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he Hubbard model with an additional bond-charge interaction X is solved exactly in one
dimension for the case t = X, where t is the hopping amplitude. In this case the number of doubly
occupied sites is conserved. In the sector with no double occupations the model reduces to the
U = oo Hubbard model. In arbitrary dimensions the qualitative form of the phase diagram is
obtained. It is shown that for moderate Hubbard interactions U the model has superconducting
ground states.

I. INTR, C)DU CTION

The one-dimensional Hubbard model is long since the
prototype of an exactly solvable model for correlated
electrons. ' However, it is dificult to include additional
interactions so that the resulting model is still integrable.
In this paper we present a generalized Hubbard model
which, apart from the Coulomb interaction U, also con-
tains a bond-charge interaction term L. This model has
been studied extensively by Hirsch ' who argued that it
might be relevant for the description of high-T, super-
conductors. For certain values of X and large densities
of electrons (small doping) the bond-charge interaction
can lead to an attractive efFective interaction between the
holes and the formation of Cooper pairs. Although this
picture was confirmed by a BCS-type mean-Geld theory it
is desirable to find exact results con6.rming this behavior.
A first step in this direction was made in Ref. 5 where a
simplified version of Hirsch s Hamiltonian has been stud-
ied in one dimension using Bethe-Ansatz methods. In-
deed, it has been found that this model has a strong
tendency towards superconductivity (see also Ref. 6).

On the other hand, there has recently been a great
deal of activity in the investigation of the so-called g-
pairing mechanism of superconductivity. This idea has
been introduced by Yang for the Hubbard model. It al-
lows for the construction of states exhibiting off-diagonal
long-range order (ODLRO). As shown in Refs. 8—10,
ODLRO also implies the Meissner efFect and flux quan-
tization and can thus be regarded as definition of su-
perconductivity. In the case of the Hubbard model it
was found that the ground state is not of the g-pairing
type. One model with a truly superconducting ground
state of the g-pairing type is the supersymmetric Hub-
bard model introduced by Eoler, Korepin, and Schoutens
(EKS model). ' The EKS model is a Hubbard model
which contains additional nearest-neighbor interactions.
It has some attractive features. Apart from being exactly
solvable by using the Bethe Ansatz in one dimension it
is possible to determine the T = 0 phase diagram in
arbitrary dimensions. One always Gnds a superconduct-
ing ground state if U ( U where the critical value U
is positive corresponding to a repulsive on-site Coulomb

interaction.
In Ref. 13 it has been shown that an g-pairing ground

state is not an exotic phenomenon restricted to one spe-
cial model but it may be found for a large class of Hamil-
tonians. As a special case the Hubbard model with bond-
charge interaction X is in this class, provided that X = t
where t is the hopping matrix element. It is this model
which will be studied in this paper (A brief account of
some of the results presented here can be found in Ref.
13.)

In Sec. II the symmetries of the Hamiltonian are inves-
tigated. It turns out that the model under investigation is
a generalization of the U = oo Hubbard model to a model
with a conserved (but in general nonzero) number of dou-
bly occupied sites. Since the U = oo Hubbard model has
attracted a great deal of interest in recent years it
seems worthwhile to study any generalization of it.

In Sec. III we present the exact solution in one di-
mension. It will be shown that the Hamiltonian can be
mapped in certain subspaces onto a spinless free fermion
model with twisted boundary conditions where the twist
depends on the subspace considered. By using this fact it
is easy to obtain the spectrum and the zero temperature
phase diagram of the Hamiltonian. It is found that for U
not too large the model contains superconducting ground
states of the g-pairing type. For certain densities this is
true even for moderately repulsive Coulomb interactions.

In Sec. IV we construct the qualitative form of the
phase diagram in arbitrary dimensions. Basically it has
the same form as the phase diagram in one dimension
although the exact location of all phase boundaries can-
not be determined. Section V contains a summary of the
results and a discussion of the stability of the supercon-
ducting ground states. In the Appendix. details of the
exact solution in one dimension are given.

II. THE MODEL ANI3 ITS SYMMETRIES

The Hamiltonian of the Hubbard model with an ad-
ditional bond-charge interaction X (or correlated hop-
ping) on a d-dimensional lattice with L sites and periodic
boundary conditions is given by
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'R(X, U) = —&) ) (c," c( +c~t c, )+U) n, ~n, ~

(j~) ~=~ ~ j=1

+X) ) (c,. c, +c c, )
(jt) ~=&,g

spin o and the number N2 ——P z n~gn~~ of doubly oc-L

cupied sites, i.e. , ['Rq, 'RU] = 0. In addition, 'Ro has two
SU(2) symmetries: apart from the SU(2) spin symmetry,

i.e., 'Ro commutes with 8+ = P z ct&c~ ~, 8 = (8+),
8 = —(Nzl" —Nz ), and 'Rq also commutes with the
following so-called g operators:

x(n~ +n) ) . (2.1)
L

.cjtcjl~
L

7/ = g c.gc.~)
1q' = —(N —I)
2

Here cj,c- are the usual Fermi operators and n~

ct c~ is the corresponding number operator. (jl) de-
notes nearest-neighbor sites on the d-dimensional lattice.
In the following we will be interested in the special case
R(U) = 'R(X = t, U). In this case it is convenient to
rewrite the Hamiltonian in terms of Hubbard operators
X b = ~a)(b~ (a, b = 0, +1,2) where 0 denotes an empty
site, +1 denotes a site occupied by a single electron with
spin g or $, and 2 denotes a doubly occupied site. The
fact that for each site j the four states ~0),

~

—1), ~1), and
~2) form a basis of the local Hilbert space leads to the
local constraint X + X + P X. = 1.

The Hubbard operators obey the following graded
commutation rules

[X, , Xf ]~ = (X "8b, 6. X' 8 g) 8,.(, (2 2)

where the anticommutator has to be taken only if both
operators are fermionic, i.e. , change the particle number
by one (e.g. , X. or X ). The standard fermion opera-
tors cj can be expressed through the Hubbard operators

(2.6)

gcj Q =c.—1

&&0& ' = &0,

Uct M =cj (2.7)

(2.8)

where N = Nq+2N 2(with Nq ——Nz" +Nz ) is the total
number of particles. In terms of the Hubbard operators

L
the g operators are given by g = —P z

X. and gt =
PL X20

gt creates a double occupation with momentum zero
as can be seen from its form in momentum space gt =
gk c~&&ct

&&
where c~& ——~ P& e '& "ct . Thus gt is

just the conventional 8-wave pairing operator. Note that
in the case of the Hubbard model the corresponding g

L
symmetry is generated by g = P z(—1)~c~tc~g corre-

sponding to pairs with momentum vr .
The Hamiltonian R(U = 0) without the Coulomb in-

teraction is also invariant under a particle-hole transfor-
mation:

whereas the Coulomb interaction RU '= U P z n~gn~g
transforms as

(2.3) URUU ' = R~+ U(L —N). (2.9)

and vice versa, e.g. ,

X, = (1 —n, )ct,
X, =(1 —n, )n,

~2) cT

2~ ~ jar&

X, = (1 —n, g)(1 —n, g). .

(2.4)

Due to this particle-hole symmetry we can restrict our
investigation to the case N & L.

In the following the conservation of N2 will expecially
be important. It allows us to diagonalize the Hamiltonian
in subspaces with fixed N2. For N2 ——0 the Hamiltonian
'Ro reduces to the U = oo Hubbard model

In terms of the Hubbard operators the Hamiltonian
(2.1) takes the following form:

z(U) = 'Ro+ xU

t) ) (X 'X—' +X 'X' +X 'X'
(j$) o =+1

(2.5)
L

+X, 'X,' ) + U ) X," .
j=]

The Hamiltonian 'R(U) has a lot of symmetries, since
only two types of processes are allowed: (i) a particle
from a singly occupied site may hop to an unoccupied
neighbor site, or (ii) a particle with spin o from a dou-
bly occupied site may hop to a singly occupied (particle
with spin —o) neighbor site. Therefore it is clear that
'R(U) conserves not only the total number N of elec-

trons but also the number Nz of single electrons with

= —t ) ) (X"X"+X X,")
(j&) ~=V,4

P ) ) (c,'.cj. + o'.c,.) P
(j&) ~=V,4

(2.10)

where 'P is the projector onto the subspace with no dou-

bly occupied sites. Thus the Hamiltonian (2.5) is a
generalization of the the U = oo Hubbard model to a
model with a conserved (but in general nonzero) num-

ber of doubly occupied sites. This is similar to the EKS
model ' which is a generalization of the supersymmet-
ric t-J model to a model with a conserved number of
doubly occupied sites.

III. EXACT SQI UTION IN ONE DIMENSION

In the following, the Hamiltonian 'Ro [see (2.5)] is diag-
onalized in one dimension with periodic boundary con-
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~x, cr, b) =
N1

Xcr,o
&a

n=1

L—N1

ditions. A solution of an equivalent model with open
boundary conditions has been given in Ref. 24 (see also
Ref. 25).

In the subspace H~, ~, with N1 singly occupied. sites
and N2 doubly occupied sites, i.e. , N = N1 + 2N2 parti-
cles, we define the following basis vectors:

A,
" —k

2m
A:= —vK (v = 0, 1, . . . , K —1),

(3.7)

(3.8)

(v' = 0, 1, . . . ,
K' —1).

The a~ are (spinless) fermion operators and the allowed
values AP for the twist in the boundary conditions is
diferent for each subspace:

~x, o, b) is a state in which the sites x are occupied
by a single electron with spin a. . {yq, . . . yl,
{1,. . . , L) $ {xq, . . . , x~, ) are the sites occupied by a bo-
son 6 where 6 = 2 for a doubly occupied site and
b = 0 for an empty site. Note that due to (2.2) all

X„~~' commute mutually and with all the X-bp, O

Next we define the operators C and C' generating cyclic
permutations of the spins and bosons, respectively,

Using these operators we can define subspaces of H~, ~, .
For every spin configuration {crq, . . . , cr~, ) there exists a
minimal integer K & 1 such that

, are, ) = {ai, , a~, ). (3.4)

, rrw, ) = {a2, ox, ax) (3.2)
C'{bg, . . . , b~ ~, ) = {b~ ~, , bg, b2, . . . , b~

(3.3)

After the canonical transformation a. —+ e'~ @a, a~ ~
e '~+~a~. , the Hamiltonian (3.5) is seen to be equiva-
lent to the following translational-invariant free fermion
Hamiltonian

Qeg = —g e G Q~+1 + e G +1(X~ (3.10)

from which the eigenvalues of 'R can be obtained easily
by Fourier transformation

E = —2) cos(q„+ AP)n~ (3.11)

with P n~ = Nq and nz ——1 (0) if the mode q„ is
occupied (not occupied). The wave numbers q„can take
the values q„= & v (v = —

2 + 1, . . . , 2).
In the ground state the q„are as symmetric as possible

around v = 0. For N1 even we have nq
——1 for v =

—~~+1, . . . ,
~ and thus

Clearly for a fully polarized ferromagnetic state we have
K = 1 and for a Neel state K = 2. In the same way we
define the integer K' for the distribution of bosons.

All the states ~x, o, b) with 0 and b characterized by the
same integers K and K' span a subspace II~, ~, (K, K')
of HN, ~, . It is now important to notice that the sub-
spaces H~, ~, (K, K') are invariant under the action of
the Hamiltonian 'R. This fact is well known 4' for the
U = oo Hubbard model, i.e. , N2 ——0. Since the local
Hamiltonian h~ ~+1 only permutes bosons with fermions
a spin o +1 will under the action of A always stay "to
the right" of a spin 0 except for the case where it moves
"over the boundary" (I ~ L+ 1 = 1).

We can now restrict ourselves to the diagonalization of
the Hamiltonian in the subspaces Hrv, rv, (K, K'). In the
Appendix it is shown that in each af these subspaces 'R is
equivalent to a &ee fermion Hamiltonian Q with twisted
boundary conditions,

cos (& + AP)E = —2 - . ~ sin(N, vr/L) .
sin m L

For N1 od.d we have to choose v = — ' + 1, . . . ,
yielding

E = —2 sin(Ng~/L).
cos (AP)
sin ~ L

This shows that in the ground state one has

a/L (Nq eve—n)
0 (Ni odd),

whi. ch gives the ground-state energy

sin(N, vr/L)
o — 2

sin (~/L)

(3.12)

(3.13)

(3.14)

(3.15)

L—1
'R = —) (a,.a, +j + a,.+,a, )

—(e'~~~at a + e '~~grata )

which now acts on the "stripped states"

(3.5)

The ground-state energy only depends on the number N1
of singly occupied sites and is independent of the num-
ber N2 of doubly occupied sites. Therefore the ground-
state energy of (2.5) is Ep (Nq, N2, U) = Ep + UN2. The
mapping of the original model onto spinless free fermions
(3.10) implies that the eigenvalues of (2.5) are highly de-
generate in general.

IV. PHASE DIAGRAM AT T = O

~ 4 ~

C1=1

(3.6) In this section we determine the phase diagram of the
Hamiltonian (2.5) in the U —D plane where D = N/L
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A. Phase diagram in one dimension

In order to determine the phase diagram in the
U —D plane for the one-dimensional case we have to
minimize the ground-state energy Eo(Di, D2, U)/L
——sin(Din) + UD2 for a fixed particle density D
Di + 2D2. From now on we work in the thermodynamic
limit I, N ~ oo with D = N /L fixed (n = 1, 2). A
simple calculation yields

0 (U & —4),
Di —— —arccos( —U/4) (—4 & U & U, ),

D (U&U),
(4.1)

is the particle density. First, we consider the one-
dimensional case which can be treated exactly by using
the results of the previous section. Then we show that
the phase diagram in higher dimensions has qualitatively
the same form as in one dimension. We find the same
phases although we cannot determine all phase bound-
aries exactly. Finally we calculate correlation functions
for generalized g-pairing states which appear as ground
states in certain parameter regions.

these ground states are the q states (go) I

U = oo)
Ng

where IU = oo) stands for an arbitrary ground state of
the U = oo Hubbard model at particle density Dz
—arccos( —U/4) and N2 is then obtained from D2
N2/L = (D —Di)/2. Again these states have ODLRO
(see the discussion of correlation functions below) and
are thus superconducting. It is interesting that this su-
perconducting phase extends into the region of positive
U, i.e. , Coulomb repulsion.

Regime III: U & U, (D) = —4cos(~D) and D & 1. In
regime III we have no doubly occupied sites in the ground
state and every ground state of the U = oo Hubbard
model is therefore also a ground state of (4). Regime
III with D & 1 is obtained by using the particle-hole
symmetry (2.7)—(2.9).

Regime IV: U & U, (D) = —4cos(vrD) and D = 1.
This case is much like regime III, but now the ground
states IU = oo) are insulating. The point (D = 1, U = 4)
corresponds to a metal-insulator transition. The com-
plete phase diagram for the one-dimensional case is
shown in Fig. 1 (see also Refs. 13 and 25).

B. Phase diagram in arbitrary dimensions

14 ) = (~' ) Io),
L

t
g& ——g e c~c~

(4.2)

where U, (D) = —4 cos (vr D) .
Due to the particle-hole symmetry it is sufBcient to

discuss the phase diagram for D & 1. We find four dif-
ferent phases which will be discussed separately in the
following.

Regime I: U & —4. From (4.1) we see that the
ground state contains only doubly occupied sites and no
single electrons. In this case the ground-state energy is
simply Eo(0, N/2, U)/L = UN/2. In the absence of sin-
gle electrons the double occupations are static and all
states with the same number N2 = N/2 of doubly occu-
pied sites have the same energy. Among these states are
the generalized g-pairing states

In higher dimensions the phase diagram can be con-
structed along the lines of Ref. 12. In Ref. 13 it has

been shown that Igo) = (i10) IO) will be a ground stateN/2

for U & —2Z where Z is the number of nearest-neighbor
sites in the d-dimensional lattice. In order to construct
the full phase diagram we need the following three prop-
erties: (1) g symmetry, i.e. , [Ro, BIO] = 0; (2) conserva-
tion of the number N2 of doubly occupied sites; and (3)
for U = 0 the ground-state energy does not depend on
the number N2 of doubly occupied sites. The first two
properties have already been demonstrated in Sec. II and
property (3) can be proven by generalizing the argumen-
tation of Ref. 26 where the analogous property for the
EKS model has been derived.

Using (1)—(3) the qualitative form of the phase diagram
can be established in complete analogy with Ref. 12 by
first considering the grand canonical ensemble and then

with momentum P =
& v (v = 0, 1, . . . , L —1). These

states are ground states for all chain lengths L, not only
in the thermodynamic limit. All of these states show
ODLRO, i.e. ,

10 I I I i
I I I I I i I I I

I
I I I I

(@~I c,'gctp«~«i
I OI )

lim
(4I IV I )

(4 4) 0

I
See also Eq. (4.5) below]. As a consequence these

ground states are superconducting since it has been
shown that ODLRO also implies the Meissner e8'ect and
fI.ux quantization.

Regime II: —4 & U & U, (D) = —4cos(7rD). For
—4 & U & U, (D) the ground state has both a finite den-
sity of single electrons and of double occupations. Again
it is highly degenerate. Here the ground-state energy
is Eo(Di, D2, U)/L = —

2 v 16 —U2 + UD2. Among

—5 — I

(~+ )N j8 Io)

I I I I I I I I l I I I I I I I I I I

0 . 5 1.0 1.5 2. 0

FIG. 1. 7 = 0 phase diagram in one dimension. The phase
diagram in higher dimensions has qualitatively the same form.
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translating the results into the canonical ensemble. One
finds a phase diagram which looks very similar to that
of the one-dimensional case (Fig. 1). The same phases
appear and only the location of the phase boundaries
changes. Except for the boundary between regimes I and
II (see Ref. 13) we have not been able to determine them
exactly. An interesting open question is thus whether
the superconducting regime II extends into the positive-
U region in all dimensions.

C. Correlation functions

Correlation functions with respect to the g-pairing
states can be calculated in a straightforward way . Let
~P) be a state with rjp~g) = 0 and g'~P) = z(Nq —L) ~P),
e.g. , ~P) is a state with Nq singly and no doubly occupied
sites. In our case we have ~P) = ~0) or ~P) = ~U = oo).
For the g-pairing states ~gJ (N2)) = (g&t) '~P) we de-
note the expectation value of an arbitrary operator 0 by

(g (N )~Q (N ))
We now can express any corre(g~ (&2) I I+~ (&2))

lation function with respect to ~gp(N2)) through correla-
tion functions with respect to ~P). With (O)4, =
we find (for L ~ oo, D = N /L and j g I):

(q, r)I) = (c,~c,~c(gc(g)

;I,(, ~) (1 —Dg —D2)D2
(1 —Dz) 2

x((1 —n, )(1 —n~))~,
1 —Dg —D2

(c c~ )y1(c,'. c,.) =
(4.5)

—07e,ia(& —&)

1 —Dj
(4.6)

(n, n( ) = (n, ~n(~)~
D2+, D [(n'-(1 —n~))4 + (ni-(1 —n, ))yI

(4.7)

V. CONCL USIONS

In this paper a Hubbard model with an additional
bond-charge interaction X has been investigated at the
special point X = t where the number of doubly occu-
pied sites is conserved. In one dimension the complete
spectrum of the Hamiltonian could be determined exactly
by mapping onto a system of spinless free fermions with

(4.8)

These results hold in all dimensions in the thermody-
namic limit. Correlators for phase I (where ~P) = ~0))
are trivial. The asymptotics for the correlation functions
in phase II (where ~P) = ~U = oo)) in one dimension can
be obtained using the results of Refs. 28—31. The re-
sult for the g correlator (pter~) proves the existence of
ODLRO since the value of the limit in (4.4) is found to
be e' (' ')(1 —Dg —D2)Dp g 0.

twisted boundary conditions. In arbitrary dimensions
the T = 0 phase diagram in the D —U plane has been
obtained. One finds four phases, two of them containing
ground states of the g-pairing type. These states exhibit
ODLRO and thus are superconducting. Therefore the
model (2.1) provides an example of a purely electronic
model with a superconducting phase. The Cooper pairs
have zero size which might be regarded as an approxima-
tion to the small coherence length found experimentally
in high-T, superconductors. For reviews on other models
of local-pair superconductors, see, e.g. , Refs. 32 and 33
and references therein. .

Let us finally discuss the question of stability of the
superconducting phases. As in the EKS model all in-
teraction constants (apart from the Coulomb interaction
U) have to take certain values in order to allow for the
g-pairing ground states. The bond-charge interaction X
especially has to be equal to the hopping matrix element t
in order to guarantee the conservation of local pairs. One
might wonder if the superconducting properties will sur-
vive if one allows for a decay of Cooper pairs (i.e. , A g t).
The results obtained in Ref. 34 suggest that this is indeed
the case.

For the EKS model other perturbations of coupling
constants have been investigated. 3 It has been found
that in one dimension these perturbations destroy super-
conductivity, but in higher dimensions the superconduct-
ing phase is likely to be stable under such perturbations.

A similar analysis is also desirable for the model pre-
sented here. It would be interesting to find a perturbation
by allowing for (small) additional nearest-neighbor inter-
actions which lifts the large ground-state degeneracy in
such a way that only (some) of the q-pairing states re-
main as ground states. In Refs. 36 and 37 the ground
state for the model (2.1) has been obtained in the pres-
ence of an additional nearest-neighbor Coloumb interac-
tion V at half-filling in arbitrary dimensions. In that case
the ground state is unique (apart from a trivial twofold
degeneracy) for U ( 2ZV —Z max(2t, V), but not super-
conducting.

These questions are currently under investigation using
perturbation theory and exact diagonalizations of small
systems. Results will be presented in the future.

Note added in proof. In Ref. 38 it has recently been
shown that the metal-insulator transition at half-filling
in d dimensions is located at U = 2Z. This implies that
even for d ) 1 the regime II extends to positive values of
U.
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APPENDIX

In this appendix we extend the method used in Ref. 14
to map the U = oo Hubbard model onto a free fermion
Hamiltonian with twisted boundary conditi. ons to our
case. First we investigate the action of the local Hamil-
tonian (we set t = 1 from now on)



51 SUPERCONDUCTIVITY IN AN EXACTLY SOLVABLE HUBBARD. . . 10 391

(+) (—)6, ,-+, —h, ,+, +h, ,+„ andfor j=I

with

(A4)

with

hI+. i+i
I
x, o, b) = —

I

x', cr, b) (A2)

on the states Ix, o, b). We restrict ourselves to the inves-

tigation of 6- .+z since h. -+z can be treated analogously.
~ ~

It is easy to see that 6 ++i Ix, cr, b) = 0 if either j C

(xi, . . . , xN, ) or j + 1 g (xi, . . . , xN, ). Therefore it is
sullicient to consider the case j + 1 = x~ Q (x ), j =
y~i C (ypf. A straightforward calculation yields for 1 (
j&L —&

+m+1
n

(n = 1, . . . , Ni —1)
(n = Ni). (A5)

In the subspace HN, N, (K, K') we introduce the fol-
lowing states

z —i z't —~

I*,k, k') = ):).e'"'e '" I* ~'(a-) ~' (bn't)
t=o m=O

(A6)

(A3) where k and k' are given by (3.8) and (3.9), respectively.

6.+ acts on these spaces in a simple manner:j,j+1

(j = I, . . . , l —1)
(j=L) (A7)

in the case j+ 1 E (x j and j E (yp) and is zero otherwise. Thus g i Ii . .+i acts on the states Ix, k, k') in the same

way as —P i a.ai+i —e alai acts on the stripped states (3.6) where the ai, a. are spinless fermion operatorsL—1 f iLAQ

and AP is given by (3.7).
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