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Tuning and breakdown of faceting under externally applied stress
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The theory of thermodynamic faceting is developed for an epitaxial film grown coherently on
a lattice-mismatched substrate. The situation is considered where the planar top surface of the
epitaxial film in the absence of the lattice mismatch (Aa = 0) is unstable against faceting, and
the stable state of the surface is a periodic array of facets. It is shown that, for a finite lattice
misinatch (Aa g 0), the continuous epitaxial film with a periodically faceted top surface is a
metastable state of the heterophase system. The global energy minimum corresponds then to a
periodic system of coherent strained islands. If attaining the global energy minimum is kinetically
forbidden, the metastable continuous epitaxial film with a periodically faceted top surface is formed.
In the case where the period of the faceted structure without external stress Lo exceeds the order
of =50 A, the dependence of the period I on the lattice mismatch is determined by the linear
theory of elasticity. The period L of the metastable faceted structure increases with ~Aa~ for both
tensile and compressive mismatch-induced strain. The dependence of L on Aa gives a possibility of
controlling the period of faceting by varying Aa. If the lattice mismatch exceeds a certain critical
value [~Aa~ ) (Aa), ], the breakdown of formation of metastable faceted structures occurs; the
metastable state disappears, and the surface shape is governed by kinetic mechanism. In the case
where the period of the faceted structure without external stress is Lo + 50 A, the dependence of L
on Aa is determined by nonlinear elastic effects. The period L increases for one sign of Aa up to
the breakdown of formation of metastable faceted structures and decreases for the other sign of Aa,
where the macroscopic faceting transforms gradually into a microscopic surface reconstruction and
the surface becomes apparently Qat. The typical critical value of the lattice mismatch for nanometer-
scale faceting varies from (Aa/a), 10 for L 10 A to (Aa/a), 10 for L 10 A. A similar
dependence of faceting on externally applied stress occurs for a loaded sample.

I. INTRODUCTION

Equilibrium faceting is a remarkable phenomenon, in
which a planar crystal surface rearranges into a peri-
odic hill-and-valley structure with an increased surface
area. Faceting is caused by the decrease of the total
surface free energy. It is known from experiments that
a large number of very diBerent surfaces undergo equi-
librium faceting: The most studied surfaces are vicinals
to Si(ill) (Refs. 2—6) (the detailed review is given by
Williams et al. ). Faceting was observed also on vici-
nals to GaAs(100) (Refs. 8 and 9), Pt(100),io on low-
index singular surfaces Ir(110), TaC(110), on non-
(100)-oriented GaAs, is'i4 etc.

Another class of faceted surfaces is associated with the
formation of coherent strained islands at initial stages

of the heterophase growth on lattice-mismatched sub-
strates. Coherent strained islands were observed in the
Ge/Si(001) system, ' in the Ini Ga As/GaAs(001)
system, ' and in the InAs/GaAs(001) system. is 2o

The growth of coherent strained islands was explained
theoretically by the instability of planar surfaces in
stressed systems. The top surface of a coherent
strained island is faceted due to the gain in the strain
energy which exceeds the loss in the surface free energy.
The gain in the strain energy makes coherent strained
islands more favorable with respect to both uniformly
strained films and dislocated islands and may lead to
an ordered array of coherent islands. Recent interest in
surface faceting and other related phenomena is stimu-
lated by possibilities of the direct fabrication of ordered
arrays of quantum wires and quantum dots with novel
physical properties and device applications.
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The objective of the present paper is to consider the
effect of externally applied stress on the type of faceting
where faceting of the surface initially occurs toithout any
external stress. The treatment is focused on thermody-
namic mechanism of faceting where the shape of the sur-
face is governed by the Helmholtz free energy minimum.

The Helmholtz free energy of a faceted surface without
external stress was studied by Marchenko. It was shown
that the surface free energy consists of three terms,

+ —Efacets + Eedges + Eelastic &

Ef t being the free energy of facets, E,pg„being the
short-range energy of crystal edges, and E,~,tic being the
elastic strain energy associated with edges. Equation (1)
is valid for a macroscopic faceting which should be dis-
tinguished from a microscopic surface reconstruction (the
latter is not considered here). The facet is well defined
if its characteristic width L~ is much larger than the
lattice constant a. For vicinal surfaces, a more severe re-
striction reads that the width of the facet must be much
larger than the terrace width.

The first term on the right hand side of Eq. (1), Ei, i„
is proportional to the surface area. The energy of edges
E gg„ is less than Eg „t, due to the small parameter
a/L~ && 1. In the absence of the lattice mismatch (Aa =
0), the elastic strain energy is caused by edges only, and
is small with respect to Eg „t„due to the same small
parameter a/LF « 1.

The energy Ep, t, was studied in detail by Herring and
others. ' The equilibrium crystal shape is determined
by the WulfF construction, which implies the minimiza-
tion of the free energy of all facets under the constraint of
the constant volume of the crystal. We use here the for-
mulation of the problem, more relevant to experimental
situation where only the top surface of a crystal is stud-
ied, or to the epitaxial growth. It requires additional
constraints of fixed bottom and side surfaces and of a
fixed "average" normal to the upper surface. If the top
surface breaks up into facets, the free energy of all facets,
defined per unit area of the reference Hat surface with the
normal n, is equal: '

1 s(m)
Efacets = dS .S m n (2)

Here s(m) is the free energy per unit area of the sm face
with the orientation of the normal In, and S is the total
area of the reference flat surface. The free energy (2)
should be minimized under the constraint,

1

S mdS = n.

focus here on the case of sharp edges. Macroscopic treat-
ment is possible also for rounded intersections between
facets.

Let us specify energies E,gg, and E j,tic for the par-
ticular case of faceted structures which we study in the
present paper. We consider the situation where the mini-
mum of the free energy of facets (2) under the constraint
(3) is attained for a one-dimensional symmetric array of
facets shown in Fig. 1, p being the tilt angle of facets.
Small energy terms E,pg„+ E ~,tic do not afFect the tilt
angle y. However, it was shown by Marchenko that
the minimum of the free energy (1), where both E,gs„
and E ~,tic are taken into account, corresponds to the
periodic array of facets. The energies E pg„and E ~,tic
depend on the period L, and the interplay of these ener-
gies determines the optimum period of surface corruga-
tion. Thus, a periodic array of facets is an example of a
structure of stress domains.

There are two types of crystal edges for a faceted sur-
face displayed in Fig. 1, namely, convex. and concave
edges. I.et us denote energies of these edges per unit
length of an edge g+(rp) and q (p), respectively. Then
the energy of edges per unit area of the reference fIat
surface is equal,

n+(v)+n (v)
L (4)

Here, s,z. (r) is the strain tensor, A;~~ is the tensor of
elastic moduli, 7;~(r) is the intrinsic surface stress ten-
sor. The intrinsic surface-stress tensor v;-~ depends on
the orientation of the facet (see Fig. 2). It has nonzero
components 7;~ in the facet plane, and the other compo-
nents vanish. The tensor 7;~ is constant on the given
facet and has discontinuities at crystal edges separat-
ing neighboring facets. The discontinuity of the ten-
sor 7;~ is the source of the strain field in the crystal
with corrugated surface. The elastic energy of Eq. (5)
may be reduced to the form where these sources appear
explicitly: E,i~, t,;, ———(2S) Ju, (r)V'p~p(r)dS, u, (r)
being the displacement vector, P being the planar index
in the local facet plane. The sources of the strain field
may be described as efFective elastic forces P applied to

Elastic strain energy in the system with corrugated
surface occurs due to the intrinsic surface stress (or the
surface tension of the solid). The strain energy of the
system defined per unit area of the reference fIat surface
is then equal to ~

1

2S A... s;, (r)s, (r)dV

1
~„(r)s,, (r)dS.

When the upper surface of a crystal breaks up into
facets, there appear either sharp crystal edges or nar-
row rounded parts of the surface at the intersections
of neighboring facets. Both types of intersections may
be described as linear defects. These linear defects give
a short-range contribution into the surface free energy
which is proportional to the length of defects, and a long-
range contribution due to the elastic strain energy. We FIG. l. One-dimensional array of facets.
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v2)g(rp; v)&2(p)&p2/(ir Y), and the factor g(Ip; v) is a nu-
merical factor which depends on the angle y, g(0; v) = 1.
The energy (7) attains the minimum value at

Lo = 27ra exp + 1
|-"i(v )
&2 V

FIG. 2. EfFective "surface-stress" forces at crystal edges.
The tensor 7;~ is defined in local systems of coordinates
(2;i, y, zi) and (x2, y, zz). For a symmetric sawtooth profile,

crystal edges. The relation between P and 7;.~, illustrated
in Fig. 2, reads P = 2w sin y.

It should be noted that strain field occurs also in the
case of a planar surface. Elastic relaxation near planar
surface results in static displacements of atoms from their
bulk positions. These displacements decay exponentially
at the depth of a few lattice constants. The same is
valid also for static displacements of atoms caused by mi-
croscopic surface reconstruction (see, e.g. , Ref. 33). The
contributions into the surface free energy caused by both
relaxation and reconstruction of planar surface are in-
cluded into the macroscopic quantity s(rn) which enters
Eq. (2).

Contrary to this, efFective elastic forces P caused by
the discontinuity of the intrinsic surface-stress tensor ~;~
create a long-range strain field. Static displacements of
atoms from their bulk positions decay inside the crystal
at a macroscopic depth, which is equal by an order of
magnitude to the period L of the faceted structure.

The elastic strain energy E ~,t,, in the case of small tilt
angle y of facets was calculated in Ref. 28 by means of the
continuum theory of elasticity in the approximation of
elastically isotropic medium. The strain energy is given
in terms of the intrinsic surface stress w, the Young's
modulus Y and the Poisson ratio v as follows:

E,i,i;,(L) = 8(1 —v2)v2(p2 (' L )
ir YL (2mo)

Z (~) & (V) &(V) I„«&
cos &p L L (2ira)

+i (v ) 9 (p) + 9 (p) +2 (v ) 8(1

a being a microscopic cutofF length which is of the order of
the lattice constant. The physical meaning of the strain
energy (6) is the energy change due to elastic relaxation,
the relaxation being caused by the discontinuity of the
tensor w,.~ at crystal edges. Since the relaxation occurs
spontaneously, the sign of the strain energy is negative.
The logarithmic dependence of the elastic strain energy
(6) on L is a general feature of any linear defect. It re-
mains in the case of rounded edges, too. For large tilt
angles y, the energy E ~,t,, may be calculated numeri-
cally.

Summing contributions of Eqs. (2,4,6), we may write
down the total surface free energy as follows:

It will be shown below that the ratio of two functions
Ci(p)/C2(p) tends to a finite limit as p ~ 0.

Since the optimum period of surface corrugation I p

is determined by long-range stresses, it should vary if
external stress is applied. The dependence of the period
L on applied external stress was observed experimentally
by Men et al. and explained theoretically by Alerhand
et al. for another type of elastic stress domain, namely,
for alternating domains of the (2 x 1)- and the (1 x 2)-
reconstructed Si(100) surface.

The periodically corrugated surface with the period
L p is the configuration with the lowest surface energy.
It describes the shape of the surface at the temperature
T = 0. Entropy effects in the free energy of a faceted
surface, which appear at finite temperatures, were con-
sidered in Ref. 36. It was shown that entropy eKects for
macroscopically faceted surface are less essential than for
a vicinal stepped surface and, hence, can be neglected.
Then the free energy of the surface is equal to the energy
of the surface.

We study in the present paper thermodynamic faceting
of surfaces under an externally applied stress. For above
noted reasons, we do not take into account the entropy
contribution into the Helmholtz free energy of the faceted
surface and we search the minimum of the energy of the
faceted surface under external stress. Two diferent ways
of applying stress are considered. An epitaxial film coher-
ently grown on a lattice-mismatched substrate is treated
in Sec. II. There are then two sources of the strain Beld,
i.e. , effective forces P acting at crystal edges, and the
lattice mismatch Aa/a. The elastic strain energy E,~,t;,
is a quadratic function of P and Aa/o. It is shown that
the surface energy minimum at L = L p, which is the ab-
solute minimum in the absence of the lattice mismatch
(Aa = 0), becomes a local minimum for a finite Aa and
is shifted to larger values of L. The global minimum
corresponds then to a periodic array of isolated coherent
strained islands. The continuous epitaxial film with the
periodically corrugated top surface is then a metastable
state of the heterophase lattice-mismatched system. This
metastable state may be called a "metastable faceted
structure. "

It should be noted that, to use an unambiguous termi-
nology, we distinguish here the "metastable faceting" and
the "formation of a metastable faceted structure. " Terms
"metastable faceting" and "unstable faceting" (see, e.g. ,
Ref. 6) refer to the first energy term in Eq. (1), i.e. , to
the energy of planar facets. "Metastable faceting" means
that there exists a potential barrier which separates the
flat surface and the faceted surface with lower &ee energy,
and the transformation of the flat surface into the faceted
one occurs via nucleation-and-growth mechanism. "Un-
stable faceting" means that there is no potential barrier
between the flat surface and the faceted surface. Then
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the transformation of the flat surface into the faceted one
is analogous to spinodal decomposition observed in other
phase separating systems, e.g. , in unstable alloys. In
both cases, the faceted surface itself is a stable one if
the short-range energy of edges and the strain energy are
ignored.

Contrary to this, we study here faceted structures with
given orientation of facets [first energy term in Eq. (1) be-
ing fixed], and we do not focus on the particular scenario
of transformation of the flat surface into the faceted one.
"Formation of a metastable faceted structure" means
that the heterophase structure with a periodic array of
facets is metastable with respect to rearrangement of
facet widths. This rearrangement influences the energy
of edges and the strain energy, i.e. , the second and the
third energy terms in Eq. (1).

We have found that, if the lattice mismatch exceeds a
certain critical value, [~Aa~ ) (Aa), ], the local minimum
in the total surface energy disappears, which indicates
the breakdown of formation of metastable faceted struc-
tures.

In Sec. III, the elastic strain energy and the critical
value of the lattice mismatch are found in an analytic
form for a faceted structure with a small tilt angle of
facets p. The numerical analysis is performed for an
arbitrary angle p for the particular AIAs(001) faceted
surface.

Due to the strong dependence of intrinsic parameters
of the crystal (e.g. , the energy of crystal edges) on strain,
the faceting under externally applied stress is determined
by nonlinear elastic effects, if the period of faceting with-
out external stress is rather small, Lo + 50 A. The period
of the metastable faceted structure L found in Sec. IV ex-
hibits then an asymmetric dependence on La. For one
sign of the lattice mismatch, the period I increases with

La up to the breakdown of formation of metastable
faceted structures. For another sign of the lattice mis-
match, the period L decreases with ~Aa]. The depth of
surface corrugation decreases then, too, unless the macro-
scopically faceted surface transforms into the microscop-
ically reconstructed, i.e. , apparently flat surface.

An alternative way of applying stress to the system
is loading the sample (particularly, the loading of a can-
tilevered bar of Si was studied experimentally in Ref. 34).
The dependence of faceting on external load is studied in
Sec. V and is shown to be similar to that in the case of
a mismatched heterostructure.

II. FACETING OF THE SURFACE
OF AN EPITAXIAL FILM

ON A LATTICE-MISMATCHED SUBSTRATE

z = ((z)
II

2(p

FIG. 3. Faceted surface of the epitaxial film (2) coherently
grown on a lattice-mismatched substrate (1).

to use the quantity of the intrinsic strain c, . i (r) defined
by the difference of intrinsic lattice parameters of two
materials. The intrinsic strain s, (r) vanishes in the
substrate (region 1 in Fig. 3) and difFers from zero in the
epitaxial film (region 2 in Fig. 3). Note that s, (r) = 0
does not mean the rigid substrate. Although all sources
of the strain field appear either in the epitaxial film, or at
the interface, or on the corrugated top surface, the strain
field penetrates into the substrate, too. The elastic en-
ergy density f,i,i,,(r) at each point in the bulk is caused
by the deviation of the local strain s,z(r) from the local
intrinsic strain s, (r),

f i~.„.(r) = —&,,i~[s,, (r) —s,, (r)][si~(r) —si (r)) .

(9)

It is assumed for simplicity that elastic moduli A,.~~ in
the epitaxial film and in the substrate coincide. The
elastic stress is equal by definition to

~*~(r) = Z"""= ~'~i-[«-(r) —&i '(r)1.
Oc,~ r

It follows from Eq. (10) that the stress-free state [0',~ (r) =
0] inside the epitaxial film corresponds to the strained
state of the medium, e',~(r) = e, - (r) g 0.(o)

The contribution of intrinsic surface stress into the
elastic strain energy of the system occurs if the local
strain s,~. (r) near the surface deviates &om the local
intrinsic strain s, (r). To write down this contribu-
tion one should take the energy of the second term on
the right hand side of Eq. (5) and substitute s,~. (r) by

[s;, (r) —s~,.l(r)]. One gets

We study first the elastic strain energy of a faceted
surface of a thin epitaxial film grown coherently on a
lattice-mismatched substrate (Fig. 3). There are two
sources of the strain field in this case. One is due to ef-
fective external forces acting at crystal edges, these forces
arising Rom the discontinuity of intrinsic surface stress
tensor at edges. The other source is due to the lattice
mismatch. To treat the lattice mismatch it is convenient

S ~;, (r)[s;, (r) —s! (r)]dS.

To obtain the total elastic strain energy of the het-
erophase system E,i,t,, one should integrate the elastic
energy density from Eq. (9) over the total volume of the
system and add the energy from Eq. (11):
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1

2S
8xdg

~lm ~ —~1m X'

1+-
S g()

dzA;, ) [s,, (r)

(12)

In the absence of the lattice mismatch [in the case where

s, (r) = 0], the elastic energy E,),t,, from Eq. (12) gives(o)

just the contribution of edges into the strain energy [the
third term in Eq. (7)]. Mismatch-induced strains give the
positive contribution to E,~,t,,

Since elastic stresses penetrate from the epitaxial film
into the substrate, the domain of integration in the first
term on the right hand side of Eq. (12) [—oo & z & ((x)]
(see Fig. 3) includes both the film [

—h & z & ((x)]
and the substrate (—oo & z & —6) although the in-

trinsic strain s, (r) in the substrate vanishes. Given
the spatial distribution of the efFective external forces

P;(r) and of the intrinsic strain s,. (r), the strain field

s;~(r) = 2[9'~u;(r) + V', u~(r)] is determined by the mini-
mization of E,),t,, (12) with respect to independent vari-
ables u;(r), u;(r) being the displaceinent vector. The re-
quirement of total elastic energy minimum yields equilib-
rium equations of the theory of elasticity, V'~0;~. (r) = 0,
which correspond to the absence of external forces in the
bulk. Substituting here 0,~(r) from Eq. (10) yields the
set of coupled equations with respect to the displacement
vector u;(r):

trinsic strain s,. (r) does not vanish. Since the intrinsic

strain s, (r) is uniform inside the epitaxial film, Eq. (15)
reduces to

1 (o) (o) h
2

C(~)
dx dzs;, (x, z)

—h

(o)
2L

1

2L

&,(o)
L

dlP;(x)u;(x, ((x))

dl7;, (x), (16)

where dl = 1 + (7'((x)) dx is the elementary length of
the cross section of the corrugated surface z = ((x) by
the (xz) plane; L is the length of the sample.

The first term on the right hand side of Eq. (16) is
a film-thickness contribution to E,~,t,„which increases
with the thickness h. The second term contains both
film-thickness and surface contributions, the latter does
not increase with h, . The third and the fourth terms are
purely surface contributions. To separate Blm-thickness
and surface contributions into E ~,t,„we consider first
the strain Beld in the epitaxial Blm with a Hat top surface.

The strain field in the epitaxial film with a Hat top sur-
face coherently grown on a lattice-mismatched substrate
was treated in numerous papers (see, e.g. , Ref. 43 and
references therein). The strain in the film is uniform and
obeys the following equations:

c) f |9 ) c) (e)
I

&v~ u (r) I

= (&'gt st (r)).
Br& ( Bf ~ ) c)F&

The boundary conditions

(13) F~g = 0~ Q)6 = X)g) (17)
(o) — (o)O'; =A i (E'~ —

s& ) =A i s~ —A, i s& —0. (18)

(o)jl uj (r) u'(r) ~ jl nj (r)s$ '(r)
I =q( )

&l ~=q(~)
—P'(r) l.=q(*) (14)

(o)dzA'i I,md&dy

X F 8') F —8') F

1
2S g( )

dSP; (r)u; (r)

dS7;, (r)s(, ) (r) .

[n~(r) being the normal vector to the free surface] con-
nect the stress at the free surface z = g(x) and efFective
external forces acting at edges P;(r) = —V'p7;.p(r).

To proceed, we transform Eq. (12) by the method sug-
gested by Eshelby. Applying the Gauss theorem both
to the bulk and the surface integrals in Eq. (12), using
the equilibrium equations (13) and boundary conditions
(14), one obtains the elastic energy as follows:

u (r) = 2~, (z+ h)8(z+ h),

u, (r) = c„(z+ h)8(z+ tb), (19)

[where 6(x) = 1 for x ) 0, and 8(x) = 0 for x & 0], and
the stress tensor o.;~ has nonvanishing in-plane compo-
nents,

(o) (o)
+ab ~ablm elm S)m ~ablzelz ~ablme[m ( 0)

Now, to solve the problem for an epitaxial film with
corrugated surface, we write down the displacement vec-
tor u, (r) as a sum of u, (r) from Eq. (19) and of an un-
known vector w;(r), u;(r) = u;(r) +io;(r), and then sub-
stitute it into Eqs. (13,14). Then one gets the following
set of coupled equations for the vector zv;(r):

The set of three coupled equations (18) determines the
values of three nonvanishing components c~ of the strain
tensor. The displacement vector in the system is then
equal to

Here, the domain of integration corresponds, at the con-
trary to Eq. (12), only to the epitaxial film where the in-

02
w (r) = 0,

~l

with the boundary conditions at the free surface,

(21)



TUNING AND BREAKDOWN OF FACETING UNDER. . . 10 109

n~(r) tu (r) = —o; n (r) + P;(r), (22)
z=qle)

[the quantity (T; is defined in Eqs. (18,20)]. The solution
of Eq. (21) may be expressed in terms of the Green's ten-
sor G;~ (r, r ) of the semi-infinite medium with the faceted
surface z = ((z). The Green's tensor obeys the set of
coupled equations,

|9 8
G „(r,r') = h,~8(r —r'),

Br& Ort

m, x z = — dl't;. x, z x', x'

x[P, (x') —o.
~ n (x')] (25)

into Eq. (16), applying the Gauss theorem to the integral
over the volume of the epitaxial film, taking into account
the total balance of the surface-stress forces, jdSP; (r) =
0, and the constraint (3) which reads I dSn (r) = 0, one
gets the elastic energy of the system in the following form:

and boundary conditions ~film ~surfEelastic ~elastic + ~elastic (20)

0
n~ (r) G p(r, r')

rl z=q(~)

Substituting the vector

=0.
thickness contribution to E,~,t,„which does not depend
on the shape of the free surface. The remaining part of
Ee}astic is equal to

Esurf (o)
elastic dl~;, (z) (27a)

1 &zz
d P.(*)&(*)L 2

(27b)

1
'2L.

1

2L
1

2I
1

2L
1

2I

f dldl'P, x G;~ x

did/'P; x G;~ x)

f dldl'O,
L

& x G'& x~ x;x') x' P~ x'

f
I

1

iI(

~

~
0}

i~j~

1
~

~

1

II
1

I
~

e
I

~

~ ~
~

~ ~ ~
I

idzdl'a~, ~G;~(z, —h; z', ((z'))[P,.(x') —(or, n (x')],

(27c)

(27d)

(27e)

(27f)

(27g)

where o, . is defined as 0., = A,~~~a&
(o)

It follows from Eqs. (21,22) that all sources of the vec-
tor io;(r) are surface sources, and the vector w, (r) decays
with the depth from the surface. The vector io;(r) which
is a periodic function of x may be expressed at z ( —((z)
as a Fourier series,

ze;(z, z) = ) ) 5.(z) exp (
—ee. ~ez~k~'&~z~)

~=—c)c) s=i
n+0

x exp ink(')x,

where k = 2vr L, and n, (s = 1, 2, 3) are dimension-(o)

less attenuation coefIicients of static analogs of Rayleigh
waves (see, e.g. , Ref. 44). The term of Eq. (27g), which
depends on the film thickness can be written as fol-

lows: 2I„o;, f dxto;(x; —li). Since the Fourier series
of Eq. (28) does not contain x-independent term with
n = 0, the integral I dzzv;(z; —h) vanishes. Therefore,

the remaining terms of Eq. (27) which do not depend on
the epitaxial film thickness 6, are, indeed, surface contri-
butions to E,~,t,,

Let us recall now that the effective elastic forces P
acting at crystal edges are related to components of the
intrinsic stress tensor r;z (see Fig. 2). Therefore, the en-
ergy E;)"'ft,, Rom Eq. (27) may be considered either as a
quadratic function of P; and z(. , or as a quadratic func-

tion of 7;~ and c; . To analyze the general dependence(0)

of E,&"',t;, on the lattice mismatch, we consider the par-
ticular case where both the substrate and the epitaxial
film have cubic symmetry, and the intrinsic strain tensor

reduces to s, = (Aa/a)h;~. It is then possible to(o) (o)

write E'&"',tic in a schematic form:

2

&:)".". ;.= &(L)~'+&(L)
I

l+&(L)I I
. (»))+ t, a)

Simple scaling arguments performed in Appendix A yield
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the dependence of coefscients A, B,C in Eq. (29) on the
period of the faceted structure L. Then the elastic strain
energy defined per unit area of the substrate is as follows:

X E2vrap

(30)

E(L) = Ep — ln
Ip eL

Lp

1 (Aa/a) L
2e (Aa/a), I p

The function E(L) is plotted in Fig. 4 for various val-
ues of the lattice mismatch. The absolute minimum of
the function at L = I p for the lattice-matched substrate
(Aa = 0) becomes the local minimum for a Finite mis-

The first term on the right hand side of Eq. (30) coincides
with the third term of Eq. (7). It is the energy change
due to elastic relaxation caused by the discontinuity of
the intrinsic surface-stress tensor v;.~ at edges. This term
is always negative.

The third term on the right hand side of Eq. (30) is
the change of the strain energy E,"&,t;, due to the surface
corrugation. Since the corrugation of the surface of the
stressed film always leads to the reduction of the strain
energy, 2s'24 the third term in Eq. (30) is always negative.
The second term in Eq. (30) is a cross term, and it may
be of arbitrary sign.

To obtain the total surface energy of the system in
question, one should replace the last term on the right
hand side of Eq. (1) by E;P;~;, from Eq. (30). Then
the L-dependent part of the energy may be written as a
universal function of the dimensionless variable L Lp

the function being governed by a control parameter

(Aa/a) (Aa/a), :

match and is shifted to larger values of the period. At
large periods L, the energy E(L) from Eq. (31) decreases
with L. If the amount of the deposited material and the
tilt angle of facets are fixed, there exists the maximum
possible period L, where the epitaxial film is still contin-
uous. It is determined by the relation

1—L tang = h.
2

Larger periods L & L correspond to periodic arrays
of isolated strained islands, and not to a continuous film.
Since the absolute value of the third term in Eq. (31)
is proportional to the period L, it may compete with
the surface energy of facets and may influence the tilt
angle of facets. The case of large values of L and the
global minimum of the energy of the lattice-mismatched
heterophase system will be considered elsewhere.

In reality, attaining of the global minimum of the
energy would involve mass transfer on large distances
and may be kinetically forbidden. Then the metastable
faceted structure may be formed. The period L corre-
sponds then to the local minimum of E(L). The plot
I = L((Aa/a)) is presented in Fig. 5. Since the linear
in Aa/a term in Eq. (30) does not depend on L, then
the period of the metastable faceted structure is an even
function of the lattice mismatch. If the lattice mismatch
is larger than the critical value (Aa/a)„ the metastable
state disappears, and the surface shape is governed by ki-
netic factors. This indicates the breakdown of formation
of metastable faceted structures.

The explicit calculation of the critical value of the lat-
tice mismatch will be carried out below, in Sec. III, for a
faceted surface with small tilt angle of facets.

In the case where elastic moduli of the epitaxial film are
di8'erent from those of the substrate, additional terms of
the order of exp —2(Rem, ) &" appear in the Green's

tensor G;~(x, ((x); x', ((x')), and, therefore, in E;&"',~„
Then the linear in Aa/a term in E;&"',~t,, depends on L, ,

Lo L

—E0

FIG. 4. Surface energy of the faceted surface ver-
sus period of faceting for different values of the lat tice
mismatch (linear theory of elasticity); (1) Aa/a = 0;
(2) Ea/a = 0.6(Aa/a), ; (3) b.a/a = 0.8(Aa/a)„.
(4) Aa/a = (Aa/a), ; (5) Aa/a = 1.4(&a/a), .

—(d a/a) h,a/a (h,a/a)

FIG. 5. Period of the metastable faceted structure versus
lattice mismatch (linear theory of elasticity).
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and the equilibrium period of faceting is no longer an
even function of Ea/a. This results in some asymmetry
in the plot of Fig. 5. In the present paper we do not
consider this situation, and we treat, as already noted,
the simple case of equal elastic moduli of the epitaxial
film and the substrate.

III. FACETED SURFACE
WITH SMALL TILT ANGLE OF FACETS

The analytic evaluation of the elastic energy E,&"',tic
is possible for a faceted surface with small tilt angle
of facets y. We consider systems, where both the sub-
strate and the epitaxial film have at least orthorhombic
Bravais lattices with symmetry planes (xy), (xz), (yz).
Then the intrinsic strain tensor c,j 7 describing the lat-
tice mismatch between the epitaxial film and the sub-
strate, is diagonal in axes x, y, z. The general problem
of the elasticity theory described by Eq. (13) reduces to

the plane strain problem with the displacement vector
u, (r) = (u (x, z); 0; u, (x, z)). This situation includes,
particularly, important cases of cubic crystals where the
axes x, y, z are [110], [110],and [001] directions [like in
A1As (Ref. 45)], or [110], [001], and [110] directions [like
in TaC (Ref. 12)], or [100], [010], and [001] directions [like
in the system of strained Ge islands on Si (Refs. 15 and
16)].

We will consider below E;f,~;, from Eq. (27) up
to quadratic terms in p. The efFective "surface-stress
forces" P; acting at crystal edges are equal to the dif-
ference of corresponding components of the intrinsic
surface-stress tensor of neighboring facets (Fig. 2); for
the symmetric profile one gets P = 0, P, = p2~ sing.
The eBective force P, for small angles of faceting y is of
the order of P, = 2w sin p y. The component n of the
normal vector to the surface is equal to n = g sing p.
Therefore, the vector 1o,(r) is of the order of rp. After
transformations presented in Appendix 8, we obtain the
elastic energy E'l"',t;, as follows:

7- p (o) 7- g (o)
elastic && mx + yy yy + 2I

dxdx'P, (x)G~,l (x —x'; 0, 0)P, (x')

dxdx'P, (x)G~ l (x —x', 0, 0)o n (x') + dxdx'o n (x)G~ l (x —x', 0, 0)o n (x') .
2L*

Since the Green's tensor in the zeroth order in V'((x) de-
pends on (x—x'), it is convenient to use the Fourier trans-
formation and to express ((x), n (x), P, (x) as Fourier
series. The Fourier expansion of the symmetric sawtooth
profile shown in Fig. 3 is

((x) = ) cos
l

(2m + 1)
l

. (34)
8(p 1 ( 2vrx )
vr2 -, 2m+1 '

Substituting the Fourier expansion of ((x) from Eq. (34)
and corresponding expansions of n (x) = —V'((x) and
P, (x) = &V2((x), as well as the Fourier transform of—(o)
the Green's tensor G;~. (k; 0, 0) from Eq. (Cl) into
Eq. (33), one gets the surface contribution into the elastic
energy up to the order of y .

To evaluate the short-range energy of crystal ed.ges in
the case of small tilt angles, the following note should
be given. If the reference flat surface (y = 0) is a low-
index singular crystal surface, then facets are vicinals,
and the "edge" between neighboring facets is the place
where a sequence of mounting steps is changed by a se-
quence of descending steps. The energy of the "edge"
is then proportional to the characteristic energy of the
interaction between neighboring steps. The latter de-
pends on the distance between steps (i.e., on the terrace
width LT) as (a/LT) p2.31 This implies that ener-
gies of edges are equal to g+(rp) = (+rp, g (y) = (
g(rp) = g+(p) + g (p) = ((+ + ( ) p2, where (+, ( do
not depend on y. Then the total surface energy per unit
area of the substrate is equal to

2

&7-'~;. = &(&) 11+—
l

— ~**(V)~.".+ ~v&(V )~„'J
2 )
4(r11 + A2) V C11C33 T~m(tp) L

+p
7r(c11c33 C13 )

—~**(v),
VC11C33 + C13

7Z(3) (n, + n2)C33
3 ~~ ~ 2

C11C33 —C13
(35)

Here, elastic moduli are given in the Voigt notation de-
fined with respect to the reference axes x, y, z: c11 ——

~xxxx ) C13 ~mezz ) C33 ~zzzz ) C55 ~mzxz ) O'1 ) O'2

are dimensionless attenuation coe%cients of the static
analogs of Rayleigh waves, they are defined in Appendix
C, Z(3) = 1.202 is the Riemann t,

' function. We do not
expand in powers of p the surface energy s(y) and the in-
trinsic surface stress w(y), which have cusps as functions
of y.

Now we apply our results to the particular case of the
AIAs epitaxial film on the (001) substrate. It was found
by Mirin et al. that the high-temperature growth of
thick A1As(001) layers results in the surface corrugation
along the [110] direction. To analyze this structure, one

should substitute s, . = (ba/a)h;~ into Eqs. (17,18,20),
solve these equations, substitute o into Eq; (30), and
express elastic moduli as follows: c11 —— 2(c11 + c12 +
2c44) c13 c12& c33 cll& c55 —c44 (here, cll) c12& c44
are elastic moduli in the Voigt notation'defined with re-
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spect to cubic axes of the crystal). Then the first, the
second, and the fourth I-dependent terms in rectangular
parentheses on the right hand side of Eq. (35) may be
rewritten in a way similar to Eq. (31). The critical value
of the lattice mismatch is then equal to

(~a
/7e Z(3) (cii + 2c12)(cll c12)

~is + ~&2 + 2c44
X

2cyy

- X/4
~«(y)

Lp

Here, f(p) is the numerical function of the tilt an-
gle p, f(0) = 1. To obtain f(p) for finite y, we have
applied the finite element method for solving the plane
strain problem of the continuum theory of elasticity. The
method is based on the variational principle which im-
plies minimization of the elastic strain energy given in
Eq. (12). Note that both the heterophase structure dis-
played in Fig. 3 and the distribution of effective external
forces are periodic and contain 2 mirror planes per each
period. Therefore, we have solved the problem for a half
of the period, the cell being displayed in Fig. 6. The finite
element model of the cell consisted of 480 quadratic eight-
noded quadrilateral isoparametric elements of Serendip-
ity family, the total number of degrees of freedom was
3058.

To solve the plane strain problem of the elasticity the-
ory, we have used the homemade software for the finite
element analysis. We have imposed symmetric bound-
ary conditions (u = 0, !9u,/!9x = 0) on mirror planes
x = 0 and x = L/2, zero boundary conditions in the bulk
[u, = 0 at z = —(6+ hi)], and have calculated the elastic
strain energy. We have found that if the number of finite
elements N~~ changes from 240 to 480, the strain energy
changes less than by 0.2%. The strain energy has been
obtained as a quadratic function of (Aa/a) and w in the

form of Eq. (30). Since tQe term proportional to r2 de-
pends logarithmically on a microscopic cutofF parameter
a, we have performed calculations for difFerent values of
L. Interpolation of numerical results in accordance with
Eq. (30) allows us to get the correct strain energy with
the logarithmic accuracy.

This numerical procedure has been applied for the par-
ticular AlAs(001) structure corrugated in the [110]direc-
tion. The function f(rp) which enters Eq. (36), is found
to be smooth function of the tilt angle. It varies from
1 for p = 0 to 1.25 for y = 45 . Although there is
no exact values of ~ for AlAs in present literature, one
may use for an order-of-magnitude estimation the val-
ues of the components of the intrinsic surface-stress ten-
sor calculated for Si(001) (2 x 1) surface with symmet-
ric dimers, ' for Si(001) (2 x 1) surface with buckled
dimers, for GaAs(001) As-terminated (2 x 4) surface
with a missing dimer row of As. The estimation yields

100 meV/A. 2. For the faceted AlAs(001) surface
with the characteristic periodicity 1800 A observed in
Ref. 45, Eq. (36) gives (Aa/a), 1.5 x 10 4. The lat-
tice mismatch between the AlAs epitaxial film and the
GaAs substrate is, in fact, very small (4 x 10 at the
temperature of the epitaxy 650'C). Nevertheless, it ex-
ceeds the critical value (Aa/a) . Therefore, the observed
faceting is governed by kinetic mechanism which results
in irregular shape of the surface.

IV. NONLINEAR MODEL
OF A STRAIN-DEPENDENT FACETING

The period of the faceted structure without lattice
mismatch determined by the minimum of E;&"',t,, from
Eq. (35) is equal to

L&&
——a exp(Q + 1),

where

7I ((Cllc33 —C13 )

4(A1 + cr2) 9 cl1c33T (P)
(38)

I

I
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FIG. 6. The cell used in numerical calculations by the finite
element method. One-half of the period of the corrugated
heterostructure is displayed. "1"denotes the substrate; "2"
denotes the epitaxial film; dashed-dotted lines denote mirror
planes x = 0 and x = L/2 of the structure.

Parameters entering Eq. (38) are intrinsic parameters of
the crystal. External strain being applied to the sys-
tem, these parameters [namely, the short-range energy of
the crystal edge rI(p) = (p, the intrinsic surface stress
w(y), elastic moduli c;~] change with strain. Due to the
exponentially steep dependence of Le on Q, even small
changes of these parameters may cause a dramatic efFect
on the period of faceting.

The steepest change with the strain is expected for
the short-range energy of the crystal edge g(p) = (p .
Indeed, this energy depends on the electronic structure
near the edge atoms. This structure shows dramatic la-
bility with respect to external perturbation (thus, the
edge atoms in covalent semiconductors have the maxi-
mum number of electronic bonds which undergo rebond-
ing). An example of this lability is given by the depen-
dence of local energies and of the values of force dipoles
of single-atomic and double-atomic steps on the Si(001)
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surface. The dependence of the values of force dipoles
on the surface stress was found for all types of steps on
Si(100) surface by Poon et al.

Moreover, microscopic model calculations performed
by Gilmer for Si(001) surface under external stress yield
a dramatic dependence of the local energy Ao of single-
atomic B steps (SB steps) on external stress. The value
of Ao for the stress-free Si(100) surface inferred from
experiment by Swartzentruber et aL is 24 meV/A. , the
theoretical value is 17 meV/A. ss This energy is lowered
by 20 meV/A under the compressive strain of 1% and
exhibits linear strain dependence in the region of strains
from —2% to 2%.

To give an insight on possible nonlinear effects in the
strain-dependent faceting, we consider here the simple
model. The factor Q in Eq. (38) which should depend on
a local strain in the vicinity of crystal edges, is approx-
imated by a model linear function of the overall lattice
mismatch La as follows:

Q(&a) = Q 1 —
W I

Comparing Eq. (39) with the strain dependence of the
energy of SB steps on Si(001), we may assume that the
coeKcient p can be as large as 50 —100, mainly due to
the dependence of the short-range energy of crystal edges
on strain. Substituting Q from Eq. (39) into Eq. (37) and
then into Eq. (31), we may write down the L-dependent
part of the surface energy as the function of L/Lo, this
function being governed now by 2 control parameters:

(Aa/a)
(Aa/a), '

fAa)
p=&QI (41)

C

Here, p, is the relative lattice mismatch defined in units
of the critical lattice mismatch of the linear theory; p
is the dimensionless parameter of nonlinearity. The L-
dependent part of the surface energy from Eq. (31) now
takes the form

(40)

E(L) = Eo —
]

ln + pp, ]
——p . (42)

Lo ( eL l 1

L ( Lo ) 2e Lo

The local minimum of this function gives the period of
the metastable faceted structure. The value of L versus
the relative lattice mismatch p for different values of the

irnensionless parameter of nonlinearity (in the case p )
0) is presented in Fig. 7. It is seen that the dependence of
L on p = (Ka/a)/(Aa/a), is no longer an even function.
The period L may be smaller than its value Lo in the
absence of the lattice mismatch. The curve L(p) consists
of 2 branches (the second branch appears in the region of
very large p which is usually unphysical) if p ( 1/e, and
is a monotonously decreasing function which consists of
one branch for p ) 1/e.

The approach of the macroscopic faceting is valid as
long as the depth of the surface corrugation is much
larger than the lattice constant, 2Ltanp && a. If this
condition does not hold, the surface becomes apparently

Ij,

5

FIG. 7. Period of the metastable faceted structure versus
lattice mismatch in the nonlinear model of strain-dependent
faceting [p = (Aa/a)/(b, a/a), is the relative value of the
lattice mismatch]. Dimensionless parameter of nonlinearity is
equal to (1) p = 0; (2) p = 0.15; (3) p = 0.25; (4) p = 0.35;
(5) p = 0.5. (a) The region of macroscopic faceting; (b) the
region of microscopic surface reconstruction.

Bat although microscopically reconstructed. The dashed-
dotted line in Fig. 7 schematically separates these two
regions.

It follows from Fig. 7 that nonlinear effects in the
strain-dependent faceting are essential for p & 0.25. Sub-
stituting of Q from Eq. (38) and (b,a/a), from Eq. (36)
into Eq. (41) yields the following estimation for p:

]/
Lo1 2r

@=pin
i ea) YLo '

where Y is the characteristic bulk elastic modulus. Us-
ing typical values of Y 800 meV/As, w 100 meV/A2,

50, one gets that p = 0.25 at Lo ——50 A. . This estima-
tion separates the faceted surfaces with smaller periods
where nonlinear effects are strong from those with larger
periods, where faceting may be described by the linear
theory of elasticity.

Experimental data of Tournie et al. seem to be an
example of nonlinear effects in strain-dependent facetin .ce sng.
The period of the faceted InAs(311) grown on the lattice-
mismatched Ga~ In As decreases with the increase of

8
~b, a] (b,a ) 0), and then the surface becomes appare tlpparen y
at. The similar decrease of the period with ]b,a] was ob-

served for GaAs(311) on lattice-mismatched Gaq In As
(here Aa ( 0). These results are in reasonable qual-
itative agreement with our nonlinear model of strain-
dependent faceting if one assumes that the parameter
of nonlinearity p is positive for InAs(311) and negative
for GaAs(311). Since nonlinear effects are very sensitive
to the particular electronic structure on surfaces and at
crystal edges, the fact that p may have opposite signs for
GaAs and InAs seems to be understandable.

There is a peculiarity of experimental data of Ref. 56 to
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be taken into account. It is a thick (relaxed) InAs/GaAs
layer grown on GaAs(311) substrate, which was con-
sidered as completely unstrained InAs(311). However,
thick relaxed lattice-mismatched layers are known to con-
tain a set of mis6t dislocations and anisotropic resid-
ual stresses. Thus, the relaxed InAs/GaAs system
can hardly be considered as the reference point for the
faceting without external stress. Moreover, periods of
faceted structures on a lattice-matched GaAs/GaAs(311)
system and on a relaxed GaAs/Gao 4qlno ssAs(311) sys-
tem were found to be slightly difFerent (32 A. and 39 A.).
This implies that an alternative interpretation of exper-
imental data of Ref. 56, which includes small residual
stress in the epilayer is possible as well. The (311) sur-
face of an InAs monocrystal would be a more appropriate
surface to observe the intrinsic faceting of the InAs(311)
surface.

z = ((x)

g ext
ZX

FIG. 8. Faceted surface of a loaded sample.

We consider the particular situation where an external
in-plane load is applied uniformly to a lateral surface
(Pjg. 8), and the bottom surface is free and does not
undergo faceting. The boundary conditions read, for this
case,

V. FACETING OF A LOADED SAMPLE

We study, in the present section, the elastic energy of
a sample where its upper surface undergoes faceting, and
external load 0'b, (a, b = z, y) is applied. The elastic
energy contains bulk (E,&",t;,) and surface (E;i"',t,,) con-
tributions, the former depends on particular boundary
conditions on lateral and bottom surfaces, the latter is
not sensitive to them. Before we separate these two con-
tributions, we need to formulate the problem for a whole
sample.

0&n&
~ t '( )

= P; (r),
ext

+ibnb llateral = ~ia+ab
surface

0.„~, H= 0,

(44a)

(44b)

(44c)

and the displacement vector obeys the set of cou-
pled homogeneous equations in the bulk of the sample,
A,~i V~. V'iu (r) = 0. The solution of these equations
with the boundary conditions (44) gives the elastic en-
ergy per unit area of the reference fiat surface as follows,

bulk ~ p'surface Wh r K'bulk 10.ext-
Ee»stoic ~elastic ~ ~elastic ~ ~elastic 2 ab
and

surf
+elastic (»S» + yy+yy)

1 1—c, dzP (x)((x) — " dxP, (x)((x)
2 L

dldl'P; (x)G,, (x, ((x);z', ((z') )P~ (z')2I

d~dI/ p G . I I ext

dldl'o. ,'"'n (x)G;, (x, ((x);x', ((x'))o.,'"'n (z')2I.*

(45a)

(45b)

(45c)

(45d)

(45e)

1
dx xP (x) —s, dx xo,'"'n—(x),

0 0

(here z;. = S, bo'bt, S;~i being the tensor of elastic
compliances). The terms from Eqs. (45a,b,c,d, e) are sim-
ilar to those of Eqs. (27a,b,c,d, f), respectively. The two
terms from Eq. (45f) depend on particular geometry of
lateral edges of the sample. However, these contributions
de6ned per unit area of the nominal Hat surface, do not
depend on L.

Thus, the elastic energy of a loaded sample with
a faceted top surface contains similar contributions as
E l,ti, of an epitaxial film on a lattice-mismatched sub-
strate considered in Sec. II. Therefore, the total surface
energy may be written in the schematic form similar to

Eq. (31):

E(I) = Zp — ln
L0 eI

0

ext

(o, being a critical value of external load).
If a small load o " ( 0., is applied to the faceted sur-

face, transition to the stable state may be kinetically for-
bidden. Then the surface stays in the metastable faceted
state, and the period of the faceting increases with the
load. Applying a load larger than the critical value o. re-
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suits in the breakdown of formation of metastable faceted
structures. The metastable state then disappears, and
the surface undergoes transition to the stable state which
is determined by the particular geometry of the sample.
If the period of the faceted structure without load is suf-
ficiently small (Lo + 50 A.) then the stress dependence of
the period may be described by a nonlinear model pre-
sented in Sec. IV.

The possibility of applying an external load, which
could be varied in a controlled way in a wide scale corre-
sponding to deformations from 10 to 10 was proved
experimentally by Men et al. Therefore, we expect that
experimental observations of the dependence of faceting
on external stress are possible for loaded samples, too.

surface reconstruction and the surface becomes appar-
ently fiat. This situation seems to occur in heterophase
systems GaAs/InAs(311) and InAs/GaAs(311). ss Note
that the characteristic length of facets corresponding
to the crossover from linear model to nonlinear one is
very sensitive to the particular orientation of the surface.
Therefore, the strain dependence of the period I for a
class of faceted structures where Lo 20 —50 A. , may be
very different from one material to another and &om one
surface orientation to another.

As a summary, we have considered the effect of exter-
nally applied stress on surface faceting. We have shown
that the variation of the lattice mismatch provides a pow-
erful tool to tune surface periodicity in a controlled way.

VI. CONCLUSIONS ACKNOWLEDGMENTS

We have studied theoretically the effect of externally
applied stress on the type of faceting, where the faceting
of the surface initially occurs mithont any external stress.
We have considered in detail the technologically relevant
way of applying external stress, namely, the heteroepitax-
ial growth on a lattice-mismatched substrate. We have
found that there exists a metastable state of the het-
erophase system which is a continuous epitaxial film with
periodically corrugated top surface. The period of the
surface corrugation L varies with the lattice mismatch
Aa/u, and two difFerent scenarios of the dependence of
L on Ao/a are possible.

It the period of surface corrugation without external
stress Lo exceeds the order of = 50 A. , then the depen-
dence of the period L on the lattice mismatch may be
described in the frame of the linear theory of elasticity.
Then the period of surface corrugation increases both for
tensile and compressive mismatch-induced strain. The
dependence of L on ~An/a~ gives a possibility to con-
tr61 the period of surface corrugation by varying ~Aa/a~.
If the mismatch is larger than a certain critical value
(Aa/a)„ then the metastable state disappears, which
means the breakdown of formation of metastable faceted
structures. For the surfaces with small tilt angle of
facets y, the critical lattice mismatch is determined by
Eq. (36). Numerical tests performed for large angles p
indicate that (Aa/a), depends only weakly on the tilt
angle of facets. Since the order of magnitude estimation
for r 100 meV/A. is valid for a large class of solids,
one may use Eq. (36) to evaluate the critical value of
the lattice mismatch for different faceted surfaces. For
faceted surfaces with periods Lo 1000 —2000 A. , the
critical lattice mismatch is (Aa/a) 10 4. For faceted
surfaces with periods Lo 20 —30 A. , ' the critical
lattice mismatch is equal to (Aa/a), 5 x 10

In the case where the period of the faceted structure
without external stress is Lo + 50 A. , the dependence
of L on Aa is determined by nonlinear elastic effects.
Then the period L increases for one sign of Aa up to the
breakdown of formation of metastable faceted structures
and decreases for another sign of Aa, where the macro-
scopic faceting transforms gradually into a microscopic
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APPENDIX A

Ly
2

dxP'(x)~; (x &(x)) (Al)

Here the vector io; (x, z), defined by io, (x, z)
J' dx'G;~(x, z; x', g(x'))oi n (x'), satisfies the set of cou-
pled homogeneous equations (21) and the boundary con-
ditions

8
AU( n, (x) io (x, z) = -o; n (x). (A2)

We note here that both homogeneous equations (21) and
boundary conditions (A2) remain invariant with respect

It is possible to obtain the dependence of all coeKcients
A, B,C in Eq. (29) on the period of faceting L before
solving Eq. (23) for the Green's tensor, just from simple
scaling arguments. The only term P2 in Eq. (27) is
that of Eq. (27c). The Green's tensor G;~(r, r') for the
two-dimensional problem of the elasticity theory depends
logarithmically on the distance, G ln ~r —r'~. EfFec-
tive surface-stress forces P, are concentrated at crystal
edges, the total force per period vanishes. Therefore,
the interaction of far edges is compensated, and that of
several neighboring edges dominates in Eq. (27c). Thus,
the energy per one period is lnL. Correspondingly,
the energy per unit surface area is lnL/L [see, also
Ref. 28)j. Since this energy term is the energy of elas-
tic relaxation of the faceted surface, it is negative, and
A(L) —ln L/L.

The contributions to B(L) in Eq. (29) come from terms
(27a, 27b, 27d, 27e, 27g). The term (27d) can be rewritten
as follows:
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to rescaling:

r-+r=pr, 4(*) = pC(z) M — M

After substituting Eq. (22) into the first and the second
term of Eq. (B2), this equation is reduced to

dx cr,,n, (z)w;(z;((z))

Then the energy (Al) calculated per one period of the
faceted structure scales proportional to P, i.e. , the en-
ergy is proportional to L. Therefore, the energy per unit
surface area is L independent.

Due to the reciprocity properties of the Green's ten-
sor IG;~(x', z', x, z) = G~, (x, z;x', z')j, the term from
Eq. (27e) can be considered in the same way. This proves
that the coefficient B(L) in Eq. (29) does not depend on
L.

The similar scaling arguments applied to the term (27f)
in F'&"',t,-, show that the energy per one period L scales as
P, i.e. , is proportional to L . Therefore, the energy per
unit surface area, i.e., the coefficient C(L) in Eq. (29), is
proportional to L.

APPENDIX B

x x e'bzrb x

+ dx X E'zz Pz X

dx o.(, in;(z)iii;(x;((z)) .

Now we express the vector iU;(z; ((z)) in terms of the
Green's tensor G,~(r; r') and substitute Eq. (B3) into
Eqs. (27b,e,f). Within the required accuracy of p it is
sufficient to use the Green's tensor G;~(x, ((z); z', ((z'))
in the zeroth order with respect to ((z), i.e. , to use the
Green s tensor of the semi-infinite medium with the flat
surface, which depends on the relative distance along the
surface, G,z (x, ((z); x', ((z')) G; (x —x', 0, 0). Then
the elastic energy E;&"',~~„reduces to the form of Eq. (33).

To simplify the expression (27) for the elastic energy
E'&"',~„ in the case of small tilt angle of facets p and to
calculate the lowest-order in y term in E'&"',~,.„we note
that the two terms of Eqs. (27e, f) may be written as

2 f dzo;in& (z)to;('z; ((.z)). To proceed, we consider the
quantity

dz 0,,n, (z)ui; (x; ((z))

APPENDIX C

The Green's tensor G(oi(r; r'), can be easily calculated
in the zeroth order in V'((z) for a crystal of at least or-
thorhombic symmetry. To calculate F;&"',~~„ from Eq. (21)
one needs the Fourier transform of the Green's tensor,

G, (k;k„= 0;z, z' = 0). Equation (21) reduces for(o)

these components into two sets of two coupled equations
each. A straightforward solution of these equations yields

dX A~b~~G~~Ab X tU~ X; X G (k;ky ——0;z = O, z' = 0)

+ dx ~izi~ci~nz x toi xI x

dx o~, in, (z)iii, (z;((z)).

(~i + ~2) C33

(
, (C1a)

C11C33 C13

To calculate the contribution of the order of p into
Eq. (Bl) it is sufficient to substitute ns(z) = —V's((z)
into the first term on the right hand side of Eq. (Bl)
and to integrate it by parts. In the second term of
Eq. (B1) one should replace n, (x) by 1 and expand

~,(z;((z)) = iU;(z;0)+ ((z) ~~*' i. Then Eq. (B1) is
transformed into

G.',l(k. ; k„= O; z = O, z' = 0)

isgn(k ) 1

G, (k;k„= 0;z = O, z' = 0)

dx cr;~n, (x)i';(z; ((x)). isgn(k ) 1

~i= 2 dx ((z) eb, As„,
G,(',i(k. ; k„= O;. = O, z' = O)

+ dx g(z) s, A„~;
t9~i
Bp' ~=q(~)

C1d(o'1 + o'2) v Clicss
)le I

C11C33 —C13

dx cr ~, in~ (z)ur; (z; ((z)) . (B2) Here, dimensionless attenuation coefBcients of static
analogs of Rayleigh waves 0,1, 0.2 are determined by the
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equation
2

C33C550,' + C13 + 2C13C55 C11C33 O' + C11C55 O )

(C2)

where Reo.12 ) 0. For a cubic crystal with the z axis
parallel to the [001] direction of the crystal and the x
axis parallel to either [100] or [110]direction, the Green's
tensor from Eq. (Cl) coincides with that from Ref. 58.

' Electronic address: shchukinton. pti. spb. su
C. Herring, Phys. Rev. 82, 87 (1951).
R.J. Phaneuf and E.D. Williams, Phys. Rev. Lett. 58, 2563
(1987).
R.3. Phaneuf, E.D. Williams, and N. C. Bartelt, Phys. Rev.
B 38, 1984 (1988).
R.Q. Hwang, E.D. Williams, and R.L. Park, Phys. Rev. B
40, 11716 (1989).
X.-S. Wang, J.L. Goldberg, N. C. Bartelt, T.L. Einstein,
and E.D. Williams, Phys. Rev. Lett. 65, 2430 (1990).
R.J. Phaneuf, N. C. Bartelt, E.D. Williams, W. Swiech, and
E. Bauer, Phys. Rev. Lett. 71, 2284 (1993).
E.D. Williams, R.J. Phaneuf, Jian Wei, N.C. Bartelt, and
T.L. Einstein, Surf. Sci. 294, 219 (1993).
M. Kasu and N. Kobayashi, Appl. Phys. Lett. 62, 1262
(1993).
N. N. Ledentsov, G.M. Gurianov, G.E. Tsyrlin, V.N.
Petrov, Yu.B. Samsonenko, A.O. Golubok, and S.Ya. Tipi-
sev, Fiz. Tekh. Poluprovodn. 28, 904 (1994) [Sov. Phys.
Semicond. 28, 526 (1994).
G.M. Watson, D. Gibbs, D.M. Zehner, M. Yoon, and
S.G.J. Mochrie, Phys. Rev. Lett. 71, 3166 (1993).
R. Koch, M. Borbonus, O. Haase, and K.H. Rieder, Phys.
Rev. Lett. 67, 3416 (1991).
3.-K. Zuo, R.J. Warmack, D.M. Zehner, and J.F. Wen-
delken, Phys. Rev. B 47, 10743 (1993).
R. Notzel, N.N. Ledentsov, L. Daweritz, M. Hochenstein,
and K. Ploog, Phys. Rev. Lett. 67, 3812 (1991).
R. Notzel, N.N. Ledentsov, L. Daweritz, K. Ploog, and
M. Hochenstein, Phys. Rev. B 45, 3507 (1992).
D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943
(1990).
Y.-W. Mo, D.E. Savage, B.S. Swartzentruber, and
M.G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).
D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Den-
baars, and P.M. Petroif, Appl. Phys. Lett. 63, 3203 (1993).
N. N. Ledentsov, M. Grundmann, N. Kirstaedter, J. Chris-
ten, R. Heitz, J. Bohrer, F. Heinrichsdorff, D. Bimberg,
S.S. Ruvimov, P. Werner, U. Richter, U. Gosele, J. Hei-
denreich, V.M. Ustinov, A.Yu. Egorov, M.V. Maximov,
P.S. Kop'ev, and Zh. I. Alferov (unpublished).
J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre,
and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).
A. Madhukar, O. Xie, and P. Chen, Appl. Phys. Lett. 64,
2727 (1994).
M.A. Grinfield, Dok. Acad. Nauk SSSR 290, 1358 (1986)
[Sov. Phys. Dokl. 31, 831 (1986)].
S. Luryi and E. Suhir, Appl. Phys. Lett. 49, 140 (1986).
D. Srolovitz, Acta Metall. 37, 621 (1989).
D. Vanderbilt and L.K. Wickham, in Evolution of Thin
Film and Surface Microstructure, edited by C.V. Thomp-
son, J.Y. Tsao, and D.J. Srolovitz, MRS Symposia Pro-
ceedings No. 202 (Material Research Society, Pittsburgh,
1991), p. 555.
J. Tersoff and R.M. Tromp, Phys. Rev. Lett. 70, 2782

(1993).
V.A. Shchukin, N.N. Ledentsov, P.S. Kop'ev, and D. Bim-
berg (unpublished).
M. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bim-
berg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov,
P.S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner,
U. Gosele, and 3. Heidenreich, Electron. Lett. 30, 1416
(1994).
V.I. Marchenko, Zh. Eksp. Teor. Fiz. 81, 1141 (1981) [Sov.
Phys. JETP 54, 605 (1981)].
G. Wulff, Z. Kristallogr. Mineral. 34, 449 (1901).
C. Rottman and M. Wortis, Phys. Rep. 103, 59 (1984).
V.I. Marchenko and A.Ya. Parshin, Zh. Eksp. Teor. Fiz.
79, 257 (1980) [Sov. Phys. JETP 52, 129 (1980)].
D.J. Cheng, R.F. Wallis, and L. Dobrzynski, Surf. Sci. 43,
400 (1974).
M. Lannoo and P. Friedel, Atomic and Electronic Struc-
ture of Surfaces, Springer Series in Surface Sciences Vol. 16
(Springer-Verlag, Berlin, 1991).
F.K. Men, W.E. Packard, and M.B.Webb, Phys. Rev. Lett.
61, 2469 (1988).
O.L. Alerhand, D. Vanderbilt, R.D. Meade, and
J.D. Joannopoulos, Phys. Rev. Lett. 61, 1973 (1988).
V.A. Shchukin, A.I. Borovkov, N.N. Ledentsov, and
P.S. Kop'ev (unpublished).
J.W. Cahn, Trans. Metall. Soc. AIME 242, 166 (1968).
A.G. Khachaturyan, Theory of Structural Transformations
in Solids (Wiley, New York, 1983).
A.L. Roitburd, in Solid State Physics, Advances in Re-
search and Applications, edited by H. Ehrenreich, F. Seitz,
and D. Turnbull (Academic Press, New York, 1978), Vol.
33) p. 317.
I.P. Ipatova, V.G. Malyshkin, and V.A. Shchukin, J. Appl.
Phys. 74, 7198 (1993).
I.P. Ipatova, V.G. Malyshkin, and V.A. Shchukin, Philos.
Mag. B (to be published).
J.D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957).
L. De Caro and L. Tapfer, Phys. Rev. B 48, 2298 (1993).
A.A. Maradudin, in Surface Polaritons, edited by
V.M. Agranovich and D.L. Mills (North-Holland, Amster-
dam, 1982), p. 405.
R. Mirin, M. Krishnamurty, 3. Ibbetson, 3. English, and
A. Gossard, J. Cryst. Growth 127, 908 (1993).
O.C. Zienkiewicz, The Finite Element Method (Mc-
Graw Hill, London, 1977).
K. Wachizu, Variationa/ Methods in Elasticity and Plastic-
ity (Pergamon Press, Oxford, 1982).
A.I. Borovkov, P.V. Ilyin, Yu. Krivchenkov, A. Panin, and
G. Sivkova, IEEE Trans. Magn. 28, 927 (1992).
M.C. Payne, N. Roberts, R.J. Needs, M. Needels, and
J.D. Joannopoulos, Surf. Sci. 211, 1 (1989).
J. Dabrowski, E. Pehlke, and M. Schemer, Phys. Rev. B
49, 4790 (1994).
A. Madhukar (private communication).
T.W. Poon, S. Yip, P.S. Ho, and F.F. Abraham, Phys. Rev.



10 118 SHCHUKIN, BOROVKOV, LEDENTSOV, AND BIMBERG S1

B 45, 3521 (1992).
G.H. Gilmer (private communication).
B. Swartzentruber, Y.-W. Mo, R. Kariotis, M.G. Lagally,
and M.B. Webb, Phys. Rev. Lett. B5, 1913 (1990).
S. Mukherjee, E. Pehlke, and J. Tersoff, Phys. Rev. B 49,
1919 (1994).
E. Tournie, R. Notzel, and K.H. Ploog, Appl. Phys. Lett.

63, 3300 (1993); Phys. Rev. B 49, ll 053 (1994).
M. Grundmann, U. Lienert, J. Christen, D. Bimberg,
A. Fischer-Colbrie, and J.N. Miller, J. Vac. Sci. Technol.
8, 751 (1990).
K. Portz and A.A. Maradudin, Phys. Rev. B 16, 3535
(1977).


