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Electron and light-hole energy oscillations and band overlapping in semiconductor superlattices

P. Masri
Groupe d'Etude des Semiconducteurs, URA 357 du Centre National de la Recherche Scientifique, Universite Montpellier II,

Sciences et Techniques du I.anguedoc, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
(Received 7 November 1994; revised manuscript received 25 January 1995)

We have discovered that, in type-II rnisaligned-band semiconductor superlattices, electron and light-hole

bands experience periodic anticrossing oscillations when we increase the layer thickness. These oscillations are

induced by an overlapping of conduction and valence states which occur in these heterosystems. When the

oscillations are damped by introducing interfacial strains, they may be restored by incorporating interlayer

charge transfer. Our results reveal the existence of a stable energy level Eo related to the valence- and

conduction-band edges which shows a pinning behavior.

Because of the development of such modern growth tech-
niques as molecular-beam epitaxy, metalorganic chemical
vapor deposition, etc. , a plethora of new classes of hetero-
structures which exhibit striking electronic properties has
been fabricated. These systems are generally made of a stack
of different host materials. The ensuing multilayered geom-
etry is generated by a periodic repetition of a superunit cell
larger than either of the unit cells of the host materials from
which the heterosystem is built up. An optimized choice of
an ensemble of host materials requires that the final hetero-
structure presents interfaces free of extended defects. How-
ever, the number of lattice-matched semiconductors, and

consequently, the range of the device wavelengths which

may be produced, is small. In order to overcome this diffi-

culty, one may use lattice-mismatched materials. For layer
thickness less than a critical thickness, the lattice mismatch
may be accommodated by interfacial strains. These strains

may modify the band structure of the heterosystem. We in-

voke here the effect of the inversion of the relative positions
of the energy of heavy-hole (HH) and light-hole (LH) states
at a certain layer thickness, leading to ELH)EHH. This, for
example, is the case in an A1Sb/GaSb/A1Sb heterostructure.

In conventional homostructure-based devices, carriers are
generally introduced by impurity donor atoms. When ion-
ized, the latter transform into ions and constitute scattering
centers which limit electron mobility. If one considers a het-
erostructure such as the broken-gap one (e.g., GaSb/InAs)
the conduction-band edge E& of InAs is lower than the
valence-band edge Ev of GaSb. In a superlattice (SL) made
of GaSb and InAs, this latter host material band feature may
be recovered from the SL minibands by increasing the layer
thickness L. While in each semiconductor, valence and con-
duction bands are separated by a band gap; in an SL, an
overlapping exists between conduction and valence bands.
This may result in intrinsic carrier confinement.

In this work, we study the semiconductor SL electronic
features arising from the overlapping of SL minibands and
we analyze the effect of interfacial strains on these features.
As an application, we consider the cases of GaSb/InAs and
GaSb/A1Sb/InAs SL's.

Two models are used to calculate the electronic band
structure of each host material (K) and of the SL.

(i) The two-band model enables us to carry out analytical
calculations within the framework of a method based on the
use of the Green's functions to obtain the SL electronic struc-
ture. In this method, the electronic spectrum of each host
material can be computed by using the corresponding bulk
Green's function,

Gx(E) = lim[(E+i e)I HI:]—
where E represents the energy, I is the identity matrix, and
a is an infinitesimal number. An SL reference response func-
tion G is then defined as a block diagonal matrix formed out
of the set of (Gx).

The Hamiltonian Hz has the general expression

H =g E (S)Ct(S)C(S)

-g y (s,s+a)ct(s+s)c(s).
S,8

(2)

We then end up' with a three-parameter band model:
conduction- (Ec&) and valence- (Eve) band edges are rep-
resented by two orbital self-energies, respectively, associated
with cations and anions constituting each semiconductor;

yz is a hopping integral characterizing the nearest-neighbor
interactions. In Eq. (2), Ct(S) and C(S) are, respectively,
the creation and annihilation operators for electronic excita-
tions defined at the site S.

The next step in building up the SL is to produce from
each infinite semiconductor K a slab of thickness Lz, keep-
ing translational invariance parallel to the slab plane. This is
done by removing all interactions between two adjacent prin-
cipal layers 5 =0 and 1 on one hand and S=Lz and Lz+ 1
on the other: this defines the surface creation operator V&.
The slab atomic planes are assumed to be polar, i.e., formed
out of anions or cations.

Eventually, we couple all these slabs (K= 1,2, . . . ,N) ar-

ranged in the configuration we choose, in order to create an
SL unit cell, which repeated periodically along the growth
axis, generates the SL lattice. The associated Hamiltonian is
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small I.2, the anticrossing EI and LH& levels are very close
even at the beginning of the oscillation process for L= 152

0

A. By increasing L2, the separation between these latter lev-
0

els increases and saturates at L2—= 15 A. For unstrained lay-
ers, we obtain Eo—=0.373 eV in agreement with the above
('-, ; —,') rule. For a strained SL (Fig. 4), we obtain an inversion
of the HH, and LH, states: E(LH, ))E(HH, ). This is a
well-known feature in structures where the active layer is
under tension. The calculated anticrossing level Eo is equal
to 0.315 eV in agreement with the value obtained with the
(-,'; ) rule.

Comparing Figs. 2 (dotted EI and LHi curves) and 4, we
note that the oscillatory behavior is strongly damped when
we remove the barrier in the strained SL. As we have shown,
Eo depends on the relative positions of the band edges
Ev(GaSb) and Ec(InAs). Although Fig. 4 corresponds to
well-separated Ev and E& levels, these levels are very close
in the case of Fig. 2: this latter situation leads to a damping
of the oscillation amplitudes and the oscillatory regime trans-
forms into an asymptoticlike evolution of E& and LH& to-
wards Eo. This is a straight result of the very small
conduction- and valence-band overlapping which prevails
for strained GaSb/InAs SL's where GaSb is under compres-
sion and InAs under tension. However, GaSb and InAs
are both under tension because of the presence of
the barrier layer in GaSb/AISb/InAs: this results in an
increase of the energy range of band overlapping, i.e.,
Ey(GaSb) —Ec(InAs).

In conclusion, we have shown that in type-II misaligned
band SL, due to the overlapping of conduction and valence
bands, periodic oscillations of the allowed electron and light-
hole states' energy, as a function of layer thickness, are es-
tablished. It is essential to understand that the oscillations of

EI and LHI are triggered by an overlapping of valence and

conduction bands of host materials: this can be seen in Fig. 2
where the oscillations are damped because of weak overlap-
ping (dotted curves) and then resorted when a charge transfer
takes place (solid lines). This means that charge transfer and
band overlapping have similar effects on the behavior of
E& and LH& . Once the oscillations of EI and LHI are estab-
lished, the oscillations of E; and LH; (i)1) can be naturally
explained in terms of interacting levels (E,E,+,) and

(LHJ, LHJ+ t) with j-1.Although the anticrossing behavior
between E, and LH, for GaSb/InAs SL has been mentioned
in Ref. 7, its oscillatory and periodic aspect has never been
discussed. In Ref. 8, an anticrossing feature between electron
and heavy-hole levels has been reported for the same SL for
wave vectors in the plane of the layers. In Ref. 9, an anti-
crossing mechanism between (HH& —HH2) and (E, —HHz)
levels has been reported for Hg, Zn&, Te/CdTe SL. In Ref.
10, a theoretical study of the interference effect between
conduction-band levels in two multivalley SL's has been pre-
sented. The mechanism involved in these systems is basi-
cally different from the band overlapping mechanism in-
voked in this work. In a polytype GaSb/AISb/InAs SL, we
have shown that the periodic oscillations are still present
even in the strained SL.

We demonstrate that our results are independent of the
interaction model and of the method of calculation. We dis-
cover that the anticrossing level Eo, emerging as a result of
conduction- and valence-band overlapping, shows a pinning
behavior and we emphasize the relevance of Eo to SL-based
devices. We demonstrate that Eo is an energy level where
host material bulk band parameters align. Although the band
oscillations may be damped in strained GaSb/InAs SL, they
are restored by incorporating, in the model, charge transfer
between the constituent host materials.
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