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Theory of Brillouin scattering from corrugated surfaces
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The phonon —surface-polariton (SP) interaction in addition to the phonon-phonon mixing is ac-
counted for in order to get the Brillouin scattering cross section from an optical bigrating or from a
rough surface of a metal. We limit our attention to nontransparent media, thus neglecting from the
start the elasto-optic e8'ect and linearize the ripple contribution in the extinction-theorem equations.
We compare these results with the experimental data. In a silver grating the Rayleigh peak shows
a "replica" in the frequency spectrum due to phonon-SP coupling. On the contrary, in a Si grating
phonon-phonon mixing is responsible for the observed gaps in the second- and higher-order Brillouin
zones.

I. INTR.GDU CTION

Surface Brillouin scattering has been largely used in
the last decade to get information on the elastic and
elasto-optic properties of transparent materials and is a
well understood phenomenon. ' The method is particu-
larly suited to study surface dynamics of films and layered
structures for metals and many semiconductors whe&i the
light penetration depth becomes small compared to the
phonon wavelength, and the agreement between the the-
ory and the experimental data is well established.

Recently, Brillouin scattering experiments have been
performed on controlled optical gratings rather then us-
ing Hat surface samples and new structures observed in
the spectral intensity of the backscattered light. Using a
silver grating Robertson et al. observed that for partic-
ular angles of scattering, the spectral intensity reveals a
second Rayleigh replica at a higher phonon frequency 0
in addition to the ordinary Rayleigh peak. Moreover, us-
ing a Si sample, Dutcher et al. observed a small splitting
in the Rayleigh peak at the first Brillouin zone edge.

These features have been recognized as consequences
of the presence of the grating which mixes modes of the
same &equency but difFerent parallel momentum on the
surface. In the first case, one has to deal with light-
mode mixing: the initial radiative state goes into an
evanescent wave, hence, at particular angles, it can res-
onate with a surface polariton (SP). The surface Rayleigh
mode constitutes the principal contribution to the inelas-
tic intensity and there are essentially two scattering pro-
cesses involved. One is the direct transition from the
initial to the final state, which gives rise to the usual
Rayleigh peak; the other involves the intermediate, vir-
tual, and long living SP state which generates the ob-
served Rayleigh replica.

The appearance of a 0 gap at the zone border in the Si
grating is instead a consequence of the standard phonon-
mode mixing, i.e., the coupling of two surface waves of op-
posite momenta. More interesting, however, is the pres-

ence of another and even larger gap observed by Dutcher
et al. in the second Brillouin zone and whose explanation
is far from being trivial. In fact, it has been recognized '

that this second and larger gap originates Rom a mixing
of the Rayleigh wave with the longitudinal bulk threshold
which acts like a pseudosurface mode.

This shows that light as well as phonon modes have
to be properly treated on a grating. In other words,
the grating grooves couple light through phonons, which
already feel the grating periodicity. We shall talk in this
case of "dressed" phonons, to distinguish them from the
"bare" ones and relative to a Hat geometry. Working
with dressed phonons has been an essential ingredient in
order to reproduce the observed splitting in Si. On the
contrary the light mixing seems to play a secondary role,
and the observed intensity is nicely reproduced with the
direct process only (the inHuence of indirect processes via
virtual states will be considered later in this paper).

Vice versa for the observed Rayleigh replica in silver,
the bare phonons are good enough, but one cannot get
rid of light mixing, since the virtual SP state becomes
now essential in order to explain the data.

A consistent theory has to include at the same time all
these effects. Its presentation is the aim of this paper.
We are not limited to transparent media, since this is
the case encountered in the experiments. Therefore, we
neglect from the start the elasto-optic efFect.

In Sec. II we derive the equations for a moving sur-
face and solve them in the adiabatic limit generalizing
previous results. ' The theory is suited to treat Bril-
louin scattering since the characteristic surface vibrations
are in the microwave region, and thus smoothly varying
when compared with the light frequency u. Consistently
throughout the paper we neglect the small change in the
light frequency u over the phonon frequency 0 whenever
possible, since 0 && ~. The connection with the T ma-
trix of the scattering theory is made in Sec. III. The
effective vertex equation for the dynamical corrugation is
derived following the same procedure as in Ref. 10. In
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II. THE DYNAMICAL SURFACE PROBLEM

The problem of surface Brillouin scattering on a cor-
rugated surface is solved in principle by imposing the
appropriate boundary conditions on the electromagnetic
(e.m. ) field satisfying the homogeneous Maxwell equa-
tions

VxE= ———B,1 8
cOt

1 8V'xB= ——K
c Bt

V. E=O, (2.1)

(2.2)

Sec. IV we obtain cross-section formulas that are linear
in the phonon displacements but valid in principle to all
orders in the static corrugation. In Sec. V we solve for
the surface Rayleigh mode and for the bulk continuum
containing surface resonances. Finally, in Secs. VI and
VII, as applications of the theory, we present some nu-
merical results for a one-dimensional (1D) grating on Ag
and Si, which have been studied experimentally.

In this paper we are mainly interested in surface grat-
ings. Equivalently to Glass, Loudon, and Maradudin~2
we are limited to calculate the modes of vibration on a
periodic structure. However, the cross section as pre-
sented in Sec. IV is equally valid for a stochastic surface.
In the latter case, the modes can be solved in a power
series of the roughness. This is the approach used by
Maradudin and Mills for the Rayleigh wave, and can
be easily extended to the bulk continuum. The roughness
does not introduce relevant structures in the spectrum, a
part from a broadening on the surface modes and a low-
ering of the thresholds, which are of less physical interest.
We do not treat this argument here.

(2.4)

hence the wave equation follows:

2
V2, E (r', t') ——, e p (t' —t")Ep (r', t")dt" = 0.

(2.5)

e p(t —t') = b pe(t —t'). (2 6)

These are the main assumptions of the paper, which
make the theory presented here not suited to transparent
and isotropic media. The solution is found through the
(scalar) Green function equation

2
V', , g (r, r', t —t') ——, e(t —t")g (r, r', t" —t') dt"

= b(r —r')8(t —t') (2.7)

in the standard way, multiplying it on the left by E(r', t')
and Eq. (2.5) on the left by g(r, r', t —t'), subtracting
them, integrating on r' over the whole volume V(t') oc-
cupied by the medium, and on time t'. Using the formal
expansion

Equation (2.4) implicitly assumes a local relation between
D and Ep, neglecting spatial dispersion. Also e p ap-
pears to be translationally invariant in time which means
that the elasto-optic effect, that is the inBuence of the
phonon displacement on the dielectric constant, is dis-
regarded from the beginning. To make the equations
simpler we assume e p to be diagonal, i.e.,

which hold in all space but not on the surface of separa-
tion a (t) defined by

z = ((R, t),

E(r, t) = ) K(r, ur)e

g(r, r, t —t') = ) g(r, r', u)e

(2 8)

(2.9)

where K:—(x, y). In the medium confined in the region
z ( ( one has to add the constitutive equation and the same for e (t —t'), the result is

f dt' dr' E(r', t') V', , g(r, r', t —t') —g(r, r', t —t') V', , E(r', t')
V(t')

+—) e ' dt'e ' ~ dr' {e(w)w —e(w' )e' ) K(r', e')()(r, r', w) = K(r, t). (2.10)
u cu' v(c')

Equation (2.10) holds if the observation point r is inside
the volume V, while the right-hand side (rhs) vanishes if
it is external to it. Note that if V does not depend on
time, the second integral on the left-hand side vanishes,
according to

I

ume of integration V(t') is slowly varying in time, the
same integral is of the order o(Q/w), 0 being here a typ-
ical phonon frequency. Neglecting corrections of order
o(A/~), using the Gauss theorem, and taking the obser-
vation point r in vacuum, Eq. (2.10) becomes

(2.11) (2.12)

Mere generally, if the surface o(t') delimiting the vol- This equation generalizes the extinction theorem ' to
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a slowly moving surface o(t'). In it 8' = n V', I where
n is the unit vector normal to the surface and point-
ing in vacuum. Again for a static surface, Eq. (2.12)
contains a convolution and thus decouples in the time-
Fourier-transform ~ quantities. It is in the last form that

I

a vector integral equivalent to (2.12) has been written by
Jackson. Using Jackson's procedure but working with
the time dependent quantities, it can be easily shown
that Eq. (2.12) can be equivalently transformed into

dt' — nx —,B(r, t ) ~ +E (r', t')V', g(r, r', t —t') + [nx E(r', t )jx)7, g(r, r, t —t') dS' = 0. (2.13)
(gl ) ( c Bt

The E and 8 quantities above are the fields on the sur-
face taken &om inside the medium, that is with z -+ (
Equation (2.13) can be handled as follows: first, express-
ing the field quantities appearing here in terms of the
field outside the medium, second, satisfying Eq. (2.13)
with the observation point r = (R, z) for

z ) max ((R', t'), (2.14)

that is above the grooves, and third, using the Rayleigh
hypothesis for the field expansion.

For the first point one uses the boundary 'conditions
for the ~ quantities as

+(z x K, )A, ;„, e '""e' (2.21)

which we suppose to be valid within the grooves up to
the surface z ~ (+ . Instead, the quantity E;„,in (2.19)
is the incident wave containing "p" and "8" polarization

E-'"(~) = &:"'(~)/e(~)
+~~ ( ) = E~t ( ) &I~"( ) = &~~" ( )

(2.15)
(2.16)

where A„;„„A,;„,are known coeKcients.
In above the sum over cu and K means integrals ac-

cording to

where "in" and "out" mean the field in the limits z ~ (
and z —+ (+, respectively, and

~~
and n are projections on

the tangent plane and on the normal to it. Using the
Green function representation

g( ) ) i i

qi — ' K (R.—R.')'K R.—R.'

L~ g2q)

with

dK
(2m)'

(2.22)

with I in (2.17) being the area of the sample. We use
discrete indices for frequency, too, since it simplifies the
notation. The continuous limit is taken at the end of the
calculation. The quantities K = K/K and z denote unit
vectors, while in Eq. (2.20) we introduced

q—:q(K, (u) = e((u) — —K~, Imq ) 0, (2.18)
(2.23)

E(r, ~) = b, , E;„,(r, ~, ) + Eq(r, cu),

one is allowed to use an expansion

(2.19)

the second point allows us to drop the modulus in the
exponent in (2.17).

Third, the Rayleigh hypothesis implies that for the
field in vacuum, which consists of an incident wave plus
a diKracted Beld as

and in Eq. (2.21) p; = p(K;, w, ), as light momenta along
the z axis in vacuum. Using the above expressions the ex-
tinction theorem Eq. (2.13) provides an equation for the
unknown coeKcients Az, A, . After some straightforward
algebra one gets

) D (K, (u, K', (u')A(K', (u', K;, (u;)

Eg(r, cu) = ) /

K ——z
/
Ap(K, cu)

(- K)
+D+(K, (u, K;, u), ) = 0. (2.24)

zxK A, K (u e'" e' (2.20) As in Ref. 10 we have introduced the 2 x 2 unknown
matrix

(2.25)

with 1;( „)~ ((u/ur')(KK'+ K.K p'q) —(—,qK x K . zf
(q —p') K—K', —~' ( ((u/~')( —p'K x K . zj ( —,)zK K )

(2.26)
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D+(K, (u, K', ~') = D (K, (u, K', (u'; p' m —p'). (2.27)

or in compact notation

D G-'T = --,' (D+h++ D h,-)-V, (3.7)

The compact notation q = q(K, u), p':—p(K', u') is used,
and the first term on the rhs in (2.26) denotes the Fourier
transform in space and time defined as

where h+ = iG, 6 = iBG are diagonal matrices0 1, P 1

ph+ with

1
(g)K = g(R)e ' dR (2.28)

6+, (K, ~) = (ep+q)/e, 6,+(K, ~) = p+q. (3.8)

and

We have de6ned for convenience the quantity
P(K, w) = [1/p(K, ur)] 1 where 1 is the unit matrix.
Equivalently with

(f) = f(t)e' 'dt. (2.29) T=V+TG V (3.9)

O~ = ~cd —(d
~
(( (d~. (2.30)

III. THE VECTOR THEORY OF INELASTIC
LIGHT SCATTERING

Equation (2.24) forms the basis of the vector theory of
light scattering from a slowly moving surface. The zero-
order reflectance can be evidenced redefining A through
T as

A(K, ~, K, , (u, ) = R(K, u), K;,~;)
—2ip;G (K, (u)T(K, ~, K, , u);)

xG (K;, (u;), (3.1)

here10~11

& p(K, ~, K', ~') = hK K b b pB (K, w), (3.2)

+~ = ('p —q)/(&p+ q) &2 = (p —q)/(p+ q) (3 3)

Equation (2.24) generalizes the result by Brown et al.
(their Eq. 3.1) to a slowly moving surface. Once again
the Rayleigh hypothesis decouples the Geld in vacuum
from the field in the medium. The advantage of de6ning
the A matrix as in Eq. (2.25) is that the modulus square
of its matrix elements give the scattered Poynting vector
normalized to the incident one for various polarizations.

In the following we shall not distinguish, unless nec-
essary, between w and u'. This allows us to put, con-
sistently with Eq. (2.12), u/~' = 1 in the 2 x 2 matrix
in (2.26). Vice versa this cannot be done in the term in
front of the matrix which denotes the Fourier transform
in time and involving phonon frequencies

and multiplying Eq. (3.7) on the right by (1 —G V) one
gets the equation for the effective vertex V

(D —D+) PV = i(D h +D+h+) 7. (3.10)

Equation (3.9) resembles the T-matrix equation of the
scattering theory and is related to the Green function G
satisfying the equation

G=G +G VG. (3.11)

VG=TG .

In place of Eq. (3.9) and Eq. (3.11) one then has

T = V+VGV,

G = G'+ G'TG'

From the last above equation, Eq. (3.1) becomes

(3.12)

(3.13)

(3.14)

A(K, u), K, , ~;) = —8K K b I, 1 —2ip;G(K, ~, K, , ur, ),

(3.15)

which can be regarded as the Gnal result.
However, for application to Brillouin scattering, one

needs only expressions linear in the phonon displace-
ments u. This means that the V vertex can be expanded
accordingly to

In fact, rewriting the last equation in the equivalent form
(1 —G V)G = G, then multiplying it on the left by
T and using T(1 —G V) = V, which is equivalent to
Eq. (3.9), one gets the wanted relation

are Fresnel coefBcients for a smooth surface, and
V V~+ V" + o(u ), (3.16)

G p(K, (u) = S,pG'(K, (u),

G', =ie/(ep+q), G', =i/(p+q)
(3 4)

(3.5)

are zero-order Green functions for p and 8 polarization.
Inserting Eq. (3.1) in Eq. (2.24) one has

where V~ is the elastic interaction, and for inelastic chan-
nels V" is linear in the phonon displacement. In order to
get this expansion one needs erst a relation between the
dynamical surface (2.3) and the static one that we shall
call

) D (K, (u, K'(u')G (K', (u')T(K', ur', K;, (u;)
~', K'

z = ((R). (3.17)

(D+ (K, (u, K;,~;) h, + (K;, (u;)
1

2p'
+D (K, ~, K;, u), )h (K, , (u;)) (3.6)

This relation is given below.
Let be up = (Up, u, p), the acoustic wave amplitude

at the point Kp at the static surface and at the time t.
By de6nition
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((R, t) ]R.=R..+v. = u. o+((Ro). (3.iS) S(r, t) = —[E(r, t)xB(r, t)]. (4.i)

((R, t) —((R) = u~ (R, t) + o(u') (3.»)
with

Eliminating now the quantity Ro and linearizing, one
gets This quantity must be divided by the corresponding in-

cident flux and averaged as described below. Using the
expansion (2.S) for the field, we end up (before averaging)
with a double sum over K and ~ of the kind,

ui (R, t) = u, (R, t) —U(R, t) V'g(R). (3.20) K,K',u, cu'

(4 2)

The di8'erence between the static and dynamical surfaces
is just the acoustic wave amplitude projected over the
surface normal (z, —V'(), a result that would be expected
from the start.

Insert now (3.16) in (3.11) and get

(3.21)

1
L2

'(K —K') adR (4.3)

The average is made, first, over the surface L of the
sample and second, over the Bose distribution. In the
first case, one uses (2.20) and the relation

where

a = G'+a'V~G~ (3.22)

The easiest way to show that the two above expres-
sions are in fact equivalent to Eq. (3.11) is to multiply
Eq. (3.21) on the left by (1 —G V~) and use Eq. (3.22).

To order o(u), Eq. (3.21) solves in

which reduces Eq. (4.2) to a single sum over momenta.
In the same way the temperature averaging implies that
the second sum over ~' disappears. The last simplifica-
tion comes from the time translational invariance of the
phonon operators which gives b (~ —a') on the rhs in
Eq. (4.2), in analogy to the flat surface geometry. o Using
the same nomenclature used there, we write

(3.23) u(r, t) = ) e'~ w~Ag „(t),Lp1/2
(4.4)

Again, linearizing Eq. (3.13) in V", one gets

T = V" + V~G~V" +. V"G~V~ + V~G~V" G~V~. (3.24)
where w& = w" (z, R; Q) are the normal modes of vibra-
tion, and

This turns out to be consistent with Eq. (3.14) again to
order o(y, ) writing

A~, -(t) = n —iA„t + nt iA„t (4.5)

G TG = G = G~V"G~ = G (1+V~G~)V"

x(i+ G~V~)G', (3.25)

where in the second and third equalities we have used
(3.23) and (3.22). In Eq. (3.24) one recovers the starting
equation (but with the last term missing) that two of us
(A.M.M. and F.N. ) have used in a previous paper [see
Eq. (12) in Ref. 6].

In conclusion, we summarize the result valid for inelas-
tic channels writing

G(K, ~, K, , ~;) = G (K)T(K, K;;u~ )G (K;)

) G~(K, Ki)V"(Ki, K2., u~ . )
Ki, K2

xG~(Kz, K;). (3.26)

The explicit expression of V" and its dependence onu~, f, the Fourier transform of Eq. (3.20), will be given
later.

IV. THE INELASTIC CROSS SECTION

The cross section is obtained Rom the z component of
the Poynting vector for the e.m. field in vacuum

the normal coordinates, with a~, a the standard creation
and destruction phonon operators. The average over the
Bose distribution gives the above mentioned invariance

(A~ „(t)At, , (t')) = b~ ~,h„„(A~„(t—t')A~ „(0)).
(4.6)

The normal modes appearing in (4.4) are well deflned
for any periodic surface and not necessarily flat. Their
solutions postponed in the next section are the Bloch
solutions periodic in the R coordinate, and characterized
by the quantity Q, the parallel pseudomomentum.

As it is well known, there are two possibilities of count-
ing those states: first, using the restricted zone scheme
where Q is confined in the first Brillouin zone. In this
case, the index n is also an interband in addition to an in-
traband and polarization index. Second, in the extended
zone scheme, Q is allowed to vary freely. In this last case,
Q fixes the band, thus n represents the remaining param-
eters, i.e. , the energy 0 of the mode and its polarization
j within the band. We shall use this second representa-
tion. With this choice n is the same index as it was in
the flat geometry. By definition the normal modes have
to satisfy the orthonormality condition
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da, '~-'~
L,2

zwg w
z&g

= 8g g h, , b(O„—0„), (4.7)

where the modes are bulk modes characterized by a con-
tinuous spectrum. For surface modes the same relation
applies but in this case the last Dirac b in frequencies
is missed: the surface state being fully determined by Q
and the polarization index j alone.

At this point one has all the ingredients to calculate
the cross section. To do this it is convenient to use the
linearity of the problem and to calculate G in (3.15) that
is V" appearing in (3.26), taking "one mode w& at a
time, " and summing over the modes (i.e. , over n) at the
end. Again, being the vertex V linear in u~, it is
convenient to factorize it out and redefine

V"(u~ —,) ~ V"
( ~~/ ) (&Q, (t)) . (48)

Here the square brackets denote that V" is a linear func-
tional of id& which, in analogy to (3.20), is defined to be
the surface quantity

As already specified, the subscript u —u; present on both
sides in (4.8) denotes the time-Fourier transform. From
the above definition the rhs in (4.2) contains the product

(Qg „(t),. A~, (t )~ —~; )

= (2vr)'8(Id' —~)b (0„—Iur —(u, I)
' (4.10)

hN(w —(u, )
2

I
co cd

with N(Au) =
I
exp(Acr/K~T) —1I and such that

N = N, N + 1 for anti-Stokes and Stokes processes, N
being the Bose factor.

From Eq. (4.1) and using Eq. (3.15) the differential
cross section becomes

(
0 1 Id 2 hÃ(Gay —(de)cos Of cos 0;

20f lMf camp 7i c 2p ~f' —~&

x) S(I~, —~I —n„)

BIi g = ioi g (R)

m," z, R; —W" z, R; . V' R
z=g

(4.9)

x IG~p(Kf K' [id& gl) I
(4.1i)

and the Green function is found through Eqs. (3.26) and
Eq. (4.8), i.e. , more precisely from

G p (Kt, K;; id~& ) = G (Ky)T p (KJ, K, , ~; id~& ) Gp(K, )0 =)m —cu;
(

= ) ) G~~ (Kf, Ki) V~q (Ki, K2, ~, [io~~ ) Gqp (K2, K;) .
Q =~w —cu, )

g, b Ki,Kg

(4.12)

and

V (K, K'; ~) = (K K~U(K, K ) (4.i3)

V" K, K', ~; ~~~

As already noted we do not distinguish ~f, u, unless nec-
essary, and name them u. For simplicity we also drop in
the last expression the u dependence in G~ and G .

Equation (4.11) is the main result of the paper. Its
derivation has been made for a periodic grating, but the
same result remains valid for a stochastic surface. To
this purpose one makes the replacement IGI —i ((IGI )),
where (( )) denotes roughness averaging.

Equation (4.11) is an "exact" result. For numerical
calculations it suffices to solve the vertex V in (3.10) to
lowest order in (. From (3.16) we get

I

Neglecting terms of order o(g) in Eq. (4.9), the approx-
imate constant factor io~& —id,"(z = 0; Q) appears. In
fact to lowest order, the R dependence disappears in w,
which becomes the solution for a Hat geometry. To this
order Eq. (4.14) reduces to

V"(K, K', ~; [ur~&j)

—~Q K—K'io."(z = o &) In =~- ~U(K, K') (4.16)

recovering Eq. (15') of Ref. 6. For fixed Q, the sum
over n in Eq. (4.11) runs over the surface as well as the
bulk modes, implying in the second case an integration,
according to Eq. (4.7).

Here we have used the extended zone scheme. The
change to the restricted representation would require the
replacement

u)+ U K, K 4.14 ~Q, K—K' ~ ~Q+G, K—K' (4.17)

with

U(K, K') =
e)

/ KK' —K K qq'/~x I

l ——q'K x K.z
C

I——.qK x K.; l
~ (=.)'K. K

(4.15)

in (4.16), while the rhs in (4.11) would contain also the
sum over G. This justifies Eq. (8) that has been used in
Ref. 6.

V. NORMAL MODES

In the long wavelength limit the acoustic vibrations
can be treated classically. Within the medium, which
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can be viewed as an elastic continuum, the acoustic wave
amplitude satis6es the elastic equation

0 t9
pO u~(r) + . c;jhk(r; 0) kuk(r; 0) = 0. (5.i)

The above equation already involves time-Fourier quan-
tities obtained by making the usual expansion

u(r, t) = ) u(r;O)e '"'.
0

(5.2)

We describe the medium confined in the semispace z & g
letting

cjhk(r') = c;jhke[g(R) z], (5 3)

where c;~~A, are the bulk elastic coeKcients, and p is the
density. With (5.3), Eq. (5.1) reduces to the two equa-
tions below. For z & },

' it becomes the ordinary bulk
elastic equation,

pO'u;(r; 0) + c;jhkc),'kuh(r; 0) = 0 (5 4)

while for z = ( it includes the free stress boundary con-
ditions at the surface

n~T;, ), g=o
with T the stress tensor

(5 5)

Tij cijhk~uh j~&k ~ (5 6)

As usual n denotes the unit vector normal to the surface
and pointing in vacuum.

In analogy to the light equation (2.5), Eq. (5.4) can be
solved in terms of the appropriate Green function of the
elastic problem for the bulk. This approach has been fol-
lowed by Glass, Loudon, and Maradudin for the prop-
agation of the surface Rayleigh wave on an isotropic 1D
grating profile. Equivalently, we use here the Rayleigh
method and expand the amplitude vibration as a linear
combination of bulk solutions from Eq. (5.4) according
to

ll(I", }})= ) Cl (g(l)) B (g(lI ) 8 (5 7)

where Cp are appropriate coefBcients. As will appear
clear in a moment, it becomes useful to rewrite Eq. (5.7)
in the equivalent form

u(r; 0) = ) C„(Q')e~ (Q')e '~"'e'~
Q', A

+ ) C~+ (Q') ek+ (Q') e+'~"'e'~ . (5.8)
Q', A

The quantities appearing in Eq. (5.7) are defined below,
I

and those in Eq. (5.8) are found by comparison.
Following Ref. 7, e(q~&)) are bulk solutions for A po-

larization and total momentum

q(~) = (& +(I&) T =+—
obtained from Eq. (5.4), thus satisfying the secular equa-
tion

(PO 8,h —c,jhkQ~(~)Vk(~))eh(q(k)) = 0. (5.10)

The z component of the phonon wave vector qp are
chosen in the upper complex plane, i.e. , they satisfy
0 & arg qk & m. In this way Eq. (5.8) separates the
terms T = —(first sum) &om the terms T = + (second
sum). Complex solutions are accepted in the first sum,
but the second sum is limited to those Q' and A values,
implying a purely real q&.

In this way the erst sum represents traveling waves
from the surface dou)nu)ard in the bulk (for Im qg

0) or exponentially decaying ones into the medium (if
Im qk ) 0). On the opposite the second term is visu-
alized as a sum of "incident waves" traveling from the
bulk upward to the surface. As we shall see later the lat-
ter sum contains a finite number of terms, which for fixed
pseudomomentum Q of the mode, increases with the en-

ergy O. The unknowns C& are eliminated in terms of
the C& by imposing the free stress boundary conditions
(5.5); the coefficients C&+ are determined by the orthonor-
malization condition Eq. (4.7). It is understood that
e„+ (Q) in Eq. (5.8) stands for e(q~(„)) with q, („) ——+qk
and T = +) —.

Following Glass, Loudon, and Maradudin, we shall
limit for simplicity to an isotropic medium. The general
extension to a cubic crystal can be done along the same
lines and is rather cumbersome, but for a 1D grating
along symmetry directions and orthogonal to the grating
grooves.

Inserting expansion (5.7) in Eq. (5.5) and solving in Q
space one gets, after some algebra, the vector equation

) II (& &')& (&')+).II'(& &')&'(&') =0.
I

(5.11)
Here C are vectors whose components are the coeK-
cients (C&, A = 1, 3) appearing in (5.8). H+ are (3 x 3)
matrices

H(Q, )Q=—M„(Q,pI~)) (x+'"~)

(p, , A = 1, 3), (5.12)

where q& is given in (5.9), and M„are the components
of the vector

)M, q(~)
——egg z ~ q(q)

e'

I

+ c44 —z + e + + .E +

kq'lE' T, xx (Q —Q') p 2, ) S x E'I. (5.i3)
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«=«(Q) =
o (Q +e) «=«(9) =

o (zq Q, Q),
e„+ s(Q) =z x (5.14)

where

02
e(~) =—qi(~) (Q)

L(t)
(Im q((g) & 0) (5.15)

« = gc»/p, « = gc44/)(i ( c& longitudinal and
transverse velo cit ies .

At this point it remains to show how to construct from
Eq. (5.11) the normal modes appearing in the cross sec-
tion (4.11). First, we introduce the auxiliary functions
uI (r; 0) which can be obtained, setting in Eq. (5.11)

c~ (&) = 4,~, b~.' (5.16)

To get (5.13) we have used the relation
c44 ——(1/2) (cii —ci2) valid for an isotropic medium, and
for brevity e' = (E', e', ) stands for e(q(&~).

Equation (5.12) does not define H uniquely, since the
indices p A are not yet specified. For what concerns the
index p it is convenient to project the M vector (5.13) on
the axis z, Q, and z x Q. Instead, A is ordered according
to longitudinal and transverse polarization. Using the
same notation as in Ref. 9, q, ~ i )

——+q~, q, (A)
——+qg, for

2, 3, while the bulk polarizations are

uI = ) f IHuH
I

(5.is)

within each class . To fix the ideas let m be the number
of uH in a given class, thus uI in (5.18) are the m nor-
mal modes to be determined. Imposing on them the or-
thonormalization condition (4.7), one gets the 2 m(m+ 1)
equations for the m unknowns I'IH as

qJ is real, and numbers the auxiliary functions in re-
lation with bulk states. As an example consider Fig.
1 drawn for an isotropic medium. For each cross de-
noted by B, B', B" in the 0-Q plane there are three
bulk states, thus three auxiliary functions according to
C& (100), (010), (001), and the same for B', B". For
A, below the longitudinal threshold, there are only the
two transverse solution, thus accordingly the two choices
C& (010), (001). For A" q~, qq are both imaginary and
there is no choice, and no bulk states.

It can be verified directly that for a flat surface the aux-
iliary functions constructed are orthogonal to each other,
so that, apart from a normalization factor, they are al-
ready normal modes. Instead, for a periodic surface, the
auxiliary solutions uI and u~ overlap if Qz

——Q;mod[G'],
but are otherwise orthogonal. The result seems obvious
since H in (5.11) connects (-« for Q' = Qmod[G]. We
then collect auxiliary solutions mod[c] in classes and
make a linear combination

For brevity J plays the role of a double index (j, j') .
In other words the auxiliary functions contain a unique
incident wave whose parallel momentum (here Q~ ) and
polarization (j ) is specified. Explicitly from (5.8)

where

) IIHI JK ~HK —~I,
H, K

(5.19)

ug (r; 0) = e,+, (Q, ) e+' ~'*e' ~'

+) / —(q. J) —
(g)

—iqgz ig K

Q, A

(5.i7)

d
ZHK = bH K dn

+ . dn CA H
A

(5.20)
The choice (5.16) is possible under the condition that

g««

/
/

/
/

/
/

/
/

/
1

/

FIG. 1. Sketch of the dispersion curves
for an isotropic medium. The solid lines
0 = cRQ correspond to the Rayleigh wave

on a Bat geometry. The transverse threshold
0 = cz Q delimits (from above) the continuum
states. Those are two or three times degen-
erate according to whether they fall below or
above, respectively, the longitudinal thresh-
old 0 = c(Q.

oA os A' B' +A«« ~B««
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and the last sum on the rhs is limited to the m channels
where qp is real. The solutions can be found using the
Schwartz orthogonalization procedure numbering the uI
solutions as u~, u2, . . . , u, then imposing I'„, = 0 for
r & 8. It can be immediately verified. that the cross
section Eq. (4.11), as it has to, is independent of the
particular choice adopted.

To make life simple consider as an example a 1D grat-
ing, and with the grating grooves orthogonal to the prop-
agation direction. This is an instructive case since a more
general situation does not add new physics. Consider
again states denoted by H, B', B" in Fig. 1 whose wave
vectors satisfy the condition Q~, Q~ = Q~ mod[G],
hence belonging to the same class. There are m = 9 aux-
iliary solutions in this class. Equation (5.12) shows in ad-
dition that the transverse polarization along the grating
grooves decouples from the other two. This gives two sys-
tems of separate equations: one with three and the other
with six coupled equations respectively in (5.19). For A,
A', A" states, one obtains instead two and three cou-
pled equations. This example shows that for Q(mod[C])
fixed, the number of solutions m to be orthogonalized
increases rapidly as the energy 0 increases. This is, of
course, a general result.

To conclude this section it remains to be shown how
to construct in practice the auxiliary solutions. We put
the question in the following terms: how to select among
infinite terms present in the first sum in Eq. (5.11), those
for which C& (Q') are larger

Without restriction this can be easily visualized in 1D
considering again the states in Fig. 1. For the auxiliary
solution corresponding to A, one certainly has to include
in addition to the diagonal contribution Q = Q = Q~
both the Q' = Q+ G = Q~ and the Q' = Q —G = Q~
terms. The former is closed to the Rayleigh wave (RW)
existing in the Hat geometry, while the latter resem-
bles the longitudinal resonance (I R). Accordingly, one
solves for the unknowns C (Q~), C (Q~ ), C (Q~ )
using again Eq. (5.11) but now with Q = Q~ and

Q = Q~«, then follows Ref. 7. In the same way one pro-
ceeds to build up the (two transverse) auxiliary solutions
denoted by A. Here the coupling with the RW (A") is
dominant, while the inclusion of the term Q' = Q~ in the
sum in (5.11) plays a little role and can be omitted in the
first approximation. Those solutions are finally orthogo-
nalized as in Eq. (5.18). This is an illustrative example
and shows how the RW, well defined for a Hat geometry,
survives (in general) on a periodic surface, through the
presence of the term C& (Q~») )) 1 in the normal modes
of the continuum spectrum. In other words, the Rayleigh
solution becomes (in general) a "leaky" mode damped
by the bulk solution via the grating, and is not a mode of
the system. Using a graphical construction in Fig. 1 one
can be easily convinced that at very low frequencies, i.e. ,—1
for 0 ( —+ — G, the RW still exists and remains

undamped. For larger frequencies instead a damping is
present. The quantity c~ is the RW velocity on a Rat
surface as indicated in Fig. l.

Equivalently we can express this result as follows. Set-
ting in Eq. (5.11) all coefficients C+ (Q) = 0, a real solu-

tion for 0 exists only in the low-frequency interval indi-
cated above. For higher values a solution of the boundary
conditions (5.11) for real Q exists only for complex fre-
quencies. Vice versa starting from a real 0, one gets solu-
tions for Q complex. One finds in this way the damping
and the mean free path of the RW on a periodic surface.

Since we are interested in the cross section Eq. (4.11)
we shall consider only modes for real frequencies, and
in particular pay attention on the 0 gaps they generate
at their crossing. Thus for Q = 6 2 at the first Bril-
luoin zone (BZ) border the two (undamped) RW split
and give rise to a well-known 0 gap. Less trivially a
gap is present when the RW couples with the LR at

—1
0 = —+ — G, the last acting to all eÃects as a

cR +I

pseudosurface mode. Both resonances have been seen
on a Si(001) grating for an exchanged parallel momentum

Kf —K,. in the second and third BZ. Applications of
these concepts to the realistic case of a 1D Si grating is
presented in Sec. VII.

VI. NUMKB. ICAL R.ESUITS FOR. A
SILVER. G HATING

xvp~ (K', K). (6.2)

First of all we use Eq. (6.2) to reproduce the Rayleigh
replica (RR) observed on silver gratings. As specified
in Ref. 4, the scattering plane is parallel to the grating
grooves, and the exit angle is chosen so that

[Kq + C
~

= Ksp (6.3)

with Ksp the SP momentum, solution of Re(Gi ) = 0.q
—1

In the experiment 0; g Hy, that is ~K; + C~ g Ksp,
show ing that between the two terms on the rhs in
Eq. (3.24) contributing to the RR peak (second and
third), one can retain the second only (resonant) and dis-
regard the third (nonresonant). Again, the first term in
(3.24) is the direct transition contributing to the Rayleigh

The cross section Eq. (4.11) is an exact result and can
be simplified according to the problem one has in mind.
As stated in the Introduction we shall consider two cases.
The first is a silver grating when the interaction with
the SP plays an essential role. The second is a Si grating
where indirect processes are less important, but in some
particular circumstances appreciable.

As in a previous paper we start from Eq. (4.12)
and solve the T matrix in the hypothesis that the
diagonal elements of G~, namely G~ (K, K), domi-
nate. The easiest way to solve them is to start
iterating Eq. (3.22) once, thus using its equivalent
G~ = G + G V~ G + G V~ G V~ G~. Neglecting here
the second term on the rhs involving only o8'-diagonal
contributions, we get

G~p(K, K) = b pG~ (K) (n, P = 1, 2),

where

G~ '(K) = G.' '(K) —) V.'~(K, K') G,'(K')
K'P
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peak present on a Bat surface, while the fourth term rep-
resents a grating correction to it.

We simplify remarkably the calculation using for the

3.8 0Hz and 4.4 GHz have about the same experi-
mental width I", 0 6 0Hz. Now th fi t '

ow e rst is a contribu-
tionofadiscretestate namely th "t "R l

'
h) e rue ayleigh mode,

still existing on a grating geometry. This surface mode
wou d exibit in the unconvoluted cross section Eq. (4.11)

responds to the RR leaky mode. If we call I'q its intrinsic
inewidth induced by the corrugation (, the experiment

shows that I"q (( I', . This suggests that the mode mix-
ing induced by the grating corrugation becomes irrele-
vant once averaging the theoretical cross section over the

esis.
experimental window, and justifies the starting hypoth-

In Fig. 2 we plot the height ratio of the two peaks as a
function of the grating amplitude (G. Note that in this

gure the final angle Of is not fixed but determined ac-

the

We have used in the calculation for the silver grating
a dielectric constant e = —10.5 + 0 3 f. z, referred to a
wavelength of the incident p polarized light A = 5145 A,
a Rayleigh velocity c~ ——1658.4 m~'s, a grating peri-
odicity A = 7200 A, a corrugation (~ = 50 A. , and an
incidence angle 0; = 23.7 . Th 1 te as parameter is not
reported in Ref. 4, so that we have chosen that value in
order to rou hlg y reproduce the mean positions of the two
peaks of Fi . 4.of R fs o ig. . o Ref. 4. Therefore, the agreement with
the data can be only qualitative.

60

4Q

20

(deg )

FIG. 3. TThe RR scattering intensity around the final an-~ ~

gles 8f = 50.8', and Py = O'. The corrugation is (~ = 50 A.
Other parameters are given in the text.

Apparently, the large height ratio shown in Fig. 2 is
in contrast with the value r 1 one gets &om the ex-
periment. However, one has to be reminded that the ac-
ceptance angle used in the experiment is actually rather
arge, and the measured spectra represent the integral

of the cross section over the intervals 48y and APy,
centered, respectively, on 0& (scattering angle measured
in the incident plane) and P& (angle between the inci-
dence and scattering planes). The dependence of the

&
——50.8' and gP&

——0', is shown in Fig. 3. The intensity
ue to the direct Rayleigh is not shown, since within the

same interval, it is a smoothly varying function. Inte-
grating the cross sections over Ag AP = 20', hf ) f ) w ic
correspond to commonly used collecting angles, we get
a ratio r = 0.94, which restores the agreement with the
experimental data.
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FIG. 2. Rati.o of thehe maximum scattering intensity of the
Rayleigh-replica peak (RR) over standard Raylei h (R) for a

g i a grating vs the corrugation strength. Th
dent an leis 8 =2g e is, = 3.7, while 6If is determined by the reso-
nant condition ~6.3~.~~; the geometry and other parameters are
specified in the text.

FIG. 4. The Si(001) grating intensity (backscattering) with
the exchanged momentuin Q~~ in the third BZ and before the
+G I R and the +2G leaky Rayleigh wave crossing. The grat-
ing is defined by (o = 125 A. , and (2& = 40 A. . The first peak
is due to a discrete +G Rayleigh contribution; the last is the
standard Rayleigh peak of the Qat surface. In between, with
increasing frequency, there are the +G I R and the +2G leaky
Rayleigh mode.
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G90

5 io 15 20

Frequency (GHz}
25

FIG. 5. As in Fig. 4, but with Q~~ beyond the crossing be-
tween the +G LR and the +2G leaky Rayleigh modes. Here
the second peak is the +2G leaky Rayleigh mode, while the
third is the +G LR: these two modes are reversed, with re-
spect to the situation shown in Fig. 4.

VII. RESULTS FOR A SILICON GRATING

As a further application of the theory we consider here
a grating on the Si(001) surface, with grating wave vec-
tor C along [100], and the incidence plane parallel to the
same direction, i.e. , orthogonal to the grating grooves.
In this case one must calculate the acoustic modes tak-
ing into account the grating corrugation. Therefore, for
the vertex V we use the correct Eq. (4.14) in place of
Eq. (4.16) used for Ag. Our aim is to show that, in ad-
dition to the first term on the rhs of Eq. (3.24) which is
certainly dominant, the other terms play an appreciable
role. The exchanged momentum Q~~

= Kf —K; is in
the third BZ; the other parameters of the calculation are

defined in Ref. 16.
Figure 4 shows the spectral intensity for a wave vec-

tor that lies before the crossing of the +G LR with the
+2G leaky Rayleigh mode. The solid line is the result
of the calculation reported in Fig. 1(b) of Ref. 16 and
includes all the terms on the rhs of Eq. (3.24). On the
contrary, the dashed line corresponds to the contribution
of the first term only. The main difference is in the +2G
Rayleigh peak ( 9 GHz) which is essentially due to the
indirect terms. The presence of this peak was actually
related to the existence of a second Fourier component
in the grating corrugation. In fact, by taking (2~ = 0,
the +2G Rayleigh resonance is marked by a deep, and
this happens for all reasonable values of (~ one uses in
order to fit the remaining part of the spectrum. Our
present result shows that without the inclusion of indi-
rect terms, the agreement with the experiment can be
never achieved.

As a second example we consider in Fig. 5 the same
situation but for a wave vector beyond the crossing of
the +G LR with +2G leaky Rayleigh mode. This is a
calculated result and there are no experimental data for
comparison. Indirect terms contribute again, as before,
by 50%%, for what concerns the second and third peaks.
However, while for the +2G Rayleigh mode (second peak)
they add constructively to the direct contribution, for the
+G LR (third peak), the effect of the indirect term is to
lower the intensity of the direct one (dashed line). In
conclusion, for a quantitative comparison with the data,
the indirect contributions in T in Eq. (3.24) cannot be
neglected a priori.
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