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Electronic properties of icosahedral systems: Energy spectrum, wave functions,
and dc conductance
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The electronic properties of three-dimensional quasicrystals in the icosahedral Danzer model
are calculated by using tight-binding Hamiltonians for a vertex and a center model of a finite
system. Results are compared with calculations on the two-dimensional Penrose lattice. The energy
spectrum, wave functions, and Fermi-energy dependence of the dc conductance at zero temperature
are analyzed. Different types of states are found. Most of the states are not degenerate or weakly
degenerate and show low conductance. Some very highly degenerate states have zero conductance
suggesting that they are strongly localized. By integrating the zero conductance over the Fermi
distribution we show that very small differences in the Fermi energy of the system can cause a
completely different temperature dependence of the conductance.

I. INTR, QDUCTION

Since the discovery of thermodynamically stable
face centered icosahedral (FCI) phases of high qual-
ity quasicrystals (such as A1PdMn, A1CuFe), anoma-
lous transport properties have been observed on these
materials, such as electrical resistance up to some
10000 pOm, strong dependence of the conductivity on
the exact chemical stoichiometry, and a negative tem-
perature coefIicient of the resistivity. The mechanism un-
derlying this anomalous behavior is not well understood.
Zero magnetic field results were fitted to weak local-
ization theories with spin-orbit scattering and electron-
electron interaction. ' On the other hand, positive mag-
netoconductance data are in convict with weak localiza-
tion theory. Experimental data of AlCuFe and AlPdMn
quasicrystals and approximaIit phases have been fitted
as o(T) = o'4~ +'bo'(T), where the a'41' term varies
strongly with the composition of the samples, whereas
the bo(T) term has been found to be independent of the
sample. This activated behavior has been interpreted by
a hopping mechanism between structural entities sepa-
rated by about 30 A. .s

The existence of a pseudogap near E = E~ (E~ Fermi
energy) in analogy to Hume-Rothery alloys is generally
accepted and confirmed by ab initio calculations. It was
suggested, that physical properties may sensitively de-
pend on the position of the Fermi energy. ' This may
explain the observed different temperature dependence
of the conductance of quasicrystalline and approximant
phases of nearly the same stoichiometry. The difI'erence
of the Fermi level of these phases is expected to be very
small. But this is obviously large enough to change the
behavior of the conductance completely.

Recent experimental results on the conductivity of high
quality FCI-type quasicrystals show an enhanced insu-
latorlike electron transport behavior of thermally tuned
Al-Pd-Re quasicrystals. These findings add evidence for

quasiperiodic order effects on transport properties of high
quality (typical FCI) quasiperiodic systems.

Numerical investigations on 1D (one-dimensional) ~4 ~

and 2D (Refs. 17 and 18) systems have shown that the
eigenstates are critical, that means the decay of the enve-
lope follows a power law. The critical character of these
wave functions has been related to the competition of
the absence of periodicity, which leads to localized eigen-
states, and the repetivity~s (often refered to as Conway's
theorem), which causes resonances between equivalent lo-
cal configurations.

The purpose of this paper is to investigate the con-
ductance of a 3D FCI-type quasiperiodic system. Most
of the published results are on 1D (Refs. 14—16) and 2D
(Refs. 17 and 18) systems. The density of states (DOS)
and eigenstates for a 3D Amman-Kramer lattice have
been investigated, using Bethe lattices to terminate the
finite patches. A smooth DOS and delocalized states
have been found on this simple cubic icosahedral (SCI)
lattice, which describes the more defective Al-Mn phases.
These phases d.o not exhibit such drastic effects on elec-
tronic transport properties as the nearly perfect of FCI
type.

We are interested in the character of the states and.
the temperature dependence of the conductance of our
model. Due to numerical limitations, the size of the
3D system is restricted to some thousand atoms. Us-
age of a finite cluster model raises the question of the
in8uence of the boundary conditions. To study the ef-
fect of boundary conditions, we compare the results for
semiperiodic 2D Penrose strips~ and finite strips of 2D
Penrose patterns with open boundary conditions. We
find that the states in the low energy region are more
sensitive to the boundary conditions than those in the
higher energy regions. The same behavior is expected.
for the 3D model. The temperature depend. ent conduc-
tance of the 3D model strongly depends on the position
of the Fermi energy, which serves as a parameter in our
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study.
The paper is organized as follows: In Sec. II, the

structural models are introduced and the basic equations
of the multichannel Landauer formula are outlined.
The DOS of the difFerent models is discussed in Sec. III
as well as the nearest-level spacing distribution P(s) for
the icosahedral vertex model. Results on 2D and 3D sys-
tems are presented in Sec. IV. Section V contains a
short summary and concluding remarks.

II. MODELS AND COMPUTATIONAL
PROCEDURE

A. Models

For 2D Penrose lattices (Pl ), we use widely the same
model as Tsunetzugu and Ueda with the only exception
of open boundary conditions instead of periodic ones,
because we want to study the inhuence of the boundaries
on the conductance. In the case of the Penrose lattice,
it is possible to introduce a semiperiodic approximant,
which describes the same local atomic configuration as
the real PL, except of only two defects per unit cell.

For the 3D model introduced below, di8'erent approx-
imants can be constructed. But they all should include
typical interesting clusters of a real icosahedral quasicrys-
tals. Such approximants are, however, to large for nu-
merical calculations. Therfore, only open boundary con-
ditions are used for the 3D model. Tsunetzugu et al.
studied the center model of the PL, where atomic 8

orbitals are placed at the center .of each rhombus and
unique hopping integrals are assumed between rhom-
buses, which share an edge.

In our study, we also consider the vertex model of the
PL, where the atomic sites are placed at each vertex and
hopping integrals do exist between vertices, which are
connected by an edge. Both the center and vertex models
are described by a single band tight-binding Hamiltonian,
introduced and well discussed in Ref. 17.

We restrict our investigations on 3D quasicrystals
(QC) to a small piece of a FCI model proposed by
Danzer, which consists of a set of four tetrahedra. The
shape of the model is a rhombic triacontahedron, which
was generated by using deviations rules. It is built up
of 120 tetrahedra labeled K (this corresponds to vertex.
star 21 in the global tiling)2s 2s and then deflated three
times. Usage of this model has two advantages: (i) it
is of FCI type like high quality quasicrystals as AlPdMn
and A1CuFe, (ii) since the prototiles are tetrahedra with
four faces, the center model is the simplest extension of
the 2D center model, where also four neighbors of each
rhombus are present. In the center model, a single 8-

like orbital is placed in the center of each tetrahedron,
while in the vertex model it lies on the vertices. Nearest
neighbors in both the models are defined by tetrahedra
touching by the face and by two vertices connected by

an edge of the same tetrahedron, respectively. We use
the same parameters as Tsunetzugu et al. in order to
make the results comparable: site energy e, = 0 and elec-
tron transfer energy between nearest neighbors v = —1.
This choice of parameters is possibly not very good be-
cause the size of the tetrahedra is diferent, but it should
be useful for investigating eKects of icosahedral structure
qualitatively. Due to numerical restrictions, we use only
the third level of deHation yielding 1069 sites in the ver-
tex model and 4343 sites in the center model. Note that
lower levels do not provide typical QC structures.

As in Ref. 17, one can obtain some spectral proper-
ties of the models without calculation. The coordination
number in the center model is 4 at all sites, as in the PL,
while in the vertex model this value diR'ers from site to
site up to 62. Accordingly, in the first case the eigenval-
ues lie in the energy interval E = —4...4. Furthermore,
the Danzer model shows only 4,6 and tenfold axes of ro-
tation. Therefore, the center model is bipartite, so the
DOS and the conductance are symmetric. The vertex
model is not symmetric.

B. Computational procedure

To calculate the zero temperature dc conductance I',
me use the Landauer formula

or g = tr (tt+),

where e is the elementary charge, 6 is Plancks constant,
t is the transmission matrix, tr denotes the trace over
open channel, and g is the dimensionless conductance.

Equation (1) describes conductance in terms of elas-
tic scattering properties of the systems. It does not
take in acount any dissipative processes. Such pro-
cesses have been included into generalized forms of this
formula, ' ' but here we restrict our study to intrin-
sic eÃects of quasicrystalline structures. To investigate
transmission properties of a finite system, leads of undis-
turbed material, being infinitely2 long but of abritray
width, are usually attached to two opposite facets (per-
pendicular to the x axis) of the scattering system. The
scattering system (sample) works as a phase randomiz-
ing reservoir of propagating states moving through the
system. States with real wave numbers A; correspond to
an open channel, whereas those with a complex k to a
closed channel. The number of open channels depends on
the Fermi energy of the whole infinite system. In a tight-
binding description, the sum of open and closed channels
is equal to the number of sites of each column or one-
atomic layer in the leads perpendicular to the direction
of propagation.

It is not so easy to define a proper method of attaching
a lead to the complicate surface of the triacontahedron
model, since there is no periodic lattice having an appro-
priate structure. We choose the simple cubic lattice be-
cause its eigenstates can be analytically obtained. It can
be attached to the surface of the triacontahedron model,
as shown in Fig. 1(a) and Fig. 1(b). For the vertex and
center model, we use an infinite 4 x 4 cubic lattice. Note
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f (E) —f (E + Ru) Of
w —+0

In this limit, by means of Eqs. (2) and (3), one can
obtain the following recursive procedure for calculating
g.21

g 4v tr(g, ,g, +„+,—g, ,+,), (4)

where g is the imaginary part of G: g = —ImG+ = ImG
and

G'~ = (E~ —e' —"G~ —&'iG,' .V' ~-)
' (5)

Gz+qz+q —(El —ez+q —v Gs v G )

G~~+1 ——G~~ v Gg,

G, +~ = (El —e, +g —V+, ~G, , ,V, g)

G =Gs 1

FIG. ]. (a) Connection of a cubic lattice to the facet of the
triacontahedron in the center model, third deflation level. Be-
low: the surface at a lead, fat lines denote not connected parts.
(b) Connection of a cubic lattice to the facette of the triacon-
tahedron in the vertex model, third deflation level. Circles
denote vertices of the quasicrystal, squares are sites of the
lead.

that not all sites of the facet at the lead are connected
to a site of the lead.

Tsunetzugu and Ueda used two methods for calcu-
lating the conductance of quasiperiodic model systems
in two dimensions. First, transfer coeKcients between
incident and scattered planar waves were directly deter-
mined by solving the Schrodinger equation. This method
is very time consuming because a set of linear equations
must be solved, whose size is given by the number of
sites in the system. Second, the Green function was re-
cursively calculated for a system, which is stepwise built
by attaching columns to a half infinite lead. This method
was first introduced by Lee and Fisher. It was suitably
modified18, 28 to be applicable to the Penrose lattice.

The starting point of the latter method is the following
expression for the conductance:

1(ur) = dE ) tr[ 1, ImG+(E+ Ru)
vr L2

22'

G+ E

Here L is the length of lattice, J~ denotes the cur-
rent operator of column j, G(E) is the Green function of
the system: G+(E) = (E +i0+ —H), where H is the
Hamiltonian, and f(E) is Fermi function, and w is the
frequency of the external electrical field.

For u ~ 0 and T ~ 0, it holds that

Here G is the Green function of the left part of the
system up to the Lth column, G~~ is the jj'- block el-
ement of the Green function matrix with the size of the
number of sites per column; Gs.. Green function of an
undisturbed lead column, i~ is the Hamiltonian of the
jth column, U~ is transfer matrix between column j and
j + 1, and j denotes a column of the right lead.

The necessary prerequisite for this procedure is the
possibility of subdividing the system in question into
columns of sites, which means that the Hamiltonian can
be separated in a tridiagonal block form. There must not
necessarily be such an obvious visible geometrical sepa-
ration of sites, as in the case of a Penrose lattice. Only
the first and the last block of the diagonal should core-
spond to sites of the system, which are connected to the
leads. The other diagonal blocks contain sites which are
only connected with each other and with sites of the next
neighboring blocky and the o8' diagonal blocks. Thus, we
have to solve the problem of a matrix inversion for every
block. The corresponding number of numerical opera-
tions of an inversion is twice as high as that for the solv-
ing a linear set of equations, but the dimension of these
matrices, to be inverted, is immensely lower than the di-
mension of the linear set of the full problem. In order
to enhance the efFectivity of the computational proce-
dure, we must decompose the system into many small
columns. But it is impossible to apply this to the Danzer
model because of the very complicated structure of this
model. Some very large tetrahedra connect sites located
very far from each other. Thus, in the vertex model we
get only eight columns, the biggest one of nearly 200
sites. But this fact does not prevent us from using the
recursion method. The situation is better for the center
model, which can be separated into 34 blocks, the biggest
one also includes nearly 200 sites, because the number of
tetrahedra exceeds that of the vertices.
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III. ENERCY SPECTRUM 0.4

A. Density of states
0.35

For the icosahedral system, we calculate the exact dis-
tribution of the eigenvalues in the center and the ver-
tex model. The DOS for the center model is symmetric
around E = 0 and has a gap at E = 0, as in the vertex

DOS
mo el of the 2D PI. There are no large g b t thaps, u e

fluctuates over the whole spectrum (cf. Fig. 2).
The DOS of the vertex model extends over the region

E = —18...9 withoutE —— ... '
gaps. In the negative energy region,

~ ~

there is a flat shoulder (cf. Fig. 3). A similar sh f th
has been found for several crystalline approximants

using self-consistent calculations or in a H -R th
a roachapproac . There are three highly degenerate states at

—1,E = 0, and E = 1. These are states which
have nonzero amplitudes only on separate vertex stars
(vertex star 1 and 22). A detailed investigation of the
conductivity shows that these states do not contribute to
the conductivity.

0.25

0.22'
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0
-20 -15 -10 -5

E/t

function,

FIG. 3. Density of states for the icosahedral scatterer ver-
tex model, 17339 sites.

B. Level spacing distribution

In order to study localization properties of the mod-
els, the nearest-level spacing distribution function P(s)
(Ref. 30) has been calculated for the 3D icosahedral ver-
tex model. For localized states, P(s) obeys the Poisson
law,

P( ) ~ P (1 ~P )2s(1—s )/P —0.16874

7rs' z/ Pbxexp —P ——
~

1 ——~s
4 2g 2)

has been proposed to describe this crossover. The con-
stants A and C in Eq. (12) are determined by normalizing
P(s) and the average spacing to unity:

P(s) = exp( —s),

with (s) = 1 and crosses over to the Wigner surmise law

P(s)ds = 1 (13)

—mrs
P(s) = —exp

2
~

4 ) sP(s)ds = 1. (14)

Recent studies on the metal-insulator transition in 3D
Andn erson models ' have shown a continuous crossover31,32

from signer to Poisson statistics as the disorder in-
creases. A phenomenological one parameter distribution
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FIG. 2. Density of states for the icosahedral scatterer cen-
ter model, 4343 atomic sites.

FIG. 4. Level spacing distribution for the icosahedral
model with 17339 sites. The limit d' t b t'imi ing is ri utions or local-
ized (Poisson) and extended (Wigner) states are also included.
The calculated distribution clearly show t t ds ows a s rong tendency
to the Poisson distribution, which implies that most of the
states are localized. The fitted phenomenologial distribution
P(s) yields a parameter P = 0.21.
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For 0, an expansion of E . 12q. ( 2) together with
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d rib localiz d t t . F
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a most of the states are localized.

IV. CONDUCTANCE
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FIG. 10. Conductance as a function of Fermi energy, cal-
culated at seven values, 0.15 units around each eigenvalue of
the icosahedral scatterer in the vertex model.

metrics, note that we can And nonvanishing conductance
only at Fermi energy close to an eigenvalue of the system.
The width of one conductance peak is found to be lower
than 0.05 energy units. The exact value at a given en-
ergy should be extremely sensitive to the distance to an
eigenvalue. An equidistant distribution of energy values
may lead to a more "stochastic" behavior of the conduc-
tance, which depends on its resolution. To eliminate such
difBculties, seven energy values were used, which encom-
pass each eigenvalue in a distance of maximal 0.15 units.
The result is shown in Fig. 10. In comparison to Fig.
9, the maximum values of conductance peaks are higher
because the conductance is calculated at the exact posi-
tions of the eigenvalues. A large number of intervals with
zero conductance between the high and narrow peaks are
found, which are more frequent and narrower in the high
energy region. Most of the conducting states lie in an en-
ergy interval of E = —7...7, while at lovver energies there

0.6

0.5

0.3

FIG. 12. Conductance of an undisturbed 4x4 cubic lattice.

are only some states within small clusters with large dis-
tances in between, as expected from the DOS. Figure 11
is obtained from Fig. 10 by normalizing the conductance
to the number of open channels at the energy, which cor-
responds to that of the conductance of the undisturbed
lead system. The conductance for the 4x4 cubic lead is
shown in Fig. 12. The conductance per open channel of
the states at low energies E & —7 seems to be significant
higher than that of higher energies.

The temperature dependence of the conductance can
be obtained by the integration of the zero tempera-
ture conductance multiplied by the first derivative of the
Fermi distribution, with respect to E over the energy E.
It can be obtained by insertion of Eq. (3) into Eq. (2),
which yields

dE I'(E)i
( BE

Conductance per open channel
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FIG. 11. Conductance as a function of Fermi energy, cal-
culated at seven values, 0.15 units around each eigenvalue of
the icosahedral scatterer in the vertex-model normalized to
the number of open channels.

-400
-500

FIG. 13. Conductance per open channel as a function of the
Fermi energy and temperature of the system for the icosahe-
dral model.
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By choosing the energy units v = —0.1 eV, we ob-
tained the conductance as a function of Fermi energy
and temperature. The result is shown in Fig. 13 in a
3D plot. By means of this simple model, we can ex-
plain the interesting fact that a very small shift of the
Fermi energy (for instance, by exchanging some atoms
by other ones, by introducing impurities or by using an
approximant phase instead of a QC phase) can change
the behavior of the conductance completely, as reported
by many authors. If the system has a Fermi energy
near an eigenvalue, it shows a finite conductance at zero
temperature, which decreases with increasing tempera-
ture, i.e. , such system exhibits metallic behavior. But
in the case that the Fermi energy is located in a gap,
the conductance is zero and shows an activated temper-
ature. Note that most QC's are reported to show the
latter type of behavior (pseudogap at E = E~ due to the
Hume-Rothery mechanism7 s ir 2s ).

of the Fermi energy, which serves as a parameter in our
study. The conductance shows rapid changes in tempera-
ture dependent behavior if the Fermi energy is varied. We
found three highly degenerated states at E = —1,E = 0,
and E = 1 in the vertex model. These states have a
nonzero amplitude only on special vertex stars, which
are not connected with the surface of the model and,
therefore, do not contribute to the conductance. Two-
dimensional Penrose systems with open boundary condi-
tions were also considered in order to study the inHuence
of the boundaries on the conductance. We found that
states in the low energy region are more afI'ected by the
boundaries than states at higher energies in 2D as well as
in 3D systems. This suggests that the low energy states
extend over the whole system. But we cannot conclude
that these states are actually extended states, since the
system size of our model is possibly to small for such a
conclusion.

V. SUMMARY

In this paper, we have investigated the zero tempera-
ture conductance of a 3D model of a FCI quasicrystal in
a tight-binding approximation in the center and vertex
models. We found a spiky conductance in dependence
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