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Dispersion of exciton polaritons in cavity-embedded quantum wells
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We study the interaction of quantum-well excitons vrith the electromagnetic normal modes of a
multilayer dielectric cavity for finite in-plane @rave vectors. In the strong-coupling regime we obtain
the dispersion of the exciton polaritons by analyzing the exciton spectral function. We compare our
numerical results with the recent angle-resolved photoluminescence data by Houdre et al. [Phys.
Rev. Lett. 73, 2043 (1994)j. We find a very good agreement for the lower polariton branch and a
discrepancy between theory and experiment for the upper polariton branch that is probably due to
an experimental inaccuracy.

The investigation of the optical properties of cavity-
embedded quantum wells (QW's) has evidenced interest-
ing effects as compared both to simple QW's or to bulk
material. In simple QW's, the coupling of the exciton
to a continuum of photon states provides an intrinsic
mechanism for radiative decay in the radiative region,
i.e. , where io ) cQ~~/pe~, Q~~ being the in-plane wave
vector. The radiative lifetime has been calculated by dif-
ferent methods and the real frequency shift shown to be
very small. In bulk material, in contrast, the exciton
couples only to one photon state due to conservation of
momentum. As a consequence, no radiative decay takes
place but the interaction leads to a large frequency shift
responsible for the Rabi or polariton splitting. In mi-
crocavities Fabry-Perot quasimodes emerge out of the
photon continuum as the reflectivity of the cavity mir-
rors increases. The interaction of these quasimodes with
the QW excitons follows two different regimes, depend-
ing on the design of the cavity and the embedded QW's.
Roughly speaking, if the linewidth of the cavity quasi-
mode (determined by the mirror reflectivity) exceeds the
interaction energy (determined mainly by the exciton os-
cillator strength) these structures present enhanced spon-
taneous emission at an in-plane wave vector Q~~ deter-
mined by exciton and cavity mode resonance. This is
the weak-coupling regime. The strong-coupling regime
(cavity linewidth smaller than interaction energy) is char-
acterized by a normal-mode (Rabi) splitting between QW
excitons and cavity quasimodes, similar to the splitting
found for bulk polaritons. However, in contrast to bulk
material, the photonic and excitonic properties can be
tailored almost independently by the design of the cavity
and the embedded QW, respectively. In addition, dif-
ferent experimental techniques can be used in order to
bring the exciton and cavity mode into resonance. This
has been achieved by probing di8'erent spots of a wedge
shaped sample, by taking advantage of the in-plane dis-
persion of the cavity modes in combination with a wedge
shaped sample, or by the fact that the exciton energy de-
creases much stronger with increasing temperature than
the cavity mode does. The Rabi splitting corresponds to
a time-domain oscillation between the exciton and cavity
mode, which has been experimentally detected recently.

Theoretical investigations concerning the interaction of

excitons with cavity modes have been undertaken both by
a semiclassical and a quantum approach. Odani et al.
and Savona et al. ~~ used the semiclassical approach which
consists in solving Maxwell's equations with a local or
nonlocal excitonic susceptibility. An interesting result
found in Ref. 11 is that the splittings measured in absorp-
tion, reflectivity, transmission, and photoluminescence
are, in general, all diIII'erent, and do not agree with the
Rabi splitting. This gets more pronounced as B, the re-
flectivity of the mirrors, decreases and the nonradiative
exciton damping increases. On the other hand, quan-
tum calculations were performed by Citrin, Savona et
al. , and corda. Savona et al. used an approximate
expression for the reflectivity of the cavity mirrors and
found an analytic expression for the Rabi splitting as-
suming resonance of the exciton and cavity mode. In Ref.
13 an expansion of the electromagnetic Geld in terms of
the exact normal modes of the whole space was adopted.
This works even for cavities which are alxnost completely
open. It should be noted that as far as only the po-
lariton dispersion is concerned, the semiclassical and the
quantum approach are fully equivalent. The quantum
approach is however required as a starting point for the
investigation of, e.g. , polariton squeezing or nonclassi-
cal statistical properties of polaritons.

In order to describe the angle-resolved photolumines-
cence data by Houdre et aL, we extend in this paper
our previously presented theory, which was restricted
«Q~~ = 0, to the case of finite in-plane wave vector
Q~~. In the experiment of Ref. 7 a 3A/2 wide GaAs cavity
was sandwiched between two distributed Bragg reflectors
(DBR's). The number of periods in the DBR's were cho-
sen different on each side, in order to compensate for the
difFerent reflectivities at the outer interfaces to air and to
the substrate, respectively. Due to this compensation we
restrict our study to a hypothetical symmetrical struc-
ture with the substrate on both sides. We could as well
choose a structure with air on both sides, the only di8'er-
ence being the appearance of guided modes in the nonra-
diative region, which is not the subject of this study. In
the 3A/2 cavity two QW arrays were placed at positions
where only odd electromagnetic modes have antinodes
and interact with the QW excitons. This allows for a
reduction of the basis set needed for the expansion of
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The modes with the same Q~~ but difFerent energy can
be distinguished by p which corresponds to Q, in the
surrounding medium characterized by the dielectric con-

stant s, . ug ~ = c2/s, (Q~~~ + p2) is the frequency of the

modes, B(z) is the properly matched linear combination
of right and left traveling plane waves, and A (6) is a
normalization area (length). The normalization constant
of the electromagnetic modes 8 is given by IA, I

+ IB, I

where A, and B, are the field amplitudes in the surround-
ing layers. ' A, and B, are related to the amplitudes at
the interface central-layer —DBR, A and B, by a trans-
fer matrix M, which incorporates propagation through
the layers as well as the proper boundary conditions at
the interfaces. The relation

(A, ) (A,) 1 f exp(iP, )

qB, p I B,& 2i g
—exp( —iP, ))

holds for odd electromagnetic modes and the phase P, =
p, l, with p, = s,p2/s, + (s,/s, —1) Q2~~. s, is the di-

electric constant of the central layer and l half its width.
The 2 x 2 transfer matrix M can be decomposed into
contributions from the individual layers and interfaces
as18, 19

where N is the number of pairs of quarter-wave layers
and the matrix T describes the transmission through one
pair of them. T is given by

T:D2 P2D2 D1 P1 D1 (4)

with the dynamical matrices D; and the propagation ma-
trices P; for the ith layer

the vector potential. The solutions of Maxwell's equa-
tions in the empty cavity are plane waves in the cavity
plane (we choose henceforth Q~~ II e ) multiplied by prop-
erly matched right and left traveling waves (with respect
to the growth direction z) in the individual layers. For

Q~~ II
e the electromagnetic TE modes, which interact

with the T polarized excitons, are polarized parallel to e„.
Then the vector potential can be expanded in terms of
creation and annihilation operators for electromagnetic
modes (c~,cg, p) ast

II
~'

magnetic field energy (1/8vr) j(E D+ B ) dV reduces to

The exciton-photon interaction can be derived from
the terms linear and quadratic in the vector potential by
the procedure described in Refs. 2 and 14. It yields the
expressions

Q Q

Qll PP

(8)
where B& (B g„) is an exciton creation (annihilation)

operator and the coupling constant is

+Q~~~p
= - &&. &(0) &(p) . (9)

)
Here p, is the dipole matrix element e (clzlx) between the
bulk band-edge Bloch states for conduction (Ic)) and va-
lence band (lv)) and 0,„ is the exciton frequency. p(0)
is the exciton relative function at the vanishing electron-
hole separation in the QW. The function O(p) is a mea-
sure of the overlap between QW subband functions and
electromagnetic modes. It will be given explicitly further
below.

The Hamiltonian for the coupled exciton radiation sys-
tem can now be written as

H = ) hO. „B&~ B&„+H. + H~„tl + H,'„",', (10)

where we neglect the spatial dispersion of the exciton. In
the literature diferent methods were used to diagonalize
exactly Hamiltonian (10). This can be done by solv-

ing the Heisenberg equations for the exciton and photon
operators, by the generalized Hopfield transformation,
or by summing the Dyson series for the correlation func-
tion for the dipole moment. As a result one obtains the
dispersion relation for the coupled exciton-photon exci-
tations

h ((u —0,„)—2hQ, „Z(~) = 0,
with the exciton self-energy

2~@((~l+Q((s I

n.„~-h[( + 8) —-'
j

The real part of the self-energy is

(' =
q

—p' ——p')I '

exp(iP;) 0
(6)0 exp( —iP, ) )

Here p; is defined by an analogous relation as p, and the
phases P; are given by P; = p;l; with the layer thickness

T is a unimodular matrix and, therefore, the Nth
power can be evaluated analytically with the help of the
Chebyshev ident1ty.

With the expansion (1) the expression for the electro-

4
&'(0)

cLp 1 2./, , 0
&'(p)

ReZ(ur) =—

and the imaginary part

ImZ((u) = —P (0) 0 (p) .
C p8

(14)
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Instead of solving Eq. (11) numerically for complex fre-
quency we determine the polariton energy by the analysis
of the appropriate spectral function as a function of real
u. This spectral function is the imaginary part of the cor-
relation function for the dipole moment. For u 0
it reduces to the exciton spectral function, given by

360 I I I I / I I I I / I I I I ( I I I1
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A'"(~) = —2 Im G" (~)
Im Z(~)

[(u —O.„—Re Z ((u) ]' + [Im Z ((u)]'
' (i5)
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where G"I(~) is the retarded exciton Green's function.
Using the rotating wave approximation would have lead
directly to the exciton spectral function. The polariton
energy is determined by the maxima in the spectral func-
tion.

The sample of Ref. 7 consists of two QW arrays,
each comprising three approximately L = 75 A wide
Inp i3Gap syAs QW's. These QW's are I~ = 100 A.

apart and the two arrays placed a distance A/2 away
from the interfaces inside a 3A/2 wide GaAs cavity. The
DBR at the substrate side is made of 19 pairs of alter-
nating AlAs and Alp iGap gAs layers of width A/4. The
whole structure is wedge shaped leading to a different
energetic position of the QW exciton and cavity mode
across the sample. For the numerical calculations we used
the values (for Ru = 1.3 eV) e, = e, = 12.53 (GaAs),

8.76 (A1As), e2 —— 12.15 (Alp i Gap pAs). 2i The
heavy-hole exciton oscillator strength f, which is related
to the quantities p and P(0) by p P (0) = (he /2mEg) f,
was calculated by solving the momentum-space two-
particle Schrodinger equation including light-hole —heavy-
hole mixing with a modified quadrature method. A

value of f = 52 x 10 A. was found. The function
0 (p), which is a measure of the overlap between elec-
tromagnetic field and the QW's, is given by

+3.

O (p) =2 ) cos p,
~

—+k(L+Lgy)
~

(i6)

where p has to be expressed in terms of p. In deriving
Eq. (16) the coupling between excitons in difFerent QW's
was neglected.

In Figs. 1—3 we present numerical results for the po-
lariton dispersion for different resonance conditions of the
exciton and cavity mode, corresponding to the conditions
of Fig. 3 in Ref. 7. As we have no knowledge of the
widths of the individual layers at the investigated spots
of the sample, we adjusted the exciton energy and the
cavity mode energy at Q~~

= 0 in order to fit as good
as possible the experimental result at Q~~

= 0. Due
to the high-reflectivity mirrors (and corresponding small
linewidth of the cavity mode) and the fact that there are
several QW's embedded in the cavity, the influence of
the nonradiative exciton damping [which can be easily
introduced phenomenologically in Eq. (15)] is not impor-
tant. As a consequence, the polariton dispersion can be
compared directly to the photoluminescence signal. We
see that, whereas the dispersion of the lower polariton
branch agrees well with the experimental result (shown
as squares), there appears a discrepancy between the-

1330'
0

ory and the published experimental data for the upper
branch. This seems to be due to the dispersion of the cav-
ity mode (shown as dashed line) determined theoretically
by the complex zeros of 0 or by an analysis of the bare
photon spectral function, which is proportional to 1/g. i3

The dispersion of the cavity mode can be described by
the relation

c2Q2
O(Q ) = O(0)2+

eff
(17)

where the effective index of refraction neff is an average of
the refractive indices of the different layers. Due to the
field penetration into the DBR's n, ff is always smaller
than n . By comparison with the numerical calculation
we find a value n, ff

——3.26, very close to the value n ff ——

gnin2 ——3.24 derived by Pidgeon and Smith for the
case n, = n2 ) ni in a A/2 cavity. From the experimental
data of Ref. 7 a value as high as neff n, 3.5 can
be extracted, which is a surprising result, as it cannot
be obtained theoretically within the limits imposed by
the experimental determination of the refractive indices
of GaAs and AlAs. The authors of Ref. 7 also present
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FIG. 2. Same as Fig. 1 for diferent resonance conditions,

corresponding to Fig. 3(b) of Ref. 7.

Q [10 m ]
FIG. i. Polariton dispersion (full lines) in the case of coin-

ciding exciton and cavity mode energy at q~~
= 0. The exciton

(cavity mode) energy is shown as dotted (dashed) line. The
squares show the experimental points of Fig. 3(a) in Ref. 7.
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FIG. 3. Same as Fig. 1 for different resonance conditions,
corresponding to Fig. 3(c) of Ref. 7.

semiclassical calculations based on a I orentz oscillator in
a cavity formed by DBR mirrors. The same values for
the refractive indices of GaAs and AlAs as in the present
paper are used and for the dispersion of the cavity mode
Eq. (17) is cited. However, although not stated explicitly,

n ~ was used as a 6tting parameter in order to get the
best agreement between theory and experiment. 25 The
origin of the discrepancy between the experimental data
and our calculations is probably due to an experimental
uncertainty in the angular measurement. The difFerence
between theory and experiment corresponds to an angle
error of about 2 —3, which seems reasonable according
to the experimental setup.

In conclusion, we have presented a quantum theory
for the coupled exciton-photon excitations in cavity-
embedded QW's that is based on an expansion of the
uncoupled electromagnetic field in terms of normal modes
of the whole space. The in-plane dispersion of the two
polariton branches in the strong-coupling regime was ob-
tained and compared to available experimental data. We
have commented on the apparent discrepancies between
theory and experiment which arise probably due to the
experimental diKculty of determining the angles exactly
enough.
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