45. Fortunately, it was found that the er-
ror incurred when using the 80-point mesh to obtain
Coo(k =0.45), rather than using the 624-point mesh, was
quite small, on the order of 1%. Similar accuracy was
obtained for all Coo(k) with k «0.45 using the 80-point
mesh. For this reason, the 80-point meshes were judged
to be sufficiently accurate to converge the radial function
for all k used to define the I -point region, as described in
the preceding paragraphs. The hl =10 periodicity ob-
served in CIO(k =0.45) in Fig. 4 is unexplained. An in-
depth description of the calculational procedures and re-
sults can be found elsewhere.

The radial function p(k) is obtained at each k from the
Coo(k) coe%cient of the spherical-harmonic expansion,
the expansion of which is judged to be converged when
enough terms have been included such that the
coefficients C& with the largest values of l are smaller
than Coo by a factor of 10. The behavior of the expan-
sion coefficients C&o as a function of I is plotted in Fig. 4
for three characteristic values of k: 0.01, 0.25, and 0.45
(in units of 2m. /a). These values —the smallest value used
in the calculation of p(k), the midpoint of the matching

III. RESULTS

Results for the photoelastic tensor obtained using the
two-mesh integration technique, compared with results
obtained using the special-points method, show a dramat-
ic improvement in the frequency dispersion of the pho-
toelastic tensor as well as a large correction to one of its
static components. Comparison with experimental re-
sults, also shown in Figs. 5 —7, will be discussed in Sec.
IV. Results for the p&2

—p» component are plotted in
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FIG. 5. Best results (two-mesh method) for the frequency-
dependent p» —p» component of the photoelastic tensor com-
pared with four sets of experimental results and contrasted with

the results obtained using uniform 60 and 110 k-point meshes.
Local-field corrections are included. The near-I -point contri-
butions lead to a large correction to the static value as well as
greatly enhanced dispersion. Note that the similarity between
the 60- and 110-point results would ordinarily lead one to con-
clude that convergence had been reached. The experimental
references are as follows: HC (Ref. 40), GPPY (Ref. 64), NM
(Ref. 65), and FH (Ref. 66).

FIG. 7. Best results (two-mesh method) for the frequency-
dependent p» +2p» component of the photoelastic tensor (cor-
responding to hydrostatic strain) with and without local-field
effects, contrasted with underconverged (60 k-point density) re-
sults. The 60 k-point density —60 k points in the irreducible
zone with full cubic symmetry —is sufhcient to converge the un-

strained dielectric function to within 1%. This and the previous
two figures demonstrate the dramatic role played by the I -point
contributions.
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FIG. 6. Best results (two-mesh method) for the frequency-
dependent —

p44 component of the photoelastic tensor with and
without local-field effects, contrasted with underconverged (60
k-point density) results and compared to three sets of experi-
mental results. These results are similar to those for the
p» —p» (Fig. 5) and p»+2p» (Fig. 7) components in that the
dispersion is greatly enhanced when I -point corrections are
correctly handled. The p44 component is similar to p»+2p»
and unlike p» —p» in that there is very little change in the stat-
ic limit when the I--point region is correctly integrated. The ex-
perimental references are as follows: HC {Ref.40), GPPY (Ref.
64), and NM (Ref. 65).

Fig. 5. The results obtained using the 60- and 110-point
special k point sets do not even give the correct qualita-
tive behavior; the dispersion is too fi,at and there is no iso-
tropic point (i.e., a frequency at which the photoelastic
tensor vanishes and the dielectric tensor becomes isotro-
pic). In addition, the two uniform meshes (60 and 110
special points) produced a static value 50% larger than
the two-mesh result. The change upon convergence is
seen to be entirely due to the improved treatment of the
I -point region (see Fig. 3). These results demonstrate the

Number of k points
in irreducible zone Ace=1.25 eV

60
110
182
280

1012
two-mesh

0.0571
0.0575
0.0517
0.0515
0.0424
0.0382

0.0230
0.0175
0.0001

—0.0045
—0.0587
—0.1799

TABLE I. Convergence study of the p» —p» component of
the photoelastic tensor showing very slow convergence using
conventional special k-point methods; especially poor is the
value for %co=1.25 eV. The number of k points for each entry
is the equivalent number of points in the irreducible Brillouin
zone with full cubic symmetry. The entry designated two-mesh
was obtained using our approach utilizing spherical meshes
near k =0 in combination with a dense (1012 points) uniform
mesh. The k =0 region is extremely important for the correct
description of the dispersion.
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TABLE II. Summary of the LDA results for the dielectric
function and the three independent components of the photoe-
lastic tensor, calculated using 60 special k points, with and
without local-field correlations compared with the correspond-
ing self-energy-corrected quantities and experimental results.
The local-field effects and self-energy corrections both change
the dielectric function in the same way, improving the agree-
ment with experiment, whereas for the photoelastic tensor only
self-energy corrections tend to improve the agreement with ex-
periment while local-field corrections worsen the agreement.
There are no experimental static values f'or p» —p» and p44, so
the experimental results listed are the values for the lowest mea-
sured photon energy: 0.056 eV.

6=0 6=0 6=0.8 eV 6=0.8 eV
No Loc No Loc

loc fields fields loc fields fields Expt.

effectiveness of our approach, in which convergence is
achieved once the radial function p(k) is converged
throughout the zone. In contrast, the special k point
method yields results that give the appearance of
convergence —hardly changing when the mesh density is
increased —yet are, in fact, underconverged.

The slow convergence of p, 2
—p» obtained using spe-

cial points is illustrated in Table I. Upon increasing the
density from 60 to 110 points, significant changes result
only for the highest frequencies. In fact, even at the
uniform-mesh (special point) density used in the two-
mesh method (1012 points), the static value is still overes-
timated by roughly 11%. Contributions from the small-k
region become more important as the frequency is in-
creased, and are seen as the source of the dispersion. The
slow convergence obtained using special points is a symp-
tom of the fact that the localized features of the in-
tegrand, as illustrated in Figs. 1 —3, are inaccurately sam-
pled even by a dense mesh of special points.

The results for the @44 component, plotted in Fig. 6,
show similarities to those for p&2

—
p&&. The undercon-

verged results are too Aat and have no isotropic point;
when converged, the small-k part of the zone makes its
greatest impact for the largest frequencies, leading to a
better qualitative description of the dispersion. One not-
able difference, however, concerns the static value—
almost no change is obtained upon convergence. The
agreement between the converged result for the static
value of p~ and that obtained using special points is for-
tuitous, and is due to cancellations of errors.

The last independent component of the photoelastic
tensor, p»+2p, 2, is plotted in Fig. 7; unfortunately no
frequency-dependent measurements were available for
comparison. Table II reports a measurement of the static
p»+2@,2 component. As was the case for @44, little
change in the static value is obtained when the two-mesh
method is used for the same reasons: cancellation of er-

13.5

1 3.0

1 2.5

~o
Pp

&oo
& ooo

ooo
o d-)

11 0 r- —~~o o

1 2.0

3 11-5

10.5
exp: Higginbotham et al.
theory: 60 kpts (local fields)

* theory: two —mesh (local fields)

9.5
0 0 0 2 0.4 0 6 0 8 1 0 1 2 1 4 1 6~ (eV)

FIG. 8. Results for the frequency-dependent unstrained
dielectric function with local-field effects, demonstrating k-point
convergence with 60 k points, compared with experimental
measurements. The results designated as two mesh are produced
using this integration approach, which was required in order to
converge the photoelastic tensor. A slight improvement in fre-
quency dispersion is obtained with the two-mesh technique,
representing roughly a 4% increase in the dielectric function at
%co=1.25 eV, while the static value changes by less than 1%.
The experimental results were taken from Ref. 40.

rors. As before, the dispersion is greatly altered using the
two-mesh method.

Despite the fact that our method samples the Brillouin
zone more eSciently, by providing a sampling mesh
which is far more dense in the small-k region than it is
throughout the rest of the zone, roughly an order of mag-
nitude more points are required to achieve convergence
for the photoelastic tensor than are required to converge
the dielectric function. Figure 8 compares the dielectric
function for frequencies below the direct gap (A'co, = 1.5
eV), obtained with the two-mesh method, with experi-
mental measurements and with results obtained with 60
special points. Unlike the photoelastic tensor, the dielec-
tric function is well converged —to within 1% at Aco=0
eV and to within 4% at %co=1.25 eV—using just 60 k
points. The two-mesh method, on the other hand, re-
quires 1893 points, with 881 of these points concentrated
in the region 0~k ~0.35(2m. /a) which represents less
than 2% of the volume of the Brillouin zone. Thus the
dominant strain-induced changes in the integrand for the
dielectric function are associated with states near the
zone center.

P12 P11
p44

p11+2p12

13.49
0.027
0.048
0.42

'Reference 62.
Reference 40.

14.17
0.016
0.042
0.45

11.51
0.057
0.061
0.35

10.97
0.047
0.055
0.38

10.92'
0.058'
0.066"
0.2'

A. Self-energy corrections

Self-energy corrections 6 are important for obtaining a
good qualitative description of the frequency dispersion
and the static values for both the dielectric function and
the photoelastic tensor. For the photoelastic tensor
(dielectric function) the effect of the self-energy correc-
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tion can be summarized as follows: increasing 5 in-
creases (decreases) the static value of the photoelastic ten-
sor (dielectric function) and makes it less dispersive by
moving the singularity to higher frequencies. This
behavior is easily understood by considering the in-
tegrands associated with the photoelastic tensor and the
dielectric function. Schematically, the contribution to
the frequency-dependent integrand for the photoelastic
tensor or the dielectric function arising from the lowest-
energy transitions is written as

f(k)[E, (k)+b, ]

leo —[E,„(k)+b,] IE, (k)
(16)

where E, (k) is the direct gap at k, and f(k) represents
the associated squared momentum matrix element in the
case of the dielectric function or a di6'erence of such
squared matrix elements in the case of the photoelastic
tensor. Equation (16) implies that changes in the static
integrands are of the form

dg(k) g(k)
db, [E, (k)+b, ]

(17)

where g(k) represents either the integrand associated
with the photoelastic tensor P(k) or the dielectric func-
tion e(k). Contributions from k =0 have the largest
e6'ect since the energy denominators are the smallest.
Equation (17) implies that the k =0 contributions are re-
duced in magnitude with increasing A. For the dielectric
function, whose integrand is everywhere positive, an
overall reduction with increasing 6 is implied. For the
photoelastic tensor, whose integrand is negative for small
k and positive for larger k, the decrease in the k =0 re-
gion implied by Eq. (17) results in an overall increase in
the static value.

B. Internal-strain relaxation

Our calculated results for the internal-strain-relaxation
parameter g are in good agreement with other ab initio
calculations, ' estimates using empirical potentials,
and recent experimental measurements. The applica-
tion of a strain along the [111] direction (trigonal
strain) —as is required for the calculation of the p44 com-
ponent of the photoelastic tensor —destroys the
equivalence between the tetrahedral bonding directions
and allows for a structural relaxation between the two
face-centered-cubic (fcc) sublattices which comprise the
zinc-blende structure. Kleinman" ' ' defined the internal
strain parameter g such that (=0 corresponds to the sit-
uation in which there is no relaxation and all atomic posi-
tions are rigidly strained, while g= 1 corresponds to the
situation in which a relaxation occurs such that all of the
bond lengths are the same and assume their original un-
strained length (&3a /4). In terms of this definition, for
(=0 bond lengths assume the values (&3a /4)(1+2ii/3)
for the strain direction and (&3a/4)(1 —2il/6) for the
other three formerly equivalent directions, where g is the
magnitude of the strain.

The strain parameter g is defined in terms of the [111]
volume-conserving component of the strain as only this

Present work ( ab initio)
Present work (empirical)'
Expt. '
Expt. '
Calc.
Cale. '
Calc. '

'Reference 44.
Reference 50.

'Reference 63.
Reference 49.

"Reference 48.
'Reference 67.

0.517
0.53
0.55+0.02
0.76
0.528
0.48
0.6

(trigonal shear strain) component lowers the symmetry
and permits the relaxation. The strain parameter is a
fundamental property of the material and characterizes
the relative importance of two- and three-body forces. In
other words, if only pairwise nearest-neighbor atomic in-
teractions were important then g= 1 would hold and all
bond lengths would be equal. However, in the other ex-
treme limit, if only bond angles were important then
g= —

—,
' would hold and all bond angles would be equal.

In general, g takes on some intermediate value. In our ab
initio calculations, g is determined by total-energy minim-
ization. The parameter g was also estimated analytically
using Stillinger-Weber (two- and three-body) empirical
potentials by assuming an infinitesimal strain and ex-
panding the potentials about the equilibrium (unstrained)
configuration. ' The results for this parameter are
summarized in Table III. Good agreement with the previ-
ous calculations ' and recent experiments is found.
Our ab initio g, presented in Table III, was used in all cal-
culatiqns ofp44.

IV. DISCUSSION

The oscillations in the integrand at small k associated
with the photoelastic tensor arise from corresponding os-
cillations in the integrand for the unstrained dielectric
function. Using second-order k p theory, we have de-
rived an analytical expression for the integrand associat-
ed with the dielectric function, which is expressed as a
power series to second order in k. This expression was
cast in the form of a spherical-harmonic expansion, and
expressions for the expansion coe%cients CI (k) for i ~ 6
were extracted.

A fairly simple interpretation for the oscillations in the
integrand near k =0 has emerged from this analysis: the
valence eigenstate of crystal momentum k is a p orbital
aligned along the direction of k having the spatial depen-
dence

TABLE III. Calculated results for the internal strain parame-
ter g in comparison with experimental and previous calcula-
tions. Our result was calculated by minimizing the total energy
with respect to g for a strain of magnitude 51/1 =0.004, where 1

is any length measured along the [111]direction.

Source
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fk(r) ~k r .

The squared optical matrix element thus has the k depen-
dence (k p), where p, the momentum operator, lies
along the polarization direction of the incident light field.
The angular part of this k dependence can be expressed
as a spherical-harmonic expansion using only spherical
harmonics of order l =0 and 2. The energy bands for
small k obey cubic symmetry and therefore can be writ-
ten as a similar expansion keeping only terms of order
I =0 and 4. The complete derivation and explicit expres-
sions for the spherical-harmonic coefficients Ci (k) up to
l =6 are given in Ref. 44.

For l =4 and 6 the analytic expressions are simple
enough —all proportional —so that comparisons can be
made in the form of ratios of the various components.
The ratios Ci /C& at k =0.01(22r/a), as obtained us-

ing the analytical expressions, are compared in Table IV
with ab initio results. Good agreement is obtained for the
higher harmonics, whereas the agreement for the lower
harmonics is less satisfactory. This is consistent with the
behavior of the spherical-harmonic coefficients for the
photoelastic tensor as illustrated in Fig. 2: the larger the
value of l the less important are the effects of terms of or-
der k and higher. This follows from the fact that the po-
sition of the maximum of Ci (k) moves to larger k with
increasing l. Our treatment, which only includes terms
to order k, and no linear term, cannot be expected to
adequately describe Czo (k ) (Fig. 2) near its maximum.

Comparison of the spherical-harmonic expansion
coefficients of the integrand for the dielectric function
(Table IV) with those for the photoelastic tensor (Fig. 2)
substantiates that the oscillations in the integrand for the

TABLE V. Spherical-harmonic expansion coefficients for the
difference [xx I

—[zz] of the components of the integrand asso-
ciated with the static, long-wave dielectric function at
k =0.01(2w/a) (the experimental lattice constant a =10.6807
a.u. ), with and without strain. This difterence is relevant to the
eigenvalue of the photoelastic tensor under [001] strain

p» —p», since p» —p» c,„—c„.These results were numeri-
cally projected from the results of ab Inj', tio calculations. The
first column gives the unstrained results, while the second
presents those obtained under strain. The Coo coefficient (which
is the only one which contributes to the integral) becomes
nonzero under strain yet remains at least an order of magnitude
smaller than some of the higher-l coefficients.

Coefficient

Coo

C2o

C4o

C44

C6o

&64

xx —zz (unstrained)

0.0
15 110.8

64. 1
—53.7
—3.9
—1.0

xx —zz ([001] strain)

—2007.6
15 200.1

57.6
—53 ~ 1
—4.0
—1.0

photoelastic tensor arise from corresponding oscillations
in the dielectric-function integrand. This is further
confirmed in Table V, which compares the expansion
coefficients of the difference c. , (k) —e„(k) in the
strained and unstrained crystals [we are assuming strain
along the z axis; see Eq. (4)], showing similar oscillations
in both situations. Since

P&z 5'» ~~x ~zz ~ (19)

we conclude that the oscillations arise not as a result of
the strain but are intrinsic to the dielectric function.

I C4o /C42 I

I &4o /C441
I C44 /C42 I

I C6o /C4o I

I C6o /C62 I

I C6o«64I
I C6o /C66 I

I &62/+641
I C62/C66 I

I C62/C66 I

k p (analytical)

7.50
1.43
5.23
0.10
1.42
3.79
0.93
2.70
0.66
0.24

Calculated

1.43
0.89
1.60
0.02
1.42
5.28
0.96
3.73
0.67
0.18

TABLE IV. Comparison of analytical [using second-order
k p theory (Refs. 44 and 56)] and ab initio results for the
spherical-harmonic coefficients of the integrand associated with
the [xx I component of the unstrained long-wave static dielec-
tric function at k =0.01(2m./a). Comparisons are presented as
ratios of the various coefficients. All ratios are of the same or-
der of magnitude, indicating that the analytical treatment gives
an accurate description of the qualitative features of the small-k
integrand. The ratios for most of the l =6 coefficients are in ex-
cellent agreement, indicating that terms of order k' and higher
are small for these coefficients. The discrepancies for the
lower-l coefficients indicate that terms of order k' and possibly
higher are not negligible, as can also be inferred from Fig. 2 (the
low-l coefficients in Fig. 2 have maxima for small k, indicating
the importance of higher-order powers in k).

A. Comparison with experiment

Figures 5 and 6 demonstrate that while the improved
calculation yields better qualitative agreement with ex-
periment for the frequency dispersion of the photoelastic
tensor, the quantitative agreement is less than satisfacto-
ry. In a previous calculation for Si, the less-than-
satisfactory dispersion of the photoelastic tensor near the
lowest direct gap in Si may have resulted from inade-
quate k-point sampling. Si is qualitatively different, how-
ever, in that the lowest-energy transitions at I are forbid-
den in Si; the allowed transitions at I are higher in ener-

gy than the average band gap and are thus suppressed (by
the energy denominators) compared to other transitions.
Thus, unlike the small-direct-gap material GaAs, in
which transitions near the I point dominate the disper-
sion, the dispersion in Si cannot be attributed to a single
region in k space. This disparity between direct- and
indirect-gap materials is not limited to Si and GaAs.

For GaAs as well as Si the self-energy-corrected results
are greatly improved over the LDA (b, =0) results (see
Table II); the LDA predicts static values for the photoe-
lastic tensor (dielectric function) which are too low (too
high) by roughly 10% (30%) and the singularity in the
frequency dispersion is too low in energy. The photoelas-
tic tensor is far more sensitive to 6 than is the dielectric
function —a direct consequence of the increased impor-
tance of the region near k =0 for the photoelastic tensor.
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While 6=0.8 eV gave excellent results for the frequency
dependence of the dielectric function (see Fig. 8), the fre-
quency dependence for the photoelastic tensor calculated
with 6=0.8 eV—the gap suggested by 68'
calculations —is slightly too dispersive (compare Figs. 5
and 6), and b, =0.94 eV—the 6 which aligns the k =0
with the experimental gap —yields a slight improvement
in the dispersion.

Local Gelds give rise to substantial corrections for both
the dielectric function and the photoelastic tensor but,
while the dielectric function improves in comparison to
experiment, the photoelastic tensor worsens (see Table
II). Local fields improve the dielectric function by reduc-
ing it by roughly 5% over the LDA, yielding agreement
to within a few percent of the experiments over the entire
frequency range below the direct band gap. These
frequency-insensitive corrections are, however, fairly sen-
sitive to the strain state of the crystal, as can be seen in
Figs. 6 and 7; there would be no local-Geld corrections to
the photoelastic tensor if each component of the dielec-
tric function had the same local-field correction in the
presence of strain. In both cases for which experimental
results exist —p44 (Fig. 6) and p, 2

—p» (Fig. 5)—the
effect of local Gelds is to worsen the agreement with ex-
periments by roughly 5%%u~, with the magnitude of the
correction becoming slightly larger as the band gap is ap-
proached.

Our results for the photoelastic tensor in GaAs, while
converged within our one-electron theory, are less satis-
factory in comparison with experiment than we have
come to expect (agreement to within a few percent ), indi-
cating that effects outside of our theory such as spin-
orbit, particle-hole, and thermal effects may be
significant. In light of recent calculations for the photoe-
lastic effect in Si, it seems unlikely that the inclusion of
particle-hole (exciton) and thermal effects will improve
the agreement with experiment. In Ref. 28 it was argued
that excitonic effects and thermal effects could be crudely
modeled by reducing the self-energy correction by one to
two tenths of an electron volt. A reduction in the self-
energy correction 6 reduces the static value and makes
the frequency dependence more dispersive. In the Si cal-
culation the results were slightly too high and less disper-
sive than the measurements implying that a reduction in
the self-energy correction would improve the results. For
GaAs, however, we are faced with the opposite situation
and a reduction of the self-energy correction would wor-
sen the agreement with the data.

Spin-orbit effects hold more promise for reducing the
discrepancies with experiment. The derivation of the en-
ergies and wave functions near k =0 using k.p theory has
been carried out both with and without the inclusion of
spin orbit. The integrands for the dielectric function
and the photoelastic tensor are altered significantly in
two ways: (1) inclusion of spin orbit alters the symmetry
of the Hamiltonian resulting in strain-induced contribu-
tions to the matrix elements; and (2) the energy denomi-
nators are shifted —one band shifts downward in energy
by 24„/3 and the other two bands shift upward by
6„/3, where 6„=0.34 eV is the experimental spin-orbit
splitting. '

Estimates made using the k-p energies and wave func-
tions indicate that the magnitude of the k =0 integrand
for the dielectric tensor is reduced by 24%%uo, and the in-
tegrand for the photoelastic tensor is reduced to 40%
when spin orbit is included. A crude estimate of this
effect on the entire integral would be to assume the I"
contribution to each integral to be equal to the difference
between the two-mesh result and the 60-point result. The
static 60-point result for p &z

—p & &
was roughly 50%

larger than the two-mesh result, as illustrated in Fig. 5.
Assuming this difference to be reduced by 40% upon in-
cluding spin orbit implies that the photoelastic tensor
component p &z

—p» would be increased by 20%. For the
dielectric function, the I -point contribution is only on
the order of 1%, so the overall effect of including spin or-
bit at k =0 is to increase the static dielectric constant by
less than 0.25%%uo over the two-mesh static value.

V. SUMMARY

We have presented results of calculations of the pho-
toelastic tensor for photon energies below the fundamen-
tal band gap in GaAs. A numerical problem has been
solved which arose out of the need to accurately perform
Brillouin-zone integrations over functions which are os-
cillatory in the angle k and sharply peaked as a function
of the magnitude k near the I point. Traditional special
k-point methods were found to be inadequate to sample
this very important region. An integration approach has
been presented which overcomes the numerical
difhculties and leads to a dramatic improvement in the
qualitative frequency dispersion of the photoelastic tensor
in comparison with experiment despite a 50% shift of
p &z

—p & &
away from the measurement. These large

corrections are seen to come almost entirely from a small
neighborhood of the k =0 point which comprises less
than 2% of the zone volume.

The energy bands and wave functions near k =0 have
been investigated using second-order k.p theory, demon-
strating that the angular oscillations associated with the
photoelastic integrand are directly related to correspond-
ing oscillations in the integrand for the dielectric func-
tion. While inclusion of spin orbit seems promising for
reducing the discrepancies between theory and experi-
ment, it is argued that particle-hole and thermal effects
would tend to worsen the agreement with experiment.
Self-energy corrections and local-Geld effects were shown
to have a significant effect on the results.

In summary, we have shown that the photoelastic ten-
sor in GaAs is extremely sensitive to details of the elec-
tronic structure near k =0 and as such should provide a
stringent test for improvements to electronic structure
theory.
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