PHYSICAL REVIEW B

VOLUME 50, NUMBER 14

1 OCTOBER 1994-11
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It is pointed out that Kondo-effect rare-earth compounds with insulating ground states must, except
for a small probability, be mixed valent. The lack of low-energy magnetic correlations and the optical
properties are discussed in a mixed-valent model. The curious properties of FeSi are also discussed.

INTRODUCTION

A recent revival in the interest in rare-earth com-
pounds has uncovered several new features, especially in
those that have insulating ground states. Some of the
newly discovered properties of the insulators that I will
discuss here are (i) the lack of any magnetic correla-
tions"? among the rare-earth (or the transition-metal)
ions at low energy; (ii) the distribution of the spectral
weight as a function of energy in optical experiments;’
(iii) a model of FeSi, which has a long history of curious
experimental results* and on which optical’ and
inelastic-neutron-scattering experiments’> have been re-
cently performed.

But first I will discuss the minimum necessary model
for these compounds. They have recently been discussed
on the basis of the Kondo-lattice model.> Very extensive
analytical and numerical studies have been performed. I
shall argue that while the Kondo-lattice model is a model
with interesting properties, it is inappropriate for the in-
sulators under discussion. For earlier discussions of the
materials, see Refs. 6 and 7.

MINIMUM NECESSARY MODEL

A model for rare-earth compounds, the Anderson lat-
tice model, was proposed in Ref. 8. The model Hamil-
tonian is
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with appropriate generalization for orbital degeneracy,
etc. For €, —p and €,+U—p>T=t%p, where p in the
density of states of the conduction electrons, this model
can be transformed to the Kondo-lattice model using the
Schreiffer-Wolff transformation:
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The conditions for this derivation require that there be
negligible charge fluctuations on the rare-earth ions and
that particle-hole asymmetry is unimportant. These con-
ditions appear to be well met in heavy-fermion com-
pounds CeCu,Si,, UPt;, UBe,3, etc., which are all metal-
lic. There are empirical reasons to believe that the insu-
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lators are all mixed valent, i.e., charge fluctuations of
O (1) occur in them. The insulators are all formed from
the beginning (Ce), middle (Sm, Eu), or the end (Tm, Yb)
of the rare-earth series, which for reasons of atomic phys-
ics® form insulating compounds with more than one
valence and are therefore likely to be mixed valent in the
metallic states. I argue below that the Kondo-lattice
model, Eq. (2), will, except for a small probability, be a
metal. To be an insulator, the rare-earth ion must be in a
mixed-valent state (e,—pu) or (e,+U—u)ST. The
transformation to the Kondo-lattice model, is then not
possible.

A basic feature of all interacting lattice problems is
Luttinger’s theorem, i.e., the conservation of the number
of nodes of the wave function below the chemical poten-
tial as U is varied from zero upwards provided nothing
nonanalytic, such as formation of bound states occurs.
Analytic behavior plus conservation of number of parti-
cles guarantees Luttinger’s theorem.

For U=0, the model of Eq. (1) has an insulating
ground state provided there is twice an integral number
of electrons per band. Whether or not this condition
holds depends only on the lattice structure. Provided
Luttinger’s theorem holds, we need only the same condi-
tion for large U to get an insulating ground state. The
charge in the f orbitals in this state (for U— o) can be
anywhere between O and 1.

Now let us try to use Luttinger’s theorem for the case
that the occupation of the f orbitals is very close to 1 per
site as in the Kondo-lattice model. It is hard to apply
Luttinger’s theorem to Eq. (2), since there is no ap-
propriate noninteracting limit for it. So it is best to stick
to the original model, Eq. (1). Then, to get an insulator
the occupation of the conduction electron states has to be
also almost exactly 1. This is achieved only with a very
small probability, as further explained below.

The constraint of dividing up two electrons per unit
cell equally between the local orbitals and the conduction
band is absent at mixed valence, and so no remarkable ac-
cident of nature is required. This can be discussed quite
generally,’ as follows.

Consider the electronic configuration f” ! and f" of
isolated ions. There will exist some energy boundary
E such that if the chemical potential p is below
E,_, », the ions will be in the f" ~! configuration and if
above, in the " configuration. There is a similar bound-
ary E, , ;, dividing the f" and the f n+1 configuration.

n—1,n
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The correct meaning of the parameter U in Eq. (1) is

UEEn-H,n‘En,n—l . (3)

Let these ions be in weak contact with a reservoir of con-
duction electrons. The reservoir is such that in the ab-
sence of the strongly correlated ions, the Fermi energy is
Ep, if these are r electrons per atom. Let there be (n +7)
electrons per atom for charge neutrality. This situation is
illustrated in Fig. 1. Now if E, , ,, lies between E, and
Ep,_;; the mixed-valence situation must occur due to the
weak contact provided by the term proportional to ¢ in
Eq. (1). The state of the system in which all ions have n f
electrons is impossible because Ef, is too high to be con-
sistent with the f” ionic states; and similarly having all
ions in f"*! is impossible because E;,_; lies below
E, ,+,- Thus the Fermi level is pinned to E, , . within
the hybridization width I'. Some fraction of the ions are
on the average in f"*! and the rest in f". This con-
sideration also reveals that about (E;,—E;, ,)/U
~O(;) fraction of rare-earth ions should belong to the
intermediate valence category. This is consistent with ob-
servations.®

Let us now examine the Kondo-lattice case more close-
ly including corrections due to particle-hole asymmetry.
The deviation from the particle-hole symmetric case in
which Eq. (2) is obtained from Eq. (1) can be discussed by
adding a potential scattering term to (2):

HPm:z V(nﬁ—l) 2 (Cgack’o‘_l) . 4)
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Here Vis the same order as J:
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The average occupation of the localized f orbital departs
now from unity, because the Hartree-Fock levels at
(e,—u) and (e,+U—p) are not symmetrically placed
about the chemical potential u. Then

{n;)—1|=TA4/(U/2} =5, 6)
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FIG. 1. Diagram illustrating the conditions for occurrence of
mixed valence in rare-earth compounds. For definitions of sym-
bols used, see discussion in the text after Eq. (3).
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where
A=|e,—pl—le,+U—pl . (7

These 8 electrons per rare-earth ion must go to the s-
p-d electrons of the metal, which changes the Fermi ener-
gy by O(8W)=T". The Kondo resonance must of course
be self-consistently located at the chemical potential. Be-
cause of the periodicity of the lattice, it splits into hybrid
bands with gaps of O(Tk). To obtain an insulator the
(self-consistent) chemical potential must lie in the gap; if
it lies at the band edges, the material is a metal or a
semimetal. The f-electron weight in the bands near the
chemical potential is only O(Tx /T") <<1; the rest of the
weight is in the (incoherent) Hartree-Fock resonances at
€, and €.+ U. This weight is quite insufficient to provide
a pinning mechanism of the chemical potential uniquely
in the gap, based on minimization of the energy when the
Fermi energy of the s-p-d electrons changes on the scale
of I'. The chemical potential in general will therefore be
in the hybrid bands, as there is neither symmetry reason
or energetic reason for it to lie in the middle of the gap.
The gap will then fill up due to particle-hole scattering.
The insulating state, may, however, be obtained by tuning
some continuous parameter such as pressure.

The situation is quite different for the mixed-valence
case where the resonance at the chemical potential has a
weight of order unity. In that case Ty =I'. Consistent
with the above argument is the fact that when T /T is
non-negligible, so are charge fluctuations on the local or-
bital, which violate the conditions for reducing the model
of Eq. (1) to Eq. (2) with or without inclusion of the po-
tential scattering term, Eq. (4). It should also be clear
that Kondo insulators (with very small deviations of
charge from unity in the localized orbital) are not impos-
sible; they are only unlikely in the rare earths.

These arguments do not follow from the Gutzwiller
wave-function method'? or the slave-boson approxima-
tion,'3 which ignore the incoherent Hartree-Fock reso-
nances and can be wrongly interpreted to imply that the
one-particle spectral weight of the f resonances near the
chemical potential is unity, even in the Kondo-lattice
case. The discussion of the mixed-valence lattice can,
however, be made with such methods. One-electron
spectra follow as in band-structure calculations, but with
renormalized parameters. As insulating band structure is
shown in Fig. 2(a). With a magnetic field such that
gugH >>A, but much less that the conduction electron
bandwidth only the rare-earth ions get polarized. The
wrong species of spins of the conduction electrons (for
negligible spin-orbit scattering) then do not hybridize, as
illustrated in Fig. 2(b). One then has an insulator to met-
al transition as a function of field. This is discussed in
more detail in Ref. 7.

From this picture, there is no reason to expect
differences in the spin and charge gaps in these insulators.
It should be understood that while all strongly correlated
insulators must be mixed valent, mixed-valent metals can
exist. The difference arises purely from the lattice struc-
ture, consistent with Luttinger’s theorem.

It should be stressed at this point that the Anderson
model away from particle-hole symmetry cannot satisfy
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the Friedel screening sum rule for both the charge states
of the mixed-valence problem.!® To do so longer-range in-
teractions have to be included. Such interactions can
change the metallic state to a non-Fermi-liquid state.!’
The presently known experimental properties of mixed-
valence metals are not conclusive about whether or not
they are Fermi liquids. One concludes from Fig. 2(b) that
mixed-valence insulators in a magnetic field could be a
good source for polarized electrons.

MAGNETIC CORRELATIONS

The argument that strongly correlated insulators must
be mixed valent and therefore not describable by the
Kondo-lattice model raises a distinction which has im-
portant consequences. In heavy-fermion metals, which
have negligible charge fluctuations, low-energy magnetic
correlations due to Ruderman-Kittel-Kasuya-Yosila
(RKKY) interactions among the magnetic ions are clear-
ly seen in neutron-scattering experiments. In the insula-
tors they are absent. In this section, we show that this is
so because of mixed-valent nature of the insulators.

No magnetically ordered mixed-valence compound has
ever been discovered except TmSe. Neglecting the small
crystal-field splitting, which is small compared to I", both
charge states Tm?* and Tm>" have magnetic moments.
All other mixed-valent ions studied have one or the other
charge states with zero ground-state moment. The conse-
quences of this difference and the difference from the
Kondo-lattice case, with no charge fluctuations, were
pointed out some time ago,*° but seem worth reiterating.

The magnetic interactions among mixed-valence ions
are of two kinds: (1) Spin interaction between the two
sites without any real charge exchange. This is the only
interaction which is present between two Kondo ions.
The process is schematically illustrated in Fig. 3(a). It
leads to the familiar RKKY interaction

Hyxxy =Kf(R;;)S;"S; , (8)

where the magnitude

(a) (b)

FIG. 2. One-electron states (band structure) for mixed-
valence insulators; (b) illustrates the passage to a polarized me-
tallic phase in a magnetic field with gugH larger than the insu-
lating gap.
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(a) (b)

FIG. 3. (a) Process for RKKY and (b) double-exchange in-
teractions.

Kzt4p3=F2p . 9)

(2) Spin interactions with real charge exchange: These are
not available to Kondo ions. The process, (mis)named
double exchange proposed by Zener'* and investigated
further, '’ is illustrated in Fig. 3(b). It leads to an interac-
tion between nearest-neighbor ions i and j of the form

HDEz—DIS,',n+S (10)

j,n+1| ,

which tends to align the moments antiferromagnetically.
Here D =T >>K. §,, in the ground-state spin of the ion
at i when it is in the f" configuration. Now if either S,
or S,.;=0, as in all known mixed-valence ions except
Tm, this interaction is absent. This interaction is also ab-
sent if there are no carriers, i.e., in the insulating state.
In fact the metallic state and the magnetic state are close-
ly related. From these considerations TmSe was predict-
ed to have an antiferromagnetic ground state in the insu-
lating phase and to transform to a metallic ferromagnetic
state on variation of the mixed-valence ratio by alloying
with Tm-Te.!® Both phenomena are observed.!’

Further experiments'® on TmSe, Te,_, under pressure
have revealed a semiconductor to semiconductor transi-
tion followed by a metallic magnetic phase. The semi-
conductor to semiconductor transition resembles an exci-
tonic transition. The magnetic correlations in their phase
should be most interesting to study.

The double-exchange interaction is absent in the re-
cently investigated1 mixed-valence insulators, CeNiSn
(Ce fluctuating between f° with zero moment and f!), so
we examine the role of the RKKY interactions for the
magnetic correlations. These RKKY interactions can of
course act between two sites only if both of them have the
charge state with the magnetic moment (f ! in the case of
Ce), and provide an energy lowering of O(K). On the
other hand, I' is the rate of charge fluctuations whereby
charge leaves a given site and returns to the same site
with arbitrary spin direction. If we keep the charge at a
given site fixed in the state with spin and ask for the mag-
netic correlation energy with its neighbor, it is only of
O(K?/T'). The observed dimensionless magnetic correla-
tions then are of O(K?/T'?)=~(Tp)? which for a typical



50 ASPECTS OF STRONGLY CORRELATED INSULATORS

rare-earth ion is less than a percent. This argument as-
sumes roughly equal ratio of the two valences.

One can ask for the valence ratio x at which RKKY
interactions will become important by focusing spin
memory in the charge fluctuations. The f-electron delo-
calization energy is ['x (1—x). The gain in energy by or-
dering magnetically is again K. A simple application of
Stoner criteria Ky=1, where Y is the itinerant electron
susceptibility ~[T'x(1—x)"!] gives x =<K /I'=Tp<0.1
for a typical rare-earth ion. This illustrates that the
RKKY interactions will lead to magnetic correlations
only in the Kondo-lattice limit of negligible charge fluc-
tuations.

These arguments of course pertain to the ground-state
and low-energy fluctuations. Excitations with energy of
O(T') or higher with eigenvectors displaying magnetic
correlations are to be expected and experimentally seen.'

OPTICAL SUM RULE

In connection with some recent experiments,’ it is use-
ful to discuss the contributions of different energy regions
to the optical sum rule

4re?

fochea(a))dw= No,), (11)

where N(w,)= ﬁ_wcA(co)da), where A(w) is the
single-particle spectral function

A(0)=73 la(e)|*(w—¢) , (12)

€,0

where € labels the quantum numbers, and a(e) are the
residues in the single-particle Green’s function.

Let us consider a single mixed-valent impurity in a
metal first. The spectral function can then be calculated
approximately from the variational wave function

= [ao+Sale)flc., |IFS), (13)

€0

where |FS) is the unperturbed Fermi sea. It can be
shown that

ale)=ep/(etep), (14)

over most of € with a sharper cutoff near the bandwidth
W. €g is the binding energy, which in the mixed-valence
regime is®

eg=ICInW /T . (15)
The spectral function then is
Alw)=(1—ad)ey /(w+e€g) . (16)

Here (1—a3) measures the fractional mixed-valence
character. The rest of the integrated weight a3 is in the
Hartree-Fock resonance.

Imagine embedding an array of mixed-valence ions in
the lattice. Assume interimpurity interactions do not
change the spectral function; this is an especially good
approximation of o >>¢€g, where € is the gap in the in-
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sulator. The renormalizations at any energy scale depend
on energy scales above it but not those below it. So if the
ground state is an insulator with a gap €5 (of order €5),
the spectral function at o >>€; may still be calculated
from (10) while it is zero for w <e€g.

The important point is that the integrated spectral
weight to an energy € decreases slowly, only as
1/(e+e€g). At a temperature T of O(eg/2), the insulat-
ing gap disappears. (The order of the transition as a
function of temperature or magnetic field is not addressed
here.) The spectral weight then is expected to be of the
form

Al0)~(1—&)ep /[(0+ep ) +e3]

€p

for T>0 (17)

with some small renormalization of the average mixed
valence ay—@,. To recover the weight lost in the low-
frequency region in going to low temperatures, one must
then integrate all the way to the order of the bandwidth.
These conclusions are consistent with the experimental
results.’

THE CASE OF FeSi

FeSi is a small gap insulator, which has the remarkable
property that the magnetic susceptibility tends to zero
exponentially (after subtracting a Curie tail) as tempera-
ture decreases;* the characteristic temperature is similar
to the conductivity gap. The clue to understanding FeSi
are ancient Mossbauer experiments* which show an iso-
mer shift also exponentially activated with a similar
characteristic temperature.

This isomer shift is similar to that observed for Eu in
some compounds'® and a similar model is called for. The
local correlation energy on Fe in FeSi must be much
larger than the Fe-Si hybridization, so that the problem
can be spoken in terms of distinct valence configurations
on Fe. The ground state is Fe>*(d®) hybridized with Si.
The local symmetry is threefold so that angular momen-

fn+ 1

n+1,n

m—

Y ——p-

En, n-1

r-1
EF

fn-1

FIG. 4. Version of diagram of Fig. 1 for FeSi. y is the hy-
bridization gap.
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tum is quenched. The ground-state spin is zero. The
lowest-energy excitation is a multiparticle-hole excitation
to an Fe'*(d7) state (S=2) (with a corresponding local
screening by the s-p electrons), which is hybridized to Si
bands. In terms of our general picture, Fig. 1, of the oc-
currence of mixed valence, FeSi would lie as shown in
Fig. 4. The Fe’", Fe!* boundary lies very close to the
Fermi level for an integral filling of the reservoir. The
hybridization with the reservoir puts the self-consistent
chemical potential in a gap so that a finite energy must be
paid now to go from an Fe?' to an Fe'" configuration.
This situation is more likely in a transition-metal com-
pound than a rare-earth compound, since the hybridiza-
tion energies are much larger. But this kind of accidental
situation appears to occur also for some carefully chosen
Eu compounds.'® As for the other mixed-valence insula-
tors, and for the same reasons band-structure calculations
on FeSi,? yield the insulating state without obtaining the
correct correlations or excitations.

The model say, in effect, that mixed valence in Fe-Si is
thermally induced. The absence of any low-energy spin

correlations necessarily follows, as does their growth at
higher energies and/or temperatures as observed experi-
mentally by inelastic neutron scattering.’

The discussion of optical experiments requires the ad-
ditional consideration that the mixed-valence ratio de-
pends on temperature as exp(—Eg/2T). Otherwise the
problem is the same as discussed in the last section.

Magnetic impurities, externally introduced, or those
due to imperfect coordination of Fe, such that the chemi-
cal potential is pinned by them to lie in the gap of the
pure insulator, should in this situation have very interest-
ing renormalizations. Hints of this are found in tunnel-
ing experiments.”!
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