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Discrepancies between the single-particle band structure and the exact many-particle behavior are
particularly striking in one-dimensional systems. The one-dimensional alternating Hubbard model

is especially interesting as a nontrivial model for conjugated polymer chains, such as polyacetelyne.
We study this model for chains of 60 sites using the density-matrix renormalization-group method.
We obtain the first electronic and magnetic excited-state energies at half filling as a function of an

alternating hopping parameter and on-site electron-electron interaction. We also study the e8'ect of
the interaction on the dimerization and discuss its relation to the charge gap and spin triplet gap.
In addition, we calculate the local spin and charge densities of some excited states, which manifest

a clear crossover from bandlike to strongly correlated behavior.

I. INTRODUCTION

The eKect of electron-electron interaction is crucial in
understanding the properties of conjugated polymers.
Although the independent-electron theories such as Su-
Schrieffer-Heeger models (or Hiickel theory) can explain
many experimental features by including the interaction
e8'ects within renormalized parameters, it is necessary
to use difFerent parametrizations to explain different ex-
periments. There are also some experimental results
which cannot be explained at all by the independent-
electron theories with any set of parameters. One of
them is the level sequence of the excited states. In the
independent-electron theories, the dipole-allowed optical
1 B„stateis predicted to be the lowest excited state,
while in experiment the actual lowest excited state is the
optically forbidden (the 2 Aa state). Another example
is the observation of negative spin densities on some sites,
which cannot be explained within independent-electron
theories. In models with electron-electron interactions
these results are naturally explained. One of the sim-
plest such models is the Peierls-Hubbard model, which
has an electron-electron interaction of the form

H, , = U) n;~nzt + ) Vjn, nz+j &

i,j&0

been studied by many difFerent methods.
The alternating hopping integral in the Peierls-

Hubbard model is t(1 + b) and h is called the alternating
hopping parameter. Recently Soos et al. studied the
crossover between the excited states 1 B„and2 A~ as
a function of b and the on-site interaction U. This level
crossing is one aspect of the crossover from bandlike be-
havior to strongly correlated behavior. Soos et al. also
determined the phase boundary by the position of the
level crossing. Most previous work on the eKects of in-
teraction which produce reliable results come from quan-
tum Monte Carlo or exact diagonalization methods. The
limitation of exact diagonalization is that it works only
for small system sizes, which is usually less than 12 sites.

Recently a method to study one-dimensional interact-
ing systems, namely, the density-matrix renormalization-
group (DMRG) method, has been developed. s The
DMRG method is especially useful for one-dimensional
systems with short range interactions and open boundary
conditions. With this method, the energies of the ground
state and the lowest few excited states can be obtained
with very high precision for fairly large finite systems,
especially for a system which has an energy gap.

In this paper we study a simple form of the Peierls-
Hubbard model by this method for a system of 60 sites.
The model in which the structural energy of the lattice
is neglected has the Hamiltonian

where n; = n;g+n;g. Usually, for simplicity only the first
term is considered. The eKects of the electron-electron in-
teraction on the ground state properties such as dimeriza-
tion, solitons, and polarons, and on excited states prop-
erties such as the energy gap and the level sequence have

H = —) [t —(—1)*b](ct c;+i + et+& c, )

(2)
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where 0. is the spin index of the electron and i is the
site index starting &om 1. This model is the alternating
Hubbard model. It is the same as the Peierls-Hubbard
model if we consider homogeneous dimerization of the
ground state and assume that the excitations in optical
absorption occur where the Born-Oppenheimer approxi-
mation is valid. Although there is no technical problem
in calculating the ground state energy for inhomogeneous
lattice configurations, d.etermining the ground state con-
figuration will take much more computer time. Therefore
we will only consider homogeneous dimerization in this
paper.

First, we examine the ground state properties, e.g. ,
the effect of interaction on dimerization. We then calcu-
late the first few electronic and magnetic excitation ener-
gies as a function of the alternating hopping parameter b

and the on-site interaction U and obtain the optical gap
Eg (h, U). Finally, we study the local charge and spin den-
sities of some excited states. For one-particle excitation
from half filling, the charge and spin densities are similar
for a weak interaction, which agrees with the band pic-
ture in this region. When the interaction increases the
two densities begin to dier from each other more and.
more. The spin density turns negative at a large interac-
tion, whereas the charge density is always positive. This
means that the system has a crossover from bandlike be-
havior to correlated behavior. Measuring the spin and
charge densities of the model directly provides a way of
studying the crossover from band to correlated behavior.

II. GLOBAL SYMMETRY OF THE MODEL

In Hamiltonian (2) there is a usual SU(2) symmetry
on the spin index. There is also an SU(2) axial charge
symmetry which has been found in the Kondo model"
and the Hubbard model. The axial charge generators
are

III. DEFINITION OF THE GAPS

We chose the total spin in the z direction S and total
charge Q as good quantum numbers in our DMRG cal-
culations. It is convenient to define the total charge Q to
be the difFerence between the total number of electrons
and the number of sites, namely, Q = 2I . Therefore
Q = 0 corresponds to half filling. We calculate the en-
ergy Es(Q, 2S, ) of the lowest energy states ~Q, 2S, ) for
different Q and S,. The optical gap energy Eg is the sum
of the energies required for adding and for removing one
electron at half filling,

E = Eo(1, 1) —Ep(0, 0) + Eo(—1, 1) —Eo(0, 0). (5)

The triplet axial charge gap E and the triplet spin gap
E, are

E. = E,(2, o) —E,(o, o),
E. = E,(o, 2) —E,(o, o).

Charge and spin densities defined. as

Q(i) = (Q, 2S,
i ) c," c; —1 iQ, 2S,),

~.(') = (Q 2~.12(c,'~c*~ —c,'~c*~) IQ 2~-)

can also be calculated within the DMRG method. Q(i)
and S, (i) are zero everywhere for the ground state ~0, 0)
in our DMRG calculation, which is consistent with the
Lich-Mattis theorem that the ground state is a spin and
axial charge singlet. i Therefore Q(i) and S, (i) for the
one-electron excited state [1,1) are the same as the dis-
tributions of charge and spin when an electron is added
into the ground state ~0, 0).

I' = —) [ct c; —1], IV. THE DMRC METHOD

I = —) (—1) E~pc~~c~p,

[I+,I ] = I+, [I,I'] = I, [I+,I ] = 2I—' (4)

It is simple to prove that these operators commute with
Harniltonian (2). The particle-hole symmetry is part of
the SU(2) axial charge symmetry. The Hamiltonian (2)
thus has an SU(2) x SU(2) symmetry group. Actually,
the group is SO(4) =SU(2) x SU(2)/Z2, as pointed out by
Yang and Zhang.

where c p is the antisymmetric matrix. The axial charge
generators satisfy the same commutation relations as the
spin operators:

In our DMRG calculations we obtain the ground state
of chains of length up to 60 sites with open boundary
conditions. The hopping integral is set to t = 1 and
all energies are measured. in units of t. 32 states are
kept at each iteration of the DMRG calculation and it
takes five passes through the 60 sites for the calculation
to converge. We use the same program that has been
carefully tested in a work on a spinless fermion system.
In that work the spinless system is a special case in which
all calculations are done in the subspace 2S = Q + %,
where N is the number of system sites. We also test
the program by comparing the calculated energy with
the exact solution for the noninteracting case (U = 0).
Since there is a spin degree of freedom for electrons, one
would expect the precision to be much lower than that
for the spinless case, for keeping the same number of
states. However, the precision is still very high for our
problem because of the energy gap at half filling in the
alternating Hubbard model. Table I shows the accuracy
of the DMRG method and the weight of the discarded



DENSITY-MATRIX RENORMALIZATIGN-GROUP STUDIES OF. . . 10 289

TABLE I. Comparison of the ground state energies from
the DMRG calculations with the exact solution for the non-
interacting alternating chain at half filling. The comparison
shoves that the results of DMRG become more and more ac-
curate as the alternating parameter b increases, namely, as
the energy gap increases. The fifth column in the table is the
weight of the discarded states Wq in the DMRG calculations.

Eemuct E13MRR
0.04 -76.077439 -76.044030
0.08 -76.756269 -76.742580
0.12 -77.653433 -77.647542
0.16 -78.729942 -78.727297
0.20 -79.958046 -79.956835
0.24 -81.316766 -81.316203
0.28 -82.789594 -82.789329
0.32 -84.363173 -84.363049
0.36 -86.026474 -86.026416
0.40 -87.770238 -87.770212

EDMRA
0.033409
0.013689
0.005891
0.002645
0.001211
0.000563
0.000264
0.000124
0.000058
0.000026

Eexact Wg
1.3x10 4

5.1 x 10
2.3x10 '
1.0 x 10
4.7 x 10
2.2 x 10
1.0 x 10
5.1 x 10
2.3 x 10
10x10

states in the density matrix. In general when U g 0, the
discarded weight varies from 10 to 10 depending on
the size of the gap. The precision is lower at small b and
small U.

FIG. 2. Energy gap E of axial charge triplet excitation
versus the alternating parameter b and the Hubbard interact-
ing parameter U.
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V. B.ESULTS

'tA'e examine first the effect of interaction on dimer-
ization. The energy difFerence between the dimerized
ground state ~0, 0) (b g 0) and uniform ground state
(b = 0) is calculated In F.ig. 1 we show the electronic
energy gained per site at fixed dimerization as a function
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FIG. 1. Magnitude of the electronic energy difference AE
per site between dimerized and uniform chains versus the
on-site Hubbard parameter U. The system has 60 lattice
sites and open boundary conditions and 8 is the alternating
parameter. The dots in the 6gure are from the density-matrix
renormalization-group calculations and the cross at U = 0 is
obtained from the exact solution.

FIG. 3. Energy gap E, of spin triplet excitation versus the
alternating parameter b and the Hubbard interacting param-
eter U.
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FIG. 5. Charge and spin density of Hubbard model (h = 0)
of the state il, 1). (a) The charge density, which is positive
everywhere. (b) The spin density, which can be negative and
is very difFerent from the charge density.
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FIG. 4. Difference between the triplet gap of dimerized
chain and that of uniform chain at b = 0.12 as a function
of interaction U. (a) The charge triplet gap and (b) the spin
triplet gap.

of interaction U. The result agrees with calculations by
the Monte Carlo method and exact diagonalization,
which show that the gain of energy increases in interme-
diate U. The only difference kom previous results is in
the magnitude and the position of the peak, which may
be caused by the open boundary condition we chose and
the length of the chain.

We then calculate the one-particle energy gap Eg, the
charge gap E, and the spin gap E, . We find that the
difference between Eg and E is very small, within the
order of one over the system size, which goes to zero in
the thermodynamical limit. Therefore we conclude that
the one-particle energy gap is mainly determined by the
charge part. In Fig. 2 we show the energy gap E as a
function of b and U. In Fig. 3 the spin gap E, is plotted
as a function of t) and U. At b = 0 the model is the
Hubbard model and the spin excitation is gapless, which
is in agreement with the Bethe ansatz result of the Hub-
bard model. With a large on-site interaction U, the spin
part of the system maps to a Heisenberg model. Unlike
the usual Heisenberg model where the exchange coupling
is uniform on the whole lattice, this model has an alter-
nating exchange coupling for any nonzero b. There is
no energy gap in the usual Heisenberg model. But the
alternating exchange coupling will open an energy gap.

We also calculate the gap difFerence E,(8, U) —E,(0', U)
and E,(8, U) E, (0, U) —and plot them as a function of in-
teraction U for a fixed 8 = 0.12 (see Fig. 4). We find that
the gap difference increases up to intermediate U, which
is similar to the energy gain shown in Fig. 1. This simi-
larity can be explained as follows: the energy gain from
dimerization is proportional to the sum of the charge gap
increased and spin gap opened by dimerization. In Figs. 1
and 4, the peaks are located in the same position, which
strongly suggests that there is a relation between them.
The charge and spin densities with one added electron
are also calculated with the DMRG method. In Fig. 5
we show the results for the ordinary Hubbard model
(h = 0) with U = 1.6. It is well known that in the one-
dimensional Hubbard model the spin and charge degrees
of freedom are separated. We see this clearly in Fig. 5
since the spin density is very different from the charge
density. The spin density can be negative, whereas the
charge density is positive everywhere. In Fig. 6 (7) the
charge (spin) density of one doped electron as a function
of position at a fixed b = 0.08 is shown for several values
of the interaction parameter U: (a) U = 0, (b) U = 2.0,
(c) U = 4.0, and (d) U = 8.0. Comparing Figs. 6(a) and
7(a), it is clear that the charge and spin distributions are
the same, as would be expected from the single-particle
picture. In a single-particle theory, the electron carries
both spin and charge and thus their distributions should
be identical. When the interaction increases, the charge
and spin distributions become different. The difference
increases with the interaction. The behavior at large U is
similar to the Hubbard model, except that in the present
case the spin excitation has a gap, which makes the spin
distribution different. In particular, the spin density can
be negative in some places. From Figs. 6 and 7 it is
clear that the interaction suppresses the charge density
oscillation, but enhances the spin density oscillation.
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FIG. 6. Charge density of the state ~1, 1) for h = 0.08 and several interaction parameters U: (a) U = 0, (b) U = 0.8, (c)
U = 1.6, and (d) U = 4.0. The charge density is always positive for any U.
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FIG. 7. This plot is identical to Fig. 6, except it is for the spin density of the state ~1, 1) for h = 0.08 and several interaction
parameters U: (a) U = 0, (b) U = 0.8, (c) U = 1.6, and (d) U =—4.0. The spin density demonstrates the crossover from
bandlike behavior to strongly correlated behavior as the interaction parameter U increases.
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VI. SUMMABY AND CONCLUSION

En summary we have obtained the one-particle, axial
charge triplet and spin triplet gaps as a function of b and
U for chains of 60 sites with open boundary conditions.
We have found that the one-particle gap is the same as
the axial charge triplet gap. The gap difference between
a dimerized chain and a uniform chain peaks at an in-
termediate interaction U. This behavior is the same for
the charge triplet gap and for the spin triplet gap and it
is similar to the behavior of the energy gain kom dimer-
ization. The peaks are located at almost the same value
of U 3t. We have also studied the crossover Rom the
band picture to the strongly correlated picture by exam-

ining the difference in the local charge and spin densities
of an extra doped particle.
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