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We examine the quantum and semiclassical approaches to the calculation of the electrical con-
ductivity using a model of free electrons with a finite lifetime. We evaluate the Kubo formula exactly
for the free-electron model for homogeneous conductors, thin films, and multilayers. We use these
results to explicitly demonstrate the relationships among the exact quantum approach, semiclassi-
cal approaches, and an approximate quantum approach. One popular semiclassical approach uses
a specularity parameter to describe the fraction of electrons that scatter coherently at boundaries.
We show that this parameter should depend on the angle at which the electrons are incident on
the boundary. Another semiclassical theory employs the concept of a local mean free path. We
show that this approximation works surprisingly well; the error in the calculated conductivity being
significant only for very thin layers. A third approach uses an approximate solution to the Kubo
formula. We show that this approximation works well for thick layers and extremely thin layers but
not for intermediate layer thicknesses. We discuss the implication of these results to the study of
the giant magnetoresistance.

I. INTRODUCTION

The discovery of the giant-magnetoresistance (GMR)
effect ' has renewed interest in the theory of transport
in layered and granular systems. Several approaches to
transport in layered systems are currently being used.
One approach is based on the Fuchs-Sondheimer '

extension of semiclassical Boltzmann theory, another is
based on the kinetic equation approach of Chambers and
Pippard, while a third is based on an approximate
solution of the Kubo-Greenwood ' linear response the-
ory. Camblong and Levy ' have recently obtained yet
another semiclassical theory for multilayers starting from
the Kubo-Greenwood approach.

In this paper, we show that for the model of nearly free
electrons with random point scatterers, either in infinite
space or in a film of finite thickness, the conductivity
can be evaluated rigorously using the Kubo formula and
that these results can be used to test and compare all of
the proposed theories in considerable detail. Specifically,
we show that the semiclassical approaches of Fuchs and
Sondheimer, of Chambers and Pippard, and of Camb-
long and Levy are equivalent for homogeneous systems.
For inhomogeneous layered systems, we show that the
theory of Camblong and Levy (which we show to be the
same as Fuchs-Sondheimer theory with interfacial spec-
ularity parameter, p, set to unity) gives conductivities in
very good agreement with quantum results obtained from
evaluation of the Kubo formula. We also show that the
approximate quantum solution of Zhang, Levy, and Fert
(ZLF) (Ref. 11) works rather well if all layers are thinner
than the shortest mean &ee path or all layers are thicker
than the longest mean free path, but the approximation
is rather severe if the layer thicknesses are comparable to
the mean &ee path.

Almost all of the previous work on transport in films

and multilayers has been based on the model of &ee elec-
trons with random point scatterers (FERPS). The justi-
fication of the use of the FERPS model to describe the
electrical resistivity has been discussed previously. It
requires one to imagine that the scatterers are points,
that they are distributed randomly in space, and that
there are many scatterers within a region of space of vol-
ume E, where E is the mean free path. The assump-
tion of point scatterers is important because such scat-
terers scatter isotropically. This eliminates the vertex
corrections in the linear response formalism or, equiv-
alently, the scattering-in term of the Boltzmann equa-
tion approach and thereby allows the use of a relaxation
time approximation. Previous experience with silver-
palladium alloys ' indicates that the relaxation time
approximation is inaccurate for real materials, which
have free-electron-like dispersion, because real impurities
are not point scatterers. The relaxation time approxima-
tion may be reasonable, however, when the Fermi energy
falls in the d bands so that the scattering is primarily
s ~ d or d ~ d, because in this case the vertex correc-
tions tend to vanish because of symmetry considerations.

The assumption of random point scatterers offers an
additional simplification. It causes the electron self-
energy to be local, which makes it easier to speak in terms
of a local scattering rate or a local mean free path.
The FERPS model is certainly a major oversimplifica-
tion, but it has tradition on its side, and it is sufIiciently
simple that one may hope to see general features with-
out getting lost in detail. It is also useful for testing
first-principles calculations, which should be capable of
giving the FERPS results in the appropriate limit.

A brief outline of the paper may be helpful to
the reader. In Sec. II, we briefly outline the Fuchs-
Sondheimer, Chambers-Pippard, Camblong-Levy, and
Zhang-Levy-Fert approaches to transport in Alms and
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multilayers. In Sec. III, we calculate the exact nonlocal
conductivity using the Kubo-Greenwood formula within
the free-electron model for a homogeneous system. In
Sec. IV, we take the semiclassical limit of this result
and show that it is identical ta those of the semiclassi-
cal theories of Camblong-Levy, Chambers-Pippard, and
Fuchs-Sondheimer. In order to do this, we generalize
Fuchs-Sondheimer theory so that it yields the nonlocal
conductivity and shaw that the results are identical to
the form proposed by Camblong and Levy. In Sec. V,
we present an exact expression for the conductivity of a
thin film within the FERPS model. We show the con-
nections between the continuum limit of this expression
and the semiclassical theories. We also show that a small
change in the semiclassical theory efFected by including
the zero-point motion of the electrons perpendicular to
the film yields an expression that provides accurate fits
to experimental thin film conductivities. In Sec. VI, we
calculate the conductivity and giant magnetoresistance
for several multilayer systems and compare the results
to those obtained from the semiclassical theories and the
approximate quantum theory of ZI F. We show that for
multilayers, the Camblong-Levy theory is equivalent to
the Fuchs-Sondheimer theory (with specularity param-
eter, p = 1), while the Chambers-Pippard theory is,
in principle, diferent and more general. We show that
Camblong-Levy theory agrees well with the exact solu-
tion of the Kubo formula for most layer thicknesses.

II. EXISTING THEORIES OF TRANSPORT
IN FILMS AND MULTILAYERS

In this section we very briefIy outline the Fuchs-
Sondheimer, Chambers-Pippard, Camblong-Levy, and
Zhang-Levy-Fert approaches to the electrical conductiv-
ity of films and multilayers. This section is not intended
as a review of any of these theories. It is included in or-
der to state precisely what the current authors mean by
the appellations, Fuchs-Sondheimer, Chambers-Pippard,
etc. , and to provide the basic equations which we shall
need in later sections.

A. Fuchs-Sondheimer theory

Fuchs-Sondheimer theory ' is based on the semiclassi-
cal Boltzrnann transport equation (BTE) which assumes
that one can describe the electrons by a distribution func-
tion, f(p, r, t), which gives the number of electrons with
momentum p at point r and time t. The distribution
function is determined by balancing the contributions to
the time rate of change of f(p, r, t) under steady-state
conditions,

df Bf —r V'f —p. V'„f = 0.
dt Ot

(2.1)

Considering the departure of f from equilibrium
g(p, r, t) = f (p, r, t) —

f p(E), and assuming that the col-
lisions which return the electrons to equilibrium do so in
the following simple manner known as the lifetime ap-
proximation:

Bf Bg g
Bt Ot

(2.2)

we have

v 7'+ — g(v, r) = 8' —7'„fp ——e8 .v, (2.3)
1 e Bfp

m

where we have used p = —eE' and have eliminated p in
favor of the electron velocity v = p/m. In an application
to a real (periodic) system, the velocity would be re-
lated to the momentum through the dispersion relation,
vi, = h V'kEi„where k = p/h. Once the distribution
is determined &om solving Eq. (2.3) the current can be
calculated &om

S(r) = ', d'I vkg(v„, r)
27r s (2.4)

Films and multilayers are treated within Fuchs-
Sondheimer theory by assuming difFerent distribution
functions, g (v, z), within each layer and matching
boundary conditions at each interface. Thus, the gen-
eral solution to Eq. (2.3) within layer I has the form

g (v, z) = 8 v [1+F (v)e 'i "*],e7I Of
m BE

where the functions I" (v) are to be determined by a
matching procedure at the interfaces between layer I and
layers I —1 and I + 1. The original application of this
approach by Fuchs was to films. He reasoned that space
could be divided into three regions, region 1 to the left
of the film (z & 0), region 2, the film itself (0 & z & d),
and region 3 to the right of the film (z ) d). On the
left side of the 61m (at z = 0), the distribution function
for the electrons should have no electrons with v ) 0
other than those specularly refIected ofI' of the interface
because there are no electrons outside the film. Thus
supposing that a fraction pL, of the electrons which strike
the left boundary is specularly refIected, we must have

(2.6)

and similarly at the right side of the film the electrons
with v, ( 0 could only be those specularly reflected oÃ
the boundary,

The case of pI, ——p~ ——1 corresponds to perfect reHec-
tion and can be shown to lead to a conductivity for the
film identical to that for an infinite homogeneous system.
The case of pl, ——p~ ——0 corresponds to perfectly diffuse
scattering, i.e., all electrons which strike the surface are
assumed to lose all memory of their velocity before scat-
tering.

The generalization of this theory to interfaces is
straightforward. Between layers I and I+1, it is assumed
that a fraction T af the electrons will be transmitted co-
herently and a fraction B will be reBected coherently.
The remainder, 1 —B —T, are assumed to scatter in-
coherently. Thus, at the interface between layers I and
I+1
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i TI,I+1 I+i, RI,I+1 I (2 8)

I I,I+& I+i
)

I+ i,I I I+1
+ + (2.9)

We shall show in Sec. V that the specularity coefFicients p
should depend on the angle of incidence of the electrons
on the interface. Note that this is quite diferent from the
angle of incidence dependence of T and R obtained by
Hood and Falicov, which originates from the potential
steps at the interfaces.

In general, within the FERPS model, if the real part of
the potential changes between layers, the electrons will
be refracted at the interfaces, i.e., T and R will depend
on the angle of incidence. In this paper, we shall gener-
ally assume that the real part of the potential does not
change between layers. Although this assumption does
not simplify the exact calculations which we present other
than by reducing the number of arbitrary parameters, it
does make it easier to compare with the Camblong-Levy
and Zhang-Levy-Fert theories.

The picture used by Hood-and Falicov to relate the
FERPS model to layered transition metals puts great
emphasis on these steps because it assumes a common
band for all electrons, e.g. , nickel is treated as a free-
electron system with ten electrons per atom. In this
picture, layers consisting of diferent elements will have
diferent numbers of electrons and hence diferent values
of E~ and k~ in the FERPS model. We consider such
a picture to be less realistic than the extreme Mott s-d
picture, which appears to be in the minds of the other
authors attacking the GMR problem. In the Mott s-d
picture, there is a single free-electron band for all of the
layers (representing the s electrons) and differences in
scattering rates between the layers are due, in part, to
diEering numbers of d electrons at the Fermi energy for
the different layers.

Ignoring any real potential steps between layers, the
boundary conditions at the interface between layers I
and I+ 1 become

If the electron velocity and the lifetime are constant
Eq. (2.10) can be written as

b,E(rp, tp) = —e (2.12)

where the mean free path is E = v~.

C. Kubo-Creen+rood linear response formula

Theories based on the semiclassical Boltzmann trans-
port equation encounter serious conceptual diFiculties in
dealing with length scales comparable to the electron
wavelength. However, fully quantum mechanical expres-
sions for transport coefficients have been derived from
linear response theory. Consider a system of noninter-
acting electrons moving in the presence of a random po-
tential. Kubo and Greenwood have shown that the
zero-temperature dc conductivity may be written as

).(~lj~l~') (~'lj-l~)

xb(Ep —E )8(Ep —E ), (2.13)

1) ln)(o. lb(E —E ) = ——lim ImG(E+ ig). (2.14)~ r]-+0

Equation (2.13) can be written in the form

vrho„= Tr(j„imG(Ey )j' ImG(Ep)). (2.1S)

where j„ is the current operator (—ieh/m)0/Br„, and
V is the volume. The quantum states ln) are the exact
eigenfunctions of a particular configuration of the ran-
dom potential and the large angle brackets indicate an
average over configurations. By use of the Green func-
tion, defined as G = [E —Hj, which is related to the
sum over states in Eq. (2.13) through

B. Chambers-Pippard theory

Assuming that the electrons were initially in equilibrium
before their energy was modified by the applied field, we
have

f(rp v tp) = fp(E) + AE(rp tp).
Ofp

(2.11)

This result is, in fact, a solution of the semiclassical BTE.
The Chambers-Pippard approach appears to be most
useful when the applied field varies spatially or when
magnetic fields are present.

Chambers developed the theory of transport from
the point of view of kinetic theory. He argued that the
energy of an electron passing through point r0 at time t0
had had its energy modified by LE, where

tp

AE(rp, tp) = v ( —eZ(r, t))e ' dt. (2.10)

Note that the Kubo formula requires an average over
the product of two Green functions, (GG), rather than
the product of the average of Green functions, (G)(G).
The error made when the former is approximated by the
latter is, in general, quite serious. In the semiclassical
limit this approximation is equivalent to the lifetime ap-
proximation or the neglect of vertex corrections. For
the model of free electrons scattered by point scatter-
ers which is considered in this paper, however, vertex
corrections vanish because the scattering is isotropic.

D. Camblong-I evy theory

Camblong and Levy ' derived an expression for the
conductivity by making a semiclassical approximation to
the Kubo formula. This expression will be derived in
detail in Sec. III for a homogeneous system. For a gen-
eral multilayer system the Camblong-Levy expression is
a simple generalization of that result. The two-point con-
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ductivity function which gives the current at plane z due
to an electric field applied at point z' in the Camblong-
I evy approximation is given by

the layers are very thin, because in that limit the local
scattering rate is the same as the average scattering rate.

o„(z,z') = —oot'o —e
3 dt

1
(2.i6)

III. EXACT LAYER CONDUCTIVITY
FOR A HOMOGENEOUS FREE

ELECTRON SYSTEM

3
o. (z, z') = aoEO— . dt

~

———
~

e ~ '", (2.17)
(1 11
qt t'y

where Eo is the bulk mean free path, and P(z, z') is given
by an integral over the inverse of the local mean free path,

P(z, z') =
Z) ]ff

~(z")
(2.iS)

E. Zhang-Levy-Fert theory

Zhang, Levy, and Fert (ZLF) began with the Kubo
formula for the FERPS model applied to multilayer sys-
tems in which the scattering rate is diferent in difI'erent
layers. They made approximations which allowed them
to obtain a simple expression for the local conductivity.
The final expressions which ZLF give for the conductivity
are relatively simple. The conductivity can be expressed
in terms of a local lifetime,

We shall see that the Camblong-Levy theory is closely
related to the other semiclassical theories. Specifically,
it is equivalent to Fuchs-Sondheimer with p = 1 for all
interfaces. Since it is difIicult to introduce a specularity
coefficient p g 1 into the Camblong-Levy approach, they
suggested that dift'use scattering at interfaces be treated
by inserting an additional thin layer at the interface with
a small mean free path.

The Hamiltonian in the FERP S model is H
V' + Z, where Z is the complex self-energy which

(in this section) we take to be independent of position.
The constant real part of the self-energy simply gives
an overall shift to the energy zero and can be neglected.
The (negative) imaginary part of the self-energy leads to
a broadening of the energy levels and to a finite lifetime
for the eigenstates. The problem of a position depen-
dent self-energy is more complex and will be considered
in later sections.

The single particle Green function, which describes the
propagation of the wave function amplitude, satisfies

(3.1)

and for a homogeneous system is given by

1
G(r, r') =

ik (r—r'}e
$2k2

E —2-
2m

m ei~ lr —r'

h2 4vr~r —r'~'

(3.2)

where r = /2m(E —Z)/h.
According to the Kubo-Greenwood linear response for-

mula, which we take to be exact for our model, the cur-
rent for a single spin component at point r in direction
p, is related to the v component of the applied field at
point r' through,

'Ae 7 z
CT~~ Z

m
(2»)

J„(r) = d r'o'„„(r, r')E (r'), (3.3)

where the lifetime, 7 (z), is obtained from an average over
a z-dependent scattering rate, A(z)/ti,

2

7 (z)
(2.20)

E(z)dz
(2.21)

An alternative version of the theory replaces the expo-
nential integral in the above expression by exp( —~z-
z'~/E) The ove. rall mean free path E appearing in Eq.
(2.20) is defined in terms of an average scattering rate
through

where the nonlocal conductivity, o.„(r,r'), is given from
Eq. (2.15) by

o.„(r,r') = —j„lmG(r, r') j„'ImG(r', r).
7r

" (3.4)

) d r d r 0~~(r)1' )3V

e2h3
dsr d" r'9'ImG(r, r') 7'ImG(r', r).

3 vrm2V

(3.5)

For a homogeneous, isotropic system, the expression
for the conductivity can be simplified by integrating over
r' and averaging over r and directions (p,). Thus, 3 =
ooE', where

The Carnblong-I evy theory can be described as a theory
based on a local mean free path, while the Zhang-Levy-
Fert theory can be described as a theory based on a local
scattering rate. It is probably not surprising that the
Zhang-Levy-Fert theory works best in the limit in which

e263
00 =

37rm2
d R[V'ImG(B)] .

We now use the Green function for the free electrons, Eq.
(3.2), and setting R = r —r' and ~K~ = R, we have
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This integration can be performed exactly and yields, e2

,„I'e.
6Vr2h

(3.8)

00 = e KR
12~25 (3.7)

where KR and KI are the real and the imaginary parts
of K, respectively. In order to compare this result to
the well-known formula, o = ne w/m, where n is the
carrier density and w is the lifetime, we express the mean
free path, e as the Fermi velocity times the lifetime, e =
vier = MJ w/m. We also write the carrier density, n, in
terms of the volume of the Fermi sphere, n =

8 3 37lk+.
This gives

Comparing this with Eq. (3.7), we can identify K~ = k~
and / = 1/2rI T. he factor of 1/2 comes from the fact
that KI describes a decay rate for the electron amp/itude,
while 1/E is the decay rate for the electron density

For layered systems which we assume to be homoge-
neous in two dimensions, we will need the layer depen-
dent conductivity, o„„(z,z') in order to determine the
current distribution. It is obtained by integrating Eq.
(3.4) over the x'y' coordinates, and averaging over the
xy coordinates. Thus

e 63
O~~ Z) Z

Xm2A
dxdy d2."dy'V'„ImG(r, r') V'„ImG(r', r), (3.9)

where A is the area of the layers. Physically, o~ (z, z ) gives the contribution to the current at z due to an electric
field applied at z'.

For a three dimensionally homogeneous system o „(z,z') depends only on Z = Iz —z'I, and it is shown in Appendix
A that

o' (Z) = oo 2 r Es(—2irZ) + r' Es(2iK*Z) + 2IrI Es(2rlZ)
2KR

2'E K 2iK* . , 4KI+ E4(—2irZ) — E4(2ir'Z) + E4(2rIZ)
Z Z Z
1 . 1 * 2

E5 ( 2i~Z) —— Es (2iK*Z) +. Es (2KIZ) (3 1o)

and

o (Z) = ciao 2 K Ei(—2irZ) + e* Ei(2ir*Z) + 2lrl Ei( KI )
4KR

21K 2iK . 4KI
+ E2(—2irZ) — E2(2ir*Z) + E2(2rIZ)

Z Z Z
1 . 1 . * 2 1

Z2 Es (—2ir Z) — Es (2ir.*Z) + Es(2~1Z) — cr„(Z—),Z2 Z2 2" (3.11)

+here E (z) is the exponential integral of nth order de-
fined as

E-(~) =
—xte

dt,tn (3.12)

and oo is the total bulk conductivity as given by Eq.
(3.7).

The nonlocal layer dependent conductivities are shown
in Fig. 1. There are obvious quantum oscillations for
current and field perpendicular to the layers (o„). The
quantum oscillations are much smaller when field and
current are parallel to the layers. For current and Beld
perpendicular to the layers we have the surprising result
that a field applied only within a vanishingly thin layer
does not induce a current in that layer.

In a real system it is dificult to think of a probe smaller
than an atom and it is unlikely that the applied field can
change appreciably over such a distance, so in applica-
tions of the nonlocal conductivity formula it will gener-
ally be averaged over a distance, d, equal at least to the

d d

o = — dz dz o~~(Zlg + z —z ))
0

(3.13)

where Zlg = II —JId. One of the integrals can be carried
out analytically. Using

1
dzE„(o.z) = — E„+i(o.z), — (3.14)

and

1 1
dz E„(nz) + E—„+i(nz) = —E„+i(nz), ——

z z2 z

(3.15)

we can evaluate the integral

I

thickness of an atomic layer. Thus the layer conductiv-
ity, cr, which is the response in layer I due to a field in
layer J, is obtained from the equation,
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0.8

1 1i2rcZt —2m I ZtZ' Z'

Finally, we integrate over t once more to obtain

(4.2)

0.6

0.4

b
0.2

i2rcZt ~ —2~IZt
Z K Z (4.3)

Using the above substitutions in Eq. (3.10), we find that
the terms with E4 and E5 cancel exactly, and the terms
with E3 yield

cr,",(Z) = 3rrpKz Es(2rzZ). (4.4)

00 2 3 4
2 (Layer Thicknesses)

Similarly, for the semiclassical limit of Eq. (3.11), we
obtain

zz( dz rz~~(Zz J + z —z )

z+ZI J

+ZI J
dZo ~~ (Z) . (3.16)

The result is simple but too long to include here. The
final step in the calculation of o, and o is the inte-
gration of rr„(z) and o (z) from Zzz to Zzz+d, which
can be done numerically. Calculated results for o, and
o are shown in Fig. 2 together with their semiclassical
limits which are obtained in the next section.

FIG. l. Quantum and semiclassical nonlocal layer conduc-
tivity as a function of layer separation, Z, for a homogeneous
free-electron system. Solid lines are the quantum conductiv-
ity. Dashed lines are the semiclassical approximation. The
lattice constant is that of copper (0.3615 nm). The Fermi
momentum corresponds to 0.5 electrons per spin channel. Z
is measured in terms of the thickness of (111) layers of cop-
per (0.209 nm). o(Z) is measured in units of 10 /sec a.u.
where 1 a.u. =0.0529 nm. The mean free path is ten layer
thicknesses.

o- (Z) = rrprz[E—i(2~zZ) —Es(2rzZ)]. (4.5)

Figure 1 shows the functions cr„(Z), 0 (Z), 0,",(Z),
and cr" (Z) for parameters corresponding to a free-
electron system with one electron per atom and the lat-
tice constant of copper. The major differences between
the quantum and semiclassical expressions are the os-
cillations in the quantum case, which are missing in the
semiclassical approximation. These oscillations are much
more apparent for cr„(Z) than for 0 (Z). The quan-
tum and semiclassical functions also behave differently
in the limit Z + 0. The quantum function, rr„(Z)
vanishes quadratically as Z ~ 0, while the semiclassi-
cal version goes' linearly to 3+zo'p/4. On the other hand,
the quantum function o' (Z) assumes a finite value at
the origin, while the semiclassical version diverges as
—1.5crprcz[in(2KzZ) + p] as Z -+ 0.

The quantum and semiclassical versions of the free-
electron two point conductivities are much more similar
when they are averaged over a length scale correspondirig
to the thickness of an atomic layer. Integration over z and
z' using Eq. (3.13) gives

IV. THE SEMICLASSICAL LIMIT
OF THE KUBO FORMULA

FOR FREE ELECTRONS
and

o„"= (Es [2r z (Zzz —d)] —2Es (2r z Zzz)
4KId

+Es[2r.z(Zzz + d)]), (4.6)

The semiclassical limit of Eqs. (3.10) and (3.11) is
obtained by replacing these expressions with expressions
without quantum oscillations and which represent an av-
erage over the quantum expressions. There are nine
terms in the expression Eq. (3.10) for cr„(Z). The
six terms containing exponential integrals with complex
arguments, (—2irZ or 2ir, 'Z), are oscillatory functions
of Z and should be replaced using the following rules.
First, we replace an oscillatory exponential function with
a function that has the same decay length and overall vol-
ume integral, but without quantum oscillations,

o~~- = (Es[2rz(Zzz —d)] —2Es(2KzZzz)
8KId

+Es[2rz(Zzz + d)]) ——0.„",
for IQ J, and

rr = 0'p 1 — + Es(2Kzd)8~Id 2~Id

and

(4 7)

(4 8)

i2mZt ~ ZKI —2mI Zt
K

(4.1)

To obtain the semiclassical limit of the terms involving
1/Z, we integrate the above equation over t and 6nd

- = ao 1 — + ]E,]2msd) —Zs(2~rd)])16KId 4KI8

(4 9)

for the on-site terms. Figure 2 compares the integrated
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versions of the conductivity functions. Although most of
the differences between the quantum and semiclassical re-
sults have been washed out by the averaging, discernible
di8'erences remain, especially for small values of Z.

A. Camblong-Levy approach

The results obtained above can be compared with the
results of previous semiclassical theories. Camblong and
Levy~4 ~s obtained Eqs. (4.4) and (4.5) using an approach

I

in which the semiclassical average over the product of
Green functions in the Kubo formula is performed before
the integration over space. We outline their approach
below.

The Green function can be represented either in real
space or in reciprocal space. For layered systems which
are homogeneous in two dimensions it is sometimes con-
venient to represent the Green function using a hybrid
representation; reciprocal space for the variation parallel
to the layers and real space for the variation perpendic-
ular. Thus,

G(r, r') = dk dk„e*I" ( +""(" "l~— dk,
(2 )' * " 2

1
d kIIe'"((' ((G(kII, z, z'),

.A:. (~ —~')

E —Z — (k +k„+k,)

(4.10)

z, z') = ~s,
e'" /2ik with k = 2m(E —E h2 —kll. The Kubo formula for o.„(Z) interm~ of G(kll, z, z

1S

e253
(z) — d a~~ f d A,'~~ f d kI~

'~ II "j~' ii ImG(k~~, z) ImG(k(~, z). (4.ii)

To calculate (T„(Z), we need &&ImG(kII, Z), which is
given by

3

2.5-

ImG(kII, Z) = —sin kRZe (4.i2) 2-

where k~ and kp are the real and the imaginary parts
of 2m(E —Z)/52 —

k2II, respectively. Averaging the

square of this function and inserting into the Kubo for-
mula we have

O
CO

1.5-
C)

eo.„(Z) = —2kyz
II II

e (4.13)

0.5-

'o 3
II-Jl

2
0., (Z) = —2ZKR Ky/IcR

0 (4.14)

Setting t = K~/k~ and changing variables, kII dkII

r&dt/t we obtain

If we assume that the mean free path is much longer
than the electron wavelength, i.e. , ~y (& K~, we can use
k' = ~p(E —Z) kII r~+2t'Kerr —

kII
——k~+2ikRkI

to obtain
0.9-

0.8-
C)

0.7-

0.6-

o„(Z) = 3crorr
"t -2Z, ~—et3 (4.i5) 0.5-

Similarly, for the parallel semiclassical conductivity, we
have

040 3
II-Jl

(4.16)

from which we obtain

2 KR k2
(Z) = e

k dk —II 2z~a~, )'). —
4 2$ II II k

FIG. 2. Interlayer conductivity for a homogenous
free-electron system (a) parallel to the layers and (b) per-
pendicular to the layers. The parameters are the same as for
Fig. 1. Solid lines are the quantum conductivity, dashed lines
are the semiclassical approximation.
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3
cr (Z) = crp—r.i dt

I

———
I

e
2 i (t ts) (4.17) cr„(Z) = 3op)cl —e

dt ~z(~

1 t' (4.23)

These two-point conductivities are the same as those
given by Eqs. (4.4) and (4.5); however, the derivation
of Eqs. (4.4) and (4.5) was somewhat cleaner since it was
not necessary to assume that ~1 && eR in taking the
semiclassical limit of the exact result.

and

(4.24)

B. Chambers-Pippard approach

Next, we consider the Chambers-Pippard approach.
Using Eqs. (2.11) and (2.12) we can write the current
as

Bf 8'(R) R
g ( )

dS„d~ " ', R~c. -
8vr35 B2 (4.19)

where R = r' —r. The derivative of the Fermi function
reduces the integral over k to an integral over the Fermi
surface and since K and vg are in the same direction, we
have

where we made a change of variable, t = 1+R)~ /Z2.
Again, these are exactly the semiclassical limits of the
Kubo formula for o" (Z) and o',",(Z), Eqs. (4.4) and
(4.5).

C. Fuchs-Sondheimer approach

In this subsection, we consider the Fuchs-Sondheimer
approach ' introduced in Sec. IIA. In order to com-
pare with the exact results given in the previous sections,
we need to generalize the Fuchs-Sondheimer approach to
give two point conductivities for multilayers. To do this
we write the external field as E = P& Eg, where E~
is a uniform field within a layer J, but zero elsewhere.
This enables us to decompose the solution for layer I,
g (v, z), where z lies within the layer I, into a sum over
the contributions due to EJ, from layers J,

e2k~2 s R E'(R) . R R(~e8~3$ B4 (4.2O)

For free electrons, the element of Fermi surface area dSI,
is simply k&dO, so that gI(v, z) = ) gi~(v, z).

J

The contribution to the current, J, is given by

(4.25)

If we view the integrand of the above equation as the
current response at the point r due to the field at the
point r', the layer conductivity is then given by

2 =,f d'kv„(gv (v„)H(v, (k))

v„(Z}= 2v f RlldRII
J,(R)

e2k2 Z2

4„2h II II R4' (4.21)

(vi, )0( —v, (k))]. (4.26)

In Appendix 8, we show that for the current perpendic-
ular to the plane (CPP) the conductivity is given by

and

(Z) = 2v / RlldRII
J (R)

e2k2 ] B
II —Ry~

4 2g II II 2 B4 (4.22)

cr„= op 1 ———+3—E5
I

—
I4d d (/)

and for the out-of-plane terms,

3 I. ((II —JI —1)dio., = o.o —— E5
2

(4.27)

&II- JId&

For a system in which the Fermi surface is not spherical,
the factor k+ is replaced by the inverse of the Gaussian
curvature of the Fermi surface, which will vary as a func-
tion of angle. Thus, this approach (like the Boltzmann
equation) can be applied to real solids because the band
structure can be properly taken into account through the
shape of the Fermi surface. Later we shall see that this
theory has the additional advantage that it can be cor-
rectly generalized to a system, where the rate of scat-
tering is inhomogeneous, although the theory as it was
originally developed was for a homogeneous scattering
rate but an inhomogeneous applied field.

Using B = BII + Z, we have

t (II- JI+1)dl
(4.28)

3e 3S~.".= ~p 1 ———+ —— Es
I

—
I

—Es
I

—
I8d 2d (l) ),E)

(4.29)

and for the out-of-plane terms,

where oo is the total conductivity of the system as given
by Eq. (3.8).

The current in-plane (CIP) case can be solved in a
similar manner. We obtain
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3 e t'([r —J~ —1)d &
0' z = op —— E3

4

,~ ~(i~- Ji+1)d&

)
j (/I —J/ —1)d) (/I —J/d)

j(i~- Ji+ 1)d&

). (4.SO)

sical limit of the quantum result can be obtained, which
differs &om the Fuchs-Sondheimer result in that it prop-
erly accounts for the electronic zero-point motion and
has an angle dependent specularity parameter. The re-
sults of this theory appear to agree well with experiments.
On the other hand, the Fuchs-Sondheimer theory with a
constant p does not agree with experiment even with the
zero-point motion included. The use of an angle depen-
dent p allows us to unify the Fuchs-Sondheimer theory
with that of Chambers-Pippard and with the quantum
results &om the Kubo formula.

Remembering that the mean free path is given by E =
1/2ry, we observe that these equations agree with the
semiclassical limit of the results obtained from the Kubo
formula, Eqs. (4.6), (4.7), (4.8), and (4.9).

Prom the results presented in this and the preced-
ing section, we conclude that all three semiclassical ap-
proaches give identical results in the FERPS model for
the two-point conductivity tensor and that these results
agree with the semiclassical limit of the quantum result.
We observe further from Figs. 1 and 2 that the differ-
ences between the quantum and semiclassical expressions
for the two-point conductivity tensor are relatively small
for metallic systems when averaged over a layer thick-
ness. One exception to this conclusion would be for a
system with a low value for kF, e.g. , a semimetal. For
such a system the small kFd regime in which quantum
oscillations are important should be accessible.

V. THIN FILMS

In this section, we use the free-electron model to com-
pare various approaches to the calculation of the conduc-
tivity of thin metallic films. This study has relevance to
recent work on the GMR, because techniques originally
devised for treating the effects of surfaces on the conduc-
tivity of films have been pressed into service to treat the
effects of interfacial scattering in multilayers. The effect
of surface scattering on the transport properties of thin
metallic films has been studied extensively. For many
years, the semiclassical theory developed by Fuchs and
Sondheimer was thought to be adequate for describing
the effect of the surface. More recently it has been rec-
ognized that the specularity parameter p, which was as-
sumed to be a constant in the original Fuchs-Sondheimer
theory, is necessarily dependent on the angle of incidence
of the electron on the surface. Modifications of the theory
have been proposed to include this effect.

Fuchs-Sondheimer theory"' ' applied to a thin film
with p g 1 predicts a logarithmic divergence of the con-
ductivity as d/8, the ratio of thickness to mean free path,
goes to zero. Although early experiments seemed to
agree with this prediction, recent experiments on Pt (Ref.
23) and CoSi2 (Ref. 24) films show considerable disagree-
ment with this result. Recently, it has been shown
that this disagreement is a quantum effect. Here we con-
firm this result, and show that the dominant contribution
arises &om the zero-point motion of the electrons in the
perpendicular direction. We also show that a semiclas-

A. Quantum solution for thin films

We consider a thin film that extends infinitely with
uniform electronic potential in the x and y directions
and has a thickness d in the z direction. We assume that
the electronic self-energy E(z) depends only on z. The
partial Green function, G(k~~, z, z'), defined in Sec. IV A
satisfies

h2 ( 82

2m (Bz2
—

kii i

—Z(z) G(kii, z, z')

= b(z-z'). (5.1)

Let us assume initially that the imaginary part of the self-
energy is independent of z, i.e. , Z (z) = v (z) + Z, where
v(z) is real and Z is imaginary. The Green function for
this thin film can then be written as

G(k, , ) ) - &-(z)&.'(z')

n E —Z —e Il

A 2m

(5.2)

where the functions P„(z) are solutions to the one-
dimensional Schrodinger equation,

Q2 d2

„,, +v(z) &-(z) =e-&-(z)

The conductivity parallel to the film is then given by the
Kubo formula,

x kll lmG(k~~, . z, z')ImG(k[[, z', z). (5.4)

e2 N OO

c = ) "sr+ ) 1 — "arctan "
4~2hd Cl!~

(5.5)

where o. = 2m, (E —e )/h, , g = 2miZ/5, and K is
the largest integer for which ~~ & E. The second term
represents a contribution from the smearing of the energy
bands due to disorder. Trivedi and Ashcroft obtained
a similar result for the special case of an infinite square
well and constant v(z). They did not, however, include

It is shown in Appendix C that the total conductivity
is equal to
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the broadening of the energy levels due to disorder and
so their result does not include the second term of Eq.
(5.5). This term is small if the scattering is weak so that
their result is valid for weak scattering. Equation (5.5)
is valid, however, for arbitrarily strong scattering if it is
uniform throughout the film.

In Fig. 3, we plot the conductivity as a function of
the film thickness for an infinite square-well and uniform
scattering rate. The conductivity is calculated from Eq.
(5.5), where the eigenenergies are taken to be those of an
infinite square well potential, and the imaginary part of
the energy is a constant. The quantum size effect, which
cuts oK the conductivity abruptly for d ( vr/k~, and the
quantum oscillations, which are manifest as cusps at d =
nor/Ic~, are clearly evident. It should be remembered, of
course, that it is difBcult to observe these quantum effects
since in most metals n/k~ is approximately the thickness
of a single atomic layer. Semimetals with a very small
effective k~ might be good candidates for showing these
effects.

In order to describe real metal films which have thick-
nesses small compared to the electron mean free path, it
is necessary to confront the problem of electron scattering
from the surfaces. Surface scattering is usually treated
following Fuchs and Sondheimer by using a parameter p
to describe the fraction of electrons that are specularly
reQected from a surface. The validity of this approach
and its justification in terms of a quantum theory have
been dificult to assess. We prefer to address scatter-
ing off of surfaces, boundaries, and interfaces similarly to
bulk scattering, i.e. , we model such scattering by assum-
ing the existence of a thin region with an extremely high
scattering rate. We shall see that this approach leads nat-
urally to the concept of a mean free path that depends on
the direction of the electron velocity. We shall also show
the relation between this angle dependent mean free path
and the parameter p.

If the thickness of the thin surface regions is small com-
pared to the mean free path in these regions so that the
wave functions are not affected significantly by these re-
gions, perturbation theory can be used to obtain the in-

= —(1+(A:,),
'Tn &0

(5.6)

where Ic, = n7r/d, and ( is the coefficient that describes
the roughness of the surfaces and is a function of k~, d,
and Ad. The zeroth order term in ( is proportional to
1/d. The contributions to ( in higher orders of 1/A, ~d
are significant for film thickness d —vr/k~. The constant
wo is the maximum lifetime, defined by Eq. (D5). By
examining Eq. (D4) one can see that Eq. (5.6) with an
adjustable coefficient, (, will generally be a reasonable
representation for the variation of the lifetime even when
the nonuniform scattering is not confined to the bound-
ary region.

B. The continuum limit

The continuum limit of Eq. (5.5) is taken by assum-
ing the film to be sufficiently thick that A:, = nor/d can
be treated as a continuous variable. We emphasize two
important points about the continuum limit. First, Eq.
(5.6) requires that rl in Eq. (5.5) depend on the momen-
tum in the z direction in order to account for surface
scattering. Second, the integral over k which replaces
the sum over n in the continuum limit should have a
lower limit of ko ——a/d, i.e. , the smallest allowable wave
vector in the z direction. It cannot be replaced by zero
in the limit of long mean &ee path because in that limit
the contribution from small k, becomes singular. Now,
if we further assume that on average the electronic po-
tential is zero, i.e. , (v(z)) = 0 within the thin film, we
can approximate the energy levels by e„= h2(k, ) /2m.
Since the second term in Eq. (5.5) becomes negligible in
the continuum limit, we have

verse lifetimes needed in Eq. (5.5). In Appendix D, we
use perturbation theory to show that the lifetime of elec-
tronic eigenstates in a thin film with very thin regions of
thickness, Ld, of stronger scattering at the boundaries
has the form

0.9

A:

4vr25
kF —k

g(k, )

0.8-

0.7-

0.6-

o 0.5-
tD 04

0.3-
0.2-

0.1-
0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
kFd/z

FIG. 3. Conductivity for a thin 61m with a square well
potential and uniform random scattering. (1 a.u. = 0.529 A. .)

Using g = kJ;/E and making a change of variable, t =
kJ;/k„we obtain

As/ 0 (1
4vr2h t4p

(5.8)

The physical content of Eq. (5.8) is that the contin-
uum limit of the quantum expression for the conductiv-
ity of a film is the same as the semiclassical limit of the
expression for the bulk conductivity with two modifica-
tions: (1) The mean free path must depend on the direc-
tion of the electron relative to the normal to the surface,
[0 = cos (1/t)]. (2) There is a minimum value to the
electron momentum perpendicular to the film surface,
kp ——vr/d.

We can understand modification (1) from arguments
based on semiclassical theory. Since we model the sur-
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face scattering by a thin region with high scattering rate,
the conductivity of our 61m is the same as that for an in-
finite periodic multilayer with regions of high scattering
rate spaced at an interval equal to the film thickness, d.
Then, since the electron moves on the Fermi surface of
this periodic system rather than on a spherical Fermi sur-
face, its mean free path will vary with k . This variation
can be accommodated within Chambers-Pippard theory
by making the mean free path angle dependent in Eq.
(4.24),

2m
iZ = rjo+ (i(k, ), (5.15)

or equivalently, for the mean free path,

E(t) = 1+ (iso/t
(5.16)

the logarithmic divergence it is necessary to assume a
linear k, dependence,

~..(z) =
2 i (t t j

Integrating Eq. (5.9) over Z gives us

e'k~2 (1 1 ) g(t)
4~2~ ~E t

(5.9)

(5.io)

Note that Eq. (5.15) represents an unphysical assump-
tion because it requires a self-energy that is nonanalytic
at k, = 0. However, we will show later that it is the only
way to produce a semiclassical limit that agrees with the
Fuchs-Sondheimer theory with a constant p & 1. In fact,
we will also show that the parameters (i and p are con-
nected by a simple relationship.

Using Eq. (5.16) in Eq. (5.8) we have

which is identical to the continuum limit of the quantum
theory, Eq. (5.8), except for the difference in the upper
limit of the integral over t.

Modification (2), the nonvanishing ko, is an electronic
"zero-point motion" in the z direction which arises from
the finite thickness of the Glm. We mill show by com-
parison with experiment in Sec. VD that this is the
dominant quantum effect for thin films. It can be easily
incorporated into a semiclassical theory by changing the
upper limit of t from oo to k~/ko, or equivalently, chang-
ing the lower limit of cos 0 of the electron velocity from
0 to ko/ky.

The specific form of the dependence of /(t) on t can
be obtained by considering Eq. (5.6), which implies a
quadratic dependence,

e2kf2

4, ' [g(k~) —g(ko)) (5.17)

where

( k)/'
g(k) =in~ 1+(iso

~ ~

1—
k~j & i&oj

k+
/

—-+
ky ( 2 (i&o j (5.is)

e2k~2
ln (iso.

4m 2 (5.19)

In order to compare to the Fuchs-Sondheimer theory, we
set kp = 0 and take the limit of Ep ~ oo, and obtain

2m 2iZ = go + (2(k, ). (5.11) It is interesting to compare the above results with the
limit of Eq. (5.13), which when go +oo, gives-

Equivalently, the mean free path has the form,

l(t) = 1+(,EokJ;/t2' (5.12)

e2k~ f k~ ko+4. @, qk.

If k~ &) kp, we have

(5.20)

where we have used iE = 5 k~/2m', go
——k~/Eo, and

t = k~/k, . This allows us to integrate Eq. (5.8) and
leads to

e2k2 e2k2 3d
4& h(2ko 6m 5 2vrh

(5.2i)

where

e~k
[f(k~) —f (ko) j (5.13)

which shows that there is no divergence if kp is not zero.
For the special case of (i ——0, (2 ——0, and kp )& ko. Both
Eqs. (5.13) and (5.17) give the correct bulk conductivity,
o. = e2k~~Eo/67r h

( i l (k
f(k) = Q&okJ-&211+

k I
arctan

I k
Q&oks'(2

Iok» j
k

kp
(5.14)

Note that if in Eq. (5.13), we take ko ——0 and then take
the limit of Eo —+ oo the conductivity diverges as ~So, lil-
stead of the well-known logarithmic divergence ' ' that
arises in Fuchs-Sondheimer theory for p g 1. This square
root divergence arises from the quadratic k dependence
of the mean free path in Eq. (5.11). In order to obtain

C. Generalized Fuchs-Sondheilner theory
of surface roughness

g+(t, z = o) = p(t)g (t, z = o),
g (t, z = d) = p(t)g+(t, z = d), (5.22)

If we generalize the Fuchs-Sondheimer theory for a thin
film to allow for an angle dependent specularity parame-
ter, p(t), the distribution function will have the following
boundary conditions:
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where t = 1/~ cos0~, 0 is the angle of incidence at the
boundaries, and g~ are the deviation of the distribution
functions for electrons traveling in + (—) directions. The
solution to the semiclassical Boltzmann equation with
the above conditions is

continuously. In fact, there is a one to one relationship
between )I(t) and p(t), which can be obtained by requir-
ing that the semiclassical expression for the conductivity
involving E(t), Eq. (5.10) agree with Eq. (5.25). This
requirement implies

evEB.fp
gg t, z 1—

III l9U//

(5.23)

Z,Z(t) te —"/'l'l

[/p —l(t)]d 1 —e Id/e(t)

(5.29)

where z+ ——0 and z = d. Averaging g~ over z, we have If we use the relationship Eq. (5.16) then we have

erEBfp E [1 —p(t)](1 —e '+~)
m Bvll td 1 —p(t) e Ie/e . (5.24) p(t) =1—

1— ld
etd/Eo+(1d 1

(5.3O)

Let us consider first the case of p(t) = 1. In this case
g~ are uniform and the conductivity is identical to the
bulk conductivity given by Eq. (3.8). In the case of
p(t) ( 1, g~ will have a dependence on the momentum
of the electrons. Using k~~

= k~+1 —1/t2 and

b(k —k~)k~~ jk, we obtain the conductivity as

3E /'1 1)
0~~ = Op 1 — dt

)

In the limit of t —+ oo (i.e. , 0 ~ 90'), we have p(t) m
1—(Id. This shows that any value of p g 1 at the glancing
angle corresponds to the form given by Eq. (5.16) at least
for 0 close to 90 . As we have noted, this introduces a
nonanalyticity of the self-energy at k, = 0. To correct
this we use the form predicted by the quantum theory,
Eq. (5.12). Substituting that equation into Eq. (5.29),
we get

, I' —u(&)H' — "")
). —p(t)e td/E (5.25)

p(cos 0) = 1—
(2kFQ cos 0 & +(2 kF a cos 8

where harp is the bulk conductivity given by Eq. (3.8).
The integral over t can be evaluated exactly in the limit of
E ~ oo. In this limit, we replace the exponential function
e "/ by a rational function,

(5.31)

Now we have properly p(t) ~ 1 in the limit of 0 ~ 90'.

1— td/l .

1+ td/Ã' (5.26) D. Comparison with experiment

which has the same value and the first two derivatives
as the original function at the limit td/l —l 0. Thus
assuming that p(t) is constant, the conductivity in the
limit of large mean free path is

e2k~~d (1+p)
12~'n (1 —p) d

(5.27)

Comparing this result with the logarithmic form derived
from the Kubo formula, Eq. (5.17), we can relate (I,
which correlates the broadening of the bands with the
z component of the momentum, to the macroscopic pa-
rarneter p by

3 (1 —p)
d (1+p)

(5.28)

The Fuchs-Sondheimer assumption that p is a constant
agrees in the limit E/d —I oo with an angle dependence of
tile IileaII free path of the foI'ill /(t') = Ep/(1 + (IEp cos 0)
which we have shown to correspond to a nonanalytic self-
energy. Using a p g 1 when 0 = 90 is clearly unphysical
because when the z component of the velocity is zero,
we should have g+ = g which implies p(t) I 1. As
the angle of incidence approaches the glancing angle the
electron travels longer before it hits the surface and there-
fore its mean free path should approach that of the bulk

In Fig. 4 the predictions of three theories based on
the FERPS model are compared with the experimental
resistivities of Sn, Pt, and CoSi2 thin films. The solid
lines represent fits to the continuum limit of the quantum
theory as given by Eq. (5.13), which uses the correct
angular dependence of the lifetime. The dashed lines
also represent fits to the continuum limit of the quantum
theory, but as given by Eq. (5.17) which assumes an
angular dependence of the mean free path as given by
Eq. (5.16). The dotted lines are fits to Fuchs-Sondheimer
theory with p = 0.

There are two independent fitting parameters for the
fits using Eqs. (5.13) and (5.17), k~ and (2Ip or (I/p. The
same value of k~ was used for both versions of the quan-
tum theory. Note that Fig. 4(c) also shows the experi-
mental resistivity for a silicon-capped CoSi2 film, which
has very little surface scattering. This data is fit using
Eq. (5.13) and the same k~ as for the uncapped CoSi2
film. For the fits using Fuchs-Sondheimer theory there
were also, in principle, two parameters, E and p, but p = 0
always gave the best fit.

We note that Fuchs-Sondheimer theory can be fit to
the experimental data only for relatively thick films. Sig-
nificant deviations from the experiments occur for film
thicknesses less than a few hundred Angstroms. This de-
viation comes mainly from two parts, the angular depen-
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where cz& = e2k~2/6m 5, and the Ply are defined by
Thick limit %V

~yW
~V

~ Y
50 dz

,+, &(z)
(6.6)(I & J)

45

40

35

30

The above Camblong-Levy expressions for the conduc-
tivity can also be derived from the Fuchs-Sondheimer the-
ory using a z-dependent lifetime w(z), or wr for layer I
in the multilayer case. It is straightforward to show that
in this case the distribution function g {v) as given by
Eqs. (B9) and (B10) becomes

dr

g (v) = 'Eg 7' fo(1 —e .I"*)
mdI

-Levy-Pert

25

20
Thin limit

15
10

I

1000100 10000 dg
x(1 —e ~"*)e ~".*, I ) J, (6 7)

Total Thickness (a.u. } d

gr (v) = El Vv fo 1 — '(1 —e I"* ) . (6.8)
m

These equations in turn lead to the conductivity as given
by Eq. (6.5). The truncation of the sum over o I in the
case of a film with finite thickness is equivalent to corn-
plete diffuse surface scattering, which would be modeled
in Fuchs-Sondheimer theory by p = 0 in the boundary
conditions at the surfaces.

From Fig. 5, it is clear that although the ZLF theory is
correct in both the limits of very thin films and very thick
films, it does not accurately reproduce the exact results
for intermediate film thicknesses. In particular, the ZLF
conductivity remains very close to the thin limit until the
total film thickness reaches about 100 a.u. This can be
understood from the ZLF equations. Since the scattering
rate in the thicker dirty layers is ten times higher than in
the cleaner thin layers and the dirty layers are twice the
thickness of the clean layers, the average mean free path
of Eq. (2.21) is approximately 1.5 times the mean free
path of the dirty layer. Thus, the scattering rate which
enters the ZLF conductivity is averaged over a thickness
of approximately 54 a.u. The ZLF theory will only depart
from the thin limit when the thickness of the dirty layers
exceeds this thickness, i.e., when the total thickness of a
multilayer period is about 81 a.u.

The conductivity calculated from the semiclassical the-
ory agrees surprisingly well with the numerical evaluation
of the Kubo formula. Small differences can be observed
in Fig. 5 in the regime in which the thickness of the dirty
layer is comparable to the mean free path of that layer.
More insight can be gained from inspection of the layer
dependent conductivity, a(z), which is shown in Fig. 6
for three thicknesses of the multilayer period. Figure 6(a)
shows o'(z) for a multilayer period of 30 a.u. The clean
layer extends from 10 to 20 a.u. This multilayer is in the
thin limit because both layer thicknesses are less than the
shortest mean free path (36.0555 a.u.). The conductiv-
ity in the ZLF approximation rises from approximately
17x 10 /sec, to approximately 21 x 10is/sec, whereas the
semiclassical theory has a much larger rise. The increase
of the exact a (z) in the clean layer is intermediate.

Figure 6(b) shows o (z) for a longer multilayer period.
The dirty layers are 200 a.u. thick and the clean layers
are 100 a.u. in thickness and extend from 100 a.u. to 200
a.u. on the figure. The exact and semiclassical results
are now close, but the ZLP conductivity is significantly

FIG. 5. The conductivity as a function of the total thick-
ness of a period for a periodic multilayer with a period of two
layers and with mean free paths in each layer 36.0555 a.u. and
360.555 a.u. , respectively. (1 a.u. = 0.529 A.) The thickness
of the first layer is twice that of the second. In this case Cam-
blong and Levy's theory is identical to the Fuchs-Sondheimer
theory with p = 1.

In the thin limit (d (( g,tr), we can use the golden
rule to show that the mean free path of electrons in the
multilayer system is given by

1= ) ——+ oscillatory terms.
d E

(6.3)

II 32 1 f "Il
Eldl+ —El ——+ 2Es

i

—
idI 4 2

(dl 't

t, &r )
and

~IIJ[@3(WIJ) @3(WI 1,J)—
4dI

@3 (4'I, J+1) + @3(O'I —1,J+1 )

&s(Az) + &s(A i—,z)—
++s(QI,J+i) Es(4'I 1,J+1)]~—(6.5)

This means that on the length scale of the mean free path,
the in-plane conductivity is given by the average of the
inverse mean free path. Note that in the case of surface
(or interface) roughness, where a thin region contains
very strong scattering described by a very short effective
bulk mean free path, it will contribute significantly to the
mean free path of the system.

The Zhang-Levy-Fert approximate evaluation of the
Kubo formula is given by Eqs. (2.19), {2.20), and (2.21).
Note that their method cannot be applied to films, be-
cause it does not include finite size effects. In fact a size
efFect with the wrong sign would arise for a film, i.e. ,
the conductivity would increase as the thickness of the
film decreased, if one were to apply their theory to a film
of finite thickness. The Camblong-Levy approximation
to the conductivity of the multilayer can be obtained by
integrating Eq. (2.17) over z' and z,
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lower in the clean layer. Figure 6(c) shows a (z) for a
multilayer period of 900 a.u. The dirty layers are 600
a.u. thick and the clean layers are 300 a.u. in thickness.
The semiclassical o(z) is now in very good agreement
with that obtained from the numerical evaluation of the
Kubo formula. We intentionally performed the numeri-
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FIG. 6. Conductivity as a function of z, o (z) for multi-
layers. The central clean layer has a mean free path of 360.555
a.u. and one-half the thickness of the dirty layer, which has a
mean free path of 36.0555 a.u. (a) Period of multilayer is 30
a.u. ; clean layer lies between 10 and 20 a.u. (b) Period of mul-
tilayer is 300 a.u. ; clean layer lies between 100 and 200 a.u.
(c) Period of multilayer is 900 a.u. ; clean layer lies between
300 and 600 a.u. (1 a.u. = 0.529 A. .)

cal calculations for the quantum solution using a single
period in this thick multilayer in order to display the
scale of the quantum size eKect, which can be seen as a
small spike and oscillations at the edges of the film. We
believe that the very small oscillations seen elsewhere in
the calculated results are due to incomplete convergence
of the integral over kl~.

These figures illustrate one problem with the ZLF ap-
proximation. The average mean free path calculated
from Eq. (2.21) is the same for all of the multilayer sys-
tems shown here because the ratio of the thicknesses of
the clean and dirty layers is fixed at 1/2. Thus, froin
Eq. (2.20) we see that inverse lifetime is averaged over
the same distance at each point for all of these multilay-
ers. This does not seem correct to us. Intuitively one
would expect that at the center of the dirty layer the ef-
fective mean free path for averaging the scattering rate
should be that of the dirty layer if this layer is suKciently
thick. Similarly, one would expect that at the center of
a sufBciently thick clean layer, the effective mean free
path for averaging the scattering rate should be that of
the clean layer not an average that is dominated by the
strong scattering of the dirty layer.

Finally, in Fig. 7 we show the calculated GMR eKect
for a multilayer. The conductivity was calculated for a
model system consisting of a central spacer layer with a
fixed thickness of 50 a.u. surrounded by strongly scatter-
ing interfacial layers 4 a.u. in thickness (approximately
one atomic layer). These are surrounded by magnetic
layers of variable thickness. The mean free path for both
spins was taken to be 427 a.u. in the spacer layer. The
mean free paths were assumed to be 50 a.u. and 10 a.u. ,
respectively, for the majority and minority electrons in
the thin interfacial layers and 100 a.u. and 20 a.u. for
majority and minority electrons, respectively, in the fer-
romagnetic layers.

Panel (a) shows the calculated conductivity due to the
majority electrons in the parallel moment configuration
as given by the exact quantum result as well as the semi-
classical theory and the approximate quantum theory of
ZLF; panel (b) shows the calculated conductivity due to
the minority spin electrons in the parallel moment con-
figuration; panel (c) shows the conductivity for either
spin channel in the antiparallel alignment; and panel (d)
shows the difFerence between the conductivities of the
parallel and antiparallel configurations divided by the
conductivity of the parallel alignment. The ZLF conduc-
tivities are all lower than the exact or semiclassical con-
ductivities and the giant magnetoresistance, Ao. /o.

~~,
is

much larger. The semiclassical conductivities and GMR
are much closer to the exact ones, but the diH'erences are
still significant.

VII. CONCLUSION

We have solved the Kubo formula exactly for the free-
electron model with random point scattering for the cases
of a homogeneous system, a thin film, and a multilayer.
Using the exact solutions we compared various semiclas-
sical approaches as well as an approximate solution of the
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FIG. 7. Calculated conductivity of a model GMR multilayer system as a function of the thickness of the magnetic layer.
The spacer layer thickness is fixed at 50 a.u. and has a mean free path of 427 a.u. There are thin interfacial layers (4 a.u. )
separating the spacer and ferromagnetic layers. (a) Conductivity in the majority channel with magnetic layers parallel. The
mean free path in the ferromagnetic layers is 100 a.u. and in the interfacial layer is 50 a.u. (b) Conductivity in the minority
channel with magnetic layers parallel. The Incan free path in the ferromagnetic layer is 20 a.u. and in the interfacial layers is
10 a.u. (c) Conductivity in either channel with magnetic layers antiparallel. (d) Difference between parallel and antiparallel
conductivities divided by parallel conductivity. (1 a.u. = 0.529 A. )

Kubo formula. For the case of a homogeneous system we
show that all semiclassical approaches are equivalent, and
give reasonable approximations of the two-point conduc-
tivity compared to the quantum solution. For the case of
thin Glms, we show that there are two important differ-
ences between our results and Fuchs-Sondheimer theory,
a quantum effect resulting from the cutoff of the mo-
mentum in the z direction (an effective zero-point mo-
tion of the electrons), and the angular dependence of the
mean &ee path, or in the case of Fuchs-Sondheimer the-
ory the angular dependence of the roughness parameter
p. When both effects are included these theories give ex-
cellent agreement with experimental data on several thin
6lms. Finally in the case of multilayers, we found that
all of these approaches give the correct thin and thick
limits, but the ZLF approach does not work as well for
intermediate thicknesses as the semiclassical approaches.
The effect of these errors on the GMR can be quite large.
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APPENDIX A: LAYER CONDUCTIVITY

Here, we derive Eqs. (3.10) and (3.11) starting from
Eq. (3.9). Since the system is homogeneous, we can write

f
2 g 2

dX dY Im e'" iv
4~3h

2

R) ) R4'
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dX dY = 2~ pdp = 2' RdB, (A2)

we obtain

whereX=x —z', Y=y —y', Z=z —z', andB
X +Y +Z2. Using p =X +Y2 and

This condition leads to

for I ) J,F++ ' (v) = F+ (v)

(v) = e~e* + F (v)

F+ (v) + 1 = 0. (B6)

e'Z'
z

—inc R—e
1—tK
R)

Therefore, we find the solutions for g+z (v, ) 0),

g+ (v, z) = 8'z —V„fp[1 —e "*]e ". , I ) J,IJ ev

m

(B7)

~**(Z) = 2[&**(Z)+ ~yy(Z)]
1

(A4)

Making a change of variables R —+ Zt and using the def-
inition of the exponential integral, Eq. (3.12), we obtain
Eq. (3.10).

Similarly, o (Z) can be derived using

g+ (v z) = 8 J V' fp[1 —e ."*].
m

(B8)

2 d 2 —LI —J—1)d
g (v) = fz Vv fp(1 —e "*) e+ md

I & J, (B9)

We further average g+ (v, z) over the layer I, and obtain

~**(Z) = (B —Z )
e'" ie —— d

gzz(v) = Zz. V„—fp 1 — (1 —e "*) . (B10)
m d

—e
R)

(A5) g can be found by a space inversion, z ~ —z, which
leads to

With the same change of variable used above, we obtain
Eq. (3.11).

g"(v) = g+' '(-v). (B11)

APPENDIX 8: TWO-POINT CONDUCTIVITY
OF FUCHS-SONDHEIMER THEORY

FOR MULTILAYERS

1 IJ e
v V + — g (v, z) = —6zJEz V~fp.

'T m (B1)

Since E'J is confined within a layer J, the boundary con-
ditions at z = +oo is g ~ 0, for I ~ +oo. If v~ is
greater than zero, g will be nonzero only for I & J,
similarly for v less than zero, g will be nonzero for
I & J. Thus for v & 0 we have, in order to satisfy Eq.
(B1),

The g as defined in Eq. (4.25) satisfy the difFerential
equations,

0

0, = — k dk dcos8cos8g
1 eh IJ

27r 2m —1

1

+ d cos 0 cos Og+
0

(B12)

If we use Bfp/Bv, = mv, 8(Eez-), 'v—, = v cos 8 and make
a change of variables cos8 = 1/t, we obtain Eqs. (4.27)
and (4.28).

Similarly, for E in the x direction,

2' 0

cr = — k dk d$cosP dcos8sin8g
1 eh ~ IJ

(2vr)2 m 0 —1

Using Eq. (4.26), we can obtain (for E in the z direc-
tion)

g+z~(v, z) = 0, I& J) (B2) + d cos 0 sin Og+
0

(B13)

g+ (v, z) = E'z V'„fp[1+ F—+ (v)e --*],

g+ (v z) — Ej T„fpF+ (v)e --*, I & J. (B4)
m

The subscript + indicates the direction of v . Since the
g+ (v, z) must be continuous at the interfaces, we have
for z on the interface between the layers I and I + 1,

g++' (v, z) = g+ (v, z).

Using v = v sin 8 cos P and 8fp/Dv = 2mv 8(e —ez;),
we obtain the conductivity for the current in-plane (CIP)
case, Eqs. (4.29) and (4.30).

APPENDIX C: SOLUTION FOR THIN FILM

We outline here the derivation for the thin film con-
ductivity. The Kubo formula for a film, Eq. (5.4), can
be written as
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1 2/3 cE

0
II

—— dz dz
8vr3 m2d 0 0

—GG* —G*G]

d kIIkII
—[GG+ G*G*21

(C1)

Now the integration over kII can be carried out,

where the Green functions, G = G(kII, z, z') and G =
G(kII, z', z) are given by Eq. (5.2). Using the fact that
G(kll z z ) = G("II z z), ~high is valid in the ~bs~nc~
of efFects such as spin orbit coupling which break time
reversal invariance for a given spin, we can perform the
integrals over z and z' by using the normalization condi-
tions for the one-dimensional wave functions P (z),

""II)E —Z* —e„—
2m

5 k2
II

2m

(C5)

dzP* (z)P„(z) = h

Then the expression for 0 simplifies to

1 e A,
2 3

oII = — d kIIkII ) I„,

(C2)
g n = kll, o' = 2m(E e)/5— , and g = 2miK/5,

we have

f 2 2 2 7ism 1
II kll I udu

I

0 (n„+iq —u

where

I„=Im
h,2k2

E —Z —e II

2m

(C4)

which can be integrated to yield,

(c6)

dkk I
II II

2am '9
1 — arctan

rl

2~m r!1+ ' 7r —arctan
h4 g ( a)

&0

o. & 0.
(C7)

Substituting this back into Eq. (C3) yields the result
given by Eq. (5.5).

mV2P„„=
&

dzc(z)
I + (z)+ (z) I

0
(D2)

APPENDIX D: LIFETIME OF ELECTRONS
IN A THIN FILM

where we have assumed that V = IV;I and V; averages
to zero. The lifetime of an electron in subband n can be
found from

If the elementary scattering centers are distributed
nonuniformly within the 61m the imaginary part of the
self-energy [rI in Eq. (5.5)] will depend on n. To low-
est nontrivial order, this scattering rate can be obtained
from the golden rule. It can also be obtained by more
sophisticated techniques. We distribute point scatter-
ers of strengths Vh(r —r;) with a density c(z) randomly
throughout the film. For simplicity, and without losing
generality, we assume that all scatterers have the same
magnitude of scattering strength but their signs are ran-
domly distributed. According to the golden rule, the
probability of an electron scattering from subband n to
subband n'is

(D3)

where N = kid/vr. Using the wave function for an infi-

nite square well, P (z) = g2/d sin nm z/d, we have

1 mV2
dzc(z) 2N + 1—

2n~z . 2"—4 sin sin

Kz
sin(2N + 1)—

d
7rzsin-
d

For a uniform distribution of scatterers c(z) is a constant
and the lifetime is independent of the energy levels,

The wave functions in x and y directions are described
by plane waves so the integrals over these directions in
Eq. (Dl) can be performed giving

'Tn 70

mV2c(N —1) mV2c(ky —vr/d)
h3d vrh3

If there are extra scatterers, Ac, , distributed in a region
around z = z; of thickness Ld, then
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1 1 Ld Lc,
1 + 2N+ 1

d c(N —1)

sin(2N + 1)
2—4 s1n

sin

~ 2 nazi
sin

(D6)

In most cases the extra scattering is near the surfaces, so
we can expand the above equation in the distances to the
surfaces, and get Eq. (5.6). Even when the expansion of
the above equation in a Taylor series of zi is invalid, it
is easy to see that the lifetime is an even function of n,
or k, = nz/d, and Eq. (5.6) can still be a reasonable
approximation.
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