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Persistent currents in the presence of a transport current
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We have considered a system of a metallic ring coupled to two electron reservoirs. We show that in
the presence of a transport current, the persistent current can flow in a ring, even in the absence of a
magnetic field. This is purely a quantum effect and is related to the current magnification in the loop.
These persistent currents can be observed if one tunes the Fermi energy near the antiresonances of the
total transmission coefficient or the two-port conductance.

Experimental and theoretical research in mesoscopic
systems have provided an opportunity of exploring truly
quantum-mechanical effects beyond the atomic realm.!
Persistent currents in small metal rings threaded by mag-
netic flux are a manifestation of quantum effects in sub-
micrometer systems, and are prominent among the
mesoscopic effects. Prior to the experimental observa-
tions,?~* Biittiker, Imry, and Landauer suggested the ex-
istence of persistent currents in an ordered one-
dimensional ring threaded by a magnetic flux.> The
coherent wave functions extending over the whole cir-
cumference of the loop lead to a periodic persistent
current. General quantum-mechanical principles require
that the wave functions, eigenvalues, and hence all ob-
servables be periodic in a flux ¢ threaded by the loop with
a period ¢, do=~hc /e being the elementary flux quantum.
The magnetic field destroys the time-reversal symmetry
and, as a consequence, the degeneracy of the states carry-
ing current clockwise and anticlockwise is lifted. Depend-
ing on the position of the Fermi level, uncompensated
current flows in either of the directions (diamagnetic or
paramagnetic). For an ideal isolated ring without impuri-
ties and at zero temperature, the nature of the persistent
current depends on the total number N of the electrons
and the persistent current exhibits a sawtooth-type
behavior as a function of magnetic flux. For even N, the
jump discontinuities occur from the values —(2ev,/L)
to (2ev,/L) at ¢=0, =*¢;, and =£2¢, and at
¢=16¢/2,13¢¢/2, etc., for odd N. Here v, is the Fermi
velocity, and L is the circumference of the ring. Studies
have been extended to include multichannel rings, disor-
der, spin-orbit coupling, and electron-electron interaction
effects.> 12 The persistent current which flows without
dissipation is an equilibrium property of the ring, and is
given by a flux derivative of the total energy of the ring.
These currents can also be thought to arise from the com-
peting requirements of minimizing the free energy in the
presence of flux at the same time maintaining the single
valuedness of the wave function. Persistent currents are
truly mesoscopic effects in the sense that they are strong-
ly suppressed when the ring size exceeds the characteris-
tic dephasing length of the electrons L, (i.e., the length
scale over which the electron can be considered to be in a
pure state).

Theoretical treatments to date have mostly been con-
centrated on isolated rings. Persistent currents occur not
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only in the isolated rings but also in rings connected via
leads to electron reservoirs, namely in open systems.!3 710
In a recent experiment, Mailly, Chapelier, and Benoit
measured the persistent current in both closed and open
rings.* Biittiker gave a conceptually simple approach of a
small metal loop connected to an electron reservoir (open
system).!> The reservoir acts as a source and a sink for
electrons, and is characterized by a well-defined chemical
potential u, and by definition there is no phase relation-
ship between the absorbed and emitted electrons by the
reservoir. The reservoir acts as an inelastic scatterer and
as a source of energy dissipation or irreversibility. All
scattering processes in the leads are assumed to be elastic.
Inelastic processes occur only in the reservoir, and hence
there is a complete spatial separation between elastic and
inelastic processes. Due to the presence of inelastic
scattering (by definition) in open systems, the amplitude
of the persistent current is smaller as compared to the
closed systems. Weak inelastic scattering does not des-
troy the effect leading to persistent currents. We have ex-
tended Biittiker’s discussions to a case wherein electrons
from the reservoir enter and leave the ring in a subbarrier
regime characterized by evanescent modes throughout
the circumference of the loop.!” In this situation the per-
sistent current arises simultaneously due to two nonclas-
sical effects, namely the Aharanov-Bohm effect and quan-
tum tunneling. The dependence of the current on the
length of the ring is similar to that arising due to states
localized by static disorder. In our recent work we have
calculated the persistent currents in a normal metal loop
connected to two electron reservoirs in the presence of
magnetic flux.'® We have shown that in general the mag-
nitude of persistent current in a loop depends on the
direction of current flow from one reservoir to the other.
Persistent currents in open systems are sensitive to the
direction of the current, unlike physical quantities such
as conductance. We hope that this effect is useful for
separating persistent current from other parasital
currents (noise) associated with experimental measure-
ments.

In our present work, we have considered a metallic
loop coupled to two electron reservoirs (characterized by
chemical potentials x; and u,) via ideal wires as shown in
Fig. 1. For the sake of simplicity we have restricted our-
selves to the case of one-dimensional structure. The
length of the upper arm of the loop is /;, and that of the
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FIG. 1. An open metallic loop connected to two electron
reservoirs.

lower arm is /,, such that the circumference of the ring is
L=I,+1,. When the chemical potential p, is greater
than u,, the net current flows from left to right, and vice
versa when u, is greater than u;. We show that in the
presence of a current flow through the sample (the non-
equilibrium situation), a net circulating current flows in a
loop in the absence of magnetic field in certain range of
Fermi energies. In a sense the persistent current is in-
duced by incident carriers. The existence of such
currents was first discussed by Biittiker;'* however, our
analysis is qualitatively different from that of the earlier
study. The current injected by the reservoir into the lead
around the small energy interval dE is given by
dI,,=ev(dn /dE)f(E)dE. Here v =%k /m is the velocity
of the carriers at the energy E, (dn /dE)=1/(2m#v) is the
density of states in the perfect wire, and f (E) is the Fer-
mi distribution. The total current flow I in a small ener-
gy interval dE through the system is given by the current
injected into the leads by reservoirs multiplied by the
transmission coefficient 7. This current splits into 7, and
I, in the upper and lower arms, respectively, at the junc-
tion, such that I =I, +1I, (the conservation of current or
Kirchoff’s law). Since the upper and lower arm lengths
are unequal, in general these two currents differ in magni-
tude. Biittiker!# suggests that this difference arises due to
a circulating current I, such that the current in the
upper branch is then given by I,=I1/2+1,, and the
current in the lower branch is given by I,=1/2—1,.
Such a construction always results in a persistent current.
However, if this definition is taken seriously, then even in
a classical loop with different resistances in different arms
one obtains different currents in the presence of a dc
current and hence persistent current. It is clear then that
with this definition one can obtain persistent currents
even classically without invoking quantum mechanics at
all. In our present quantum problem, when one calcu-
lates the currents (I,1,) in two loops, there exists two
distinct possibilities. In the first possibility, for a certain
range of incident Fermi wave vectors (or energies), the
current in the two arms I; and I, are individually less
than the total current I, such that I =1,+1,. In such a
situation both currents in two arms flow in the direction
of the applied field. In such a situation we do not assign
any persistent current flowing in the ring. However, in a
certain energy interval, it turns out that current in one
arm is larger than the total current I (magnification prop-
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erty). This implies that, to conserve the total current at
the junctions, the current in the other arm must be nega-
tive, or should flow against the applied external field in-
duced by difference in the chemical potentials. In such a
situation one can interpret that the negative current flow
in one arm of the loop continues to flow in a loop as a cir-
culating (or persistent) current. Thus the magnitude of
the persistent current is the same as that of the negative
current. The direction of the persistent current can be in-
ferred as follows. Consider a case when the net current
flows in the right direction (i.e., p;>pu,). If for this case
negative current flows in the lower arm, then persistent
current flows in a clockwise (or positive) direction. If, on
the other hand, the negative current flows in the upper
arm, then the persistent current flows in an anticlockwise
(or negative) direction. The negative current in one arm
of the loop is purely a quantum-mechanical effect. Our
procedure of assigning persistent current only when nega-
tive current flows in one of the arms is the same pro-
cedure that is well known in classical ac network
analysis.20 It is well known that, when a parallel resonant
circuit (capacitance C connected parallel with a combina-
tion of inductance L and resistance R) is driven by exter-
nal electromotive force (generator), the circulating
current arises in an LCR circuit at a resonance frequency.
This effect is sometimes referred to as a current
magnification. In this classical network, when the exter-
nal driving frequency is around a resonance frequency,
circulating currents are possible. Moreover, at the reso-
nance the total net current amplitude in the circuit is at
its minimum value. It turns out that even in our quan-
tum problem the circulating current arises near the an-
tiresonances (or transmission zeros) of the loop structure
coupled to leads.

We now consider a case where the current is injected
from the left reservoir (i.e., the current flow is in the right
direction). The total current flow around a small energy
interval is given by I =(e/2n#)T, where T is the total
transmission coefficient. It is straightforward exercise to
set up a scattering problem for this case and to calculate
the transmission coefficient and the currents in the upper
(I,) and lower (I,) arms. We closely follow our earlier
method of quantum waveguide transport on net-
works!718:21:22 ¢ calculate these quantities. We have im-
posed Griffths boundary conditions (conservation of
current) and single-valuedness of the wave functions at
the junctions. For details see Refs. 17, 18, and 21-23.
The expressions for I, T, I, and I, are given by

I=(e/2oR)T , (1)
T={8(2—cos[2kl,]—cos[2kl,]
+4sin[kl, Jsin[kl, 1)} /Q, ()
I,=(e/2m#)8(1—cos[2kl, ]
+2sin[kl, Jsin[kl,])/Q , (3)
I1,=(e/27#)8(1—cos[2kl ]
+2sin[kl, ]sin[kl,]1)/Q , 4)
where
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Q=(37—5cos[2kl;]—32cos[kl, ]cos[kl,]
—5cos[2kl, ]
+5cos[2kl, Jcos[2kl, ]+ 48 sin[ k], ]sin[kl, ]
—4sin[2kl, ]sin[2kl,]) . (5)

Here k is the incident wave vector. Our expression for
the transmission coefficient agrees with the earlier known
expression?> for the case of /;=I,. The transmission
coefficient across a metallic loop connected to two reser-
voirs and in the presence of magnetic flux has been inves-
tigated by several authors?*?° in connection with the
Aharonov-Bohm effect. We have studied the behavior of
the currents I; and I, as a function of the Fermi wave
vectors. We then identified the wave-vector intervals,
wherein either I, or I, flows in the negative direction,
and by their magnitudes we calculated the persistent
currents as described in earlier paragraphs. In Fig. 2 we
plotted the circulating currents (solid curves) in the di-
mensionless units (I, =2##l, /e) in the small energy in-
terval dE around the Fermi energy as a function of di-
mensionless wave vector kL. We have taken
1,/1,=5.0/3.0. In Fig. 2 we have also plotted the
transmission coefficient 7" for the same parameter values.
We notice that the persistent current changes sign as we
cross the energy or the wave vector at the first antireso-
nance (transmission zero or minimum) in the transmis-
sion coefficient. It does not change sign as we cross the
second antiresonance. The first antiresonance is charac-
terized by a asymmetric zero pole in the transmission am-
plitude [zero occurs at a value of kL =(27) and poles are
given by kL =(6.25495-i 0.299976) and (6.46865-i
1.90045)]. The proximity of the zero and the pole lead to
the sharp variations in the transmission coefficient
around the magnitude zero as a function of energy and
lead to a asymmetrical behavior in the transmission
coefficient (around antiresonance), sometimes termed as a
Fano resonance.”® The second antiresonance is charac-
terized by a zero along with two symmetrically placed
poles and the transmission coefficient is symmetric
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FIG. 2. Plot of persistent current I, vs dimensionless wave
vector kL (solid curve), and transmission coefficient T vs kL
(dashed curve). We have taken [/, /1,=5.0/3.0.
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around the antiresonance. The zero is at a value
kL =(4m), and the poles are given by kL =(12.4105-i
1.07584) and (12.7222-i 1.07584). We have thus shown
that the persistent current arises near the vicinity of the
antiresonances, and that the nature of the persistent
current as we cross the antiresonance depends on the
zero-pole structure in the transmission amplitude around
the antiresonance.

In Fig. 3 we plotted persistent currents in dimension-
less units (solid curves) and transmission coefficient
(dashed curves) versus kL for a case when [, /1,=(3.0).
For this particular case the transmission coefficient is
symmetric around the antiresonances, and the persistent
current does not change sign as we cross the antireso-
nance. In general the zero-pole structure in the transmis-
sion coefficient is sensitive to the ratio I, /l,, whether
commensurate or not . For an incommensurate ratio we
mostly obtain Fano-type antiresonances. For the com-
mensurate case, depending on the degree of commensura-
tion we can have both Fano-type and symmetric antireso-
nances. The magnitude and width of the persistent
current peak in the vicinity of antiresonances depend on
the strength of the imaginary part of the pole. If the two
poles have different imaginary parts, the peak value of
the persistent current will be higher (along with a smaller
width) for the persistent current behavior near the pole,
with a smaller imaginary part as compared to the larger
one.

We have shown above that persistent currents can arise
in the absence of a magnetic field in an open loop con-
nected to two reservoirs in the presence of a transport
current. For a fixed value of the Fermi energy the per-
sistent current changes sign as we change the direction of
the current flow. In equilibrium (i.e., u;=p,) we do not
obtain any persistent currents in the absence of a magnet-
ic field. In the nonequilibrium situation (.e., p,7u,) it is
possible to observe persistent currents. If ;> pu,, then at
zero temperature the total magnitude of the persistent
current is given by Ir= [ ZfICdE. Experimentally it is

possible to observe these currents if one tunes the Fermi
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FIG. 3. Plot of persistent current I, vs dimensionless wave

vector kL (solid curve) and transmission coefficient T vs kL
(dashed curve). We have taken /, /I, =3.0.
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energy around the antiresonances in the two-port con-
ductance (or transmission coefficient). Moreover, it is
better to tune the Fermi energy around the symmetric an-
tiresonance so that at finite temperature the effect sur-
vives, i.e., the current on both sides of this antiresonance
has the same sign and hence the finite temperature does
not lead to cancellations, as opposed to the case of Fermi
energy around asymmetrical antiresonances.
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