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Model calculation for the susceptibility of a quantum spin glass
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We have studied the dynamic susceptibility in a quantum spin glass which is described by an Ising

model in a transverse field, the latter introducing quantum tunneling in an otherwise classical problem.
An effective single-spin Hamiltonian is obtained on the basis of an extant thermofield dynamic approach.
The coupling to a dissipative heat bath is designed to affect thermal as well as quantal fluctuations and to
yield Glauber kinetics in the absence of the transverse field. A resolvent expansion of the underlying

time-development operator is then set up and the dynamic susceptibility calculated to leading order in

perturbation theory. It is shown that the frequency of the peak of the susceptibility shifts towards

higher values of co, its amplitude is reduced and peaks are broadened as quantum effects strengthen. Our

results are in qualitative agreement with the experimentally studied crystal-field-split system of
LiHo Yl „F4by%'uet al.

I. INTRODUCTION

The relaxational dynamics of quantum spin glasses is a
problem of great contemporary interest. ' The presence
of disorder is already known to give rise to unusual time-
dependent characteristics such as stretched-exponential
decay of correlation functions and consequent non-Debye
behavior of response functions. In addition, quantum
effects become important at very low temperatures, well

below the glass transition, as different parts of the free-

energy surface can be linked through tunneling. The ad-
ditional quantum interactions are expected to cause fur-
ther interesting dynamical effects. Recently, Wu et al. '
have experimentally studied the simplest prototype of a
quantum spin glass, viz. , an Ising model (with disorder)
plus a transverse coupling. The latter makes the system
quantum mechanical and is physically realized by the ap-
plication of an external magnetic field to a crystal-field-
split system of LiHo„Y, „F~ (see Ref. 3 for details).

They have measured the imaginary component of the dy-
namic susceptibility y"(to) as a function of both co and
the strength of the transverse field above and below the
spin-glass transition temperature Tg, defined in the ab-

sence of the transverse field. The application of a trans-
verse field radically affects the time scale of the Ising
system's response. The frequency m of the peak in the
dynamic susceptibility g"(co) increases by orders of mag-
nitude as the strength of the transverse field is increased.
The experimental data also suggest that the low-

frequency tails of y"(to) are greatly suppressed, indicat-
ing that quantum routes to relaxation a8'ect the long-time
dynamics of the system. Further, it is found that a longi-
tudinal field primarily depresses the amplitude of the
response and cannot account for the observed shifts in co.

In this paper, we make a detailed comparison between
the measured y"(to) and the results obtained from a
dynamical theory of the transverse Ising model, in the
mean-field approximation. The relaxational dynamics is
studied under the influence of a purely dissipative heat
bath which is treated in the Markovian limit. The relaxa-

tion behavior of the model system in the absence of the
transverse field is the same as that obtained from Glauber
dynamics. The interplay of this with additional time
dependence caused by quantum transitions due to the
transverse field is analyzed in detail through the calcula-
tion of a spin-spin correlation function.

The paper is organized as follows. In Sec. II, the basic
model Hamiltonian is discussed and its mean-field limit
obtained. Various terms describing the interaction with
the heat bath are also assessed. We then set up a resol-
vent expansion of the bath-averaged time-development
operator which is relevant for the calculation of the
correlation function. Next, the expressions for the corre-
lation function and the generalized susceptibility are eval-

uated in Sec. III. Numerical results, their comparison
with experiments, and concluding remarks are then
presented in Sec. IV.

II. MATHEMATICAL FORMULATION

A. The Hamiltonian in mean-Seld approximation

The Hamiltonian describing a quantum spin glass com-
posed of N interacting spins in a transverse field 0 may
be written as

Here, spins i and j are connected by a random exchange

J,- and the o's are Pauh spin matrices. The transverse
field plays the role of an operator which mixes formerly
pure eigenstates. The random interaction J, - is assumed

to be independently distributed according to a Gaussian

2J;,.
P(J,")= exp

As a first step, we obtain an effective single-spin Hamil-
tonian within the framework of a mean-field theory
(MFT) of quantum spin glasses. A systematic MFT for
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h(g)= —,'Jg&q, (4)

where g is the excess static noise arising from the random
interaction J,". The mean-field equations for the local
polarization p(g) and the spin-glass order parameter q
are

p(g) =r(g)tanh[ —,'Pho(g)]

and

00 g2y2 2 (6)

with

ho(g)=+Q +l'i (g)

and

r(g)=h(g)/ho(g) .

The Hamiltonian of Eq. (3) describes the reuersible dy-
namics of the system only. We now assume that the sys-
tem described by H& is placed in contact with a heat
bath. In the absence of the tunneling term, i.e., Q=0, it
is customary to imagine that the dynamics arises from
additional coupling terms to the heat bath which are off
diagonal in the representation in which o' is diagonal.
This is then in the spirit of the kinetic Ising model of the
Glauber type. The physical meaning of the Glauber
terms is evident. They cause spontaneous spinflips,
which, in the context of our system, mimic thermally ac-
tivated jumps between the ground-state doublet. In the
case of which QAO, we could still imagine the heat-bath
interactions to be of the Glauber type. But that would
be tantamount to taking into account only the classically
activated jump processes. In reality, we expect the heat
bath to induce not only thermal fluctuations of the above
kind but quantum fluctuations as well, leading to incoher-
ence in tunneling which is otherwise a coherent
phenomenon. It is important here to remember that we
would like to recover the Glauber mechanism in the limit
Q=O. The point is that, when QXO, the appropriate
quantization axis is neither z nor x, but somewhere in be-
tween. The simplest coupling to the heat bath should
then involve an operator that is strictly ofF'diagonal in the
new representation of the quantization axis and would
lead to correct limits when Q=O. Hence it is necessary
to perform a rotation in the "spin space" of the subsys-
tem by an angle H=arctan(Q/h) in the x-z plane around
the y axis (see further remarks below}. Motivated by our
preceding comments, we generalize the Hamiltonian as in
(3) to

the model of a quantum glass defined by Eqs. (1) and (2)
has been carried out in Ref. 4 using the thermofield dy-
namic approach and a short-time approximation for the
dynamic self-interaction. here we follow that analysis.
The efFective single-spin Hamiltonian in the present case
reads

H =—Ilcr' —Qo" . (3)

Here h is an efFective field acting along the z-axis and is
due to the nonzero spin-glass order parameter q,

h „0
gb u+ o'

0 0
(10)

In (10), b is an operator which acts on the Hilbert
space of the heat-bath Hamiltonian Hz and g is a multi-
plicative coupling constant. The specific form of the in-
teraction is chosen so as the guarantee that, in the rotated
frame in which Hs is diagonal, the coupling with the heat
bath is purely ofF diagonal [Eq. (16d) below]. The exact
nature of the operator b will not be specified here; sufiice
it to say, however, that the coupling term is expected to
yield Glauber kinetics for the underlying Ising model if
the tunneling term were absent. On the other hand, if Q
is nonzero, the term proportional to it will lead to in-
coherent efFects on tunneling. The fact that the ratio of
the coupling terms in (10}(proportional to 0" and o' re-
spectively) is taken as h/Q does not seem to cause any
loss of generality.

We remark here that a stochastic formalism can also
be adopted to study the quantum effects of tunneling.
Work along these lines has been done by us earlier in the
context of the proton-glass problem, " where the sub-
system is treated quantum mechanically, while the sur-
rounding heat bath is handled as a classical stochastic
reservoir. However, we find that a calculation of the dy-
namic susceptibility in this formalism does not exhibit
the characteristic features observed by Wu et al.

B. Averaged time-development operator

We first note that the expression for susceptibility due
to an oscillatory magnetic field applied along the z axis is

y(a) ) =—,'P lim
5~0

S~ l CO+5

——4c (s)
1

S

where V'(s) is the Laplace transform of the correlation
function c (t}defined as

c(t)=(cr, (0)cr,(t)) . (12)

Here the angular brackets denote the appropriate quan-
tum and statistical average. The quantity s is related to
the applied frequency co, s= —coi+5, 5 being a small
real-valued parameter, and p is the inverse temperature.
Explicitly, c (r) can be expressed as

c(t}= Tr[e 'o'(0)e o'(0)e ' ],Z0
(13)

where Ho is the total Hamiltonian as in Eq. (8}and Zo is
the corresponding partition function.

As discussed in Sec. II A, we diagonalize the subsystem
Hamiltonian Hz by performing a rotation U" in the spin
space of the subsystem by an angle O=arctan(Q/h}
around the y axis:

Ho =H~+Hl+H~,

where Hl describes the interaction between the spin sub-
system and the heat bath. In accordance with our stated
objective, we assume the following type of interaction:
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U R —i (0/2)a~
&
—e

In the rotated frame, the correlation function reads

1 -PH, h, 0c(t)= Tr e ' o'+ cr"
Zo 0 ao

(14) h, =&h'+n'

Ho Hs+HI +HB

Hs =boo',

(16a}

(16b)

(16c)

(16d)

where

iHot Q Q —iHO t

h h
g and b having been defined as in Eq. (10). Assuming that
the subsystem is coupled weakly to the heat bath, we can
factorize the density matrix and write the correlation
function as

1c(t)= Trs e
s

PBs -h, 0 „~Ha h, 0o'+ tr" Tre exp U(t) o'+ o"
0 0 B 0 0

where U(t) is the time-development operator. The La-
place transform of c (t) reads

1 —PH~ h, 0
c(s)= Trs e o'+ o"

ZS
'

~O ~0

I

In the next section, we present the details of the calcula-
tion of the correlation function and the generalized sus-

ceptibility.

III. CORRELATION FUNCTION
AND GENERALIZED SUSCEPTIBILITY

X . [U(s)],„o'+ o"h, 0
0 0

(18)

[ U(s) ],„=[s iLs +X(s)]— (19}

where [U(s)],„denotes the Laplace transform of the
time-development operator averaged over the bath de-

grees of freedom. The efFects of dynamics are contained
in this bath-averaged operator.

As discussed extensively in Ref. 6, it is the physics of a
given problem that decides the nature of the time-

development operator. In the present context, we have
adopted the system-plus-reservoir approach in order to
give a proper treatment of the incoherent tunneling term,
and systematically "project out" the bath degrees of free-
dom. This can be most conveniently achieved by writing
a resolvent expansion of [U(s)],„in which the interaction
term HI is treated perturbatively. As discussed in detail
in Ref. 6, such an expansion yields the following general
expressionfor [U(s)],„:

Having set up the formalism for evaluating the bath-
averaged time-development operator, we now proceed to
calculate the frequency-dependent susceptibility. First,
we evaluate the difFerent components of [U(s)],„. The
matrix elements of a Liouville operator Ls can be ex-
pressed in terms of the matrix elements of the corre-
sponding subsystem Hamiltonian as

(vpILs Iv'p') = [5„„'&vIHs I

v'
& 5„'&p'IHs I y & ] .

Here we denote the "matrix elements" of L by
parentheses. These are labeled by four indices, just as the
elements of Hs are labeled by two. It is now clear from

Eq. (21) that the evaluation of the matrix elements of
[U(s)],„ involves the inversion of a matrix which in the
present problem has a dimension of 4X4 as the spin
operator 0' is only a two-valued operator. The first corn-
ponent of this matrix, (pvILsIpv), in a rotated frame of
reference, has the following 4 X4 representation in which

Hs is diagonal:

where Ls is the Liouville operator associated with the
spin Hamiltonian Hs in Eq. (3) and X(s) is the so-called
relaxation matrix, to be specified below. While it is possi-
ble to evaluate X(s} to arbitrary orders in perturbation
theory, it suffices for the purpose of obtaining Markovian
dynamics to use the expansion to second order in HI,
which yields

0 0 0 0
0 0 0 0
0 0 —ho 0

0 0 0 ho

(22)

X(s)= Lt LI
I

s /Ls /LB
(20)

where the rows and columns labeled by Ipv} take the
values I++), I

——), I+ —), and I

—+), respectively,

The next step is the evaluation of the relaxation ma-

trix, for which we proceed along lines similar to our ear-
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X(s)=X(0)= JI dt [Ltexp[(Ls+Ltt )t ]L, ] .
0

(23)

lier work in the context of the proton-glass problem. 'b'

Treating the heat bath in the Markovian approximation,
we had earlier found that

s+ —(1—po)

——(1+p )0

——(1—
po)

s+—(1+p )0

s+A, +gfgo

We further assume that the infiuence of the heat bath is
purely dissipative; i.e., the relaxation matrix X(s =0) is
real. As observed in Ref. 7(b), all the elements of X(s =0}
can be expressed in terms of certain bath correlation
functions. These correlation functions are not evaluated
explicitly, but simply parametrized in terms of a phenom-
enological relaxation rate A, [see Ref. 7(b) for details].

In order to obtain the matrix of [U(s)],„, we have to
invert the matrix M:

s +A, —iho

(24)

where po=p+ —p is the net polarization in the rotated
frame and p+ are the respective probabilities for the
states ~k). The matrix M is easily invertible and yields
the following bath-averaged time-development operator
[U(s)],„for the system we consider:

[U(s)]=

1

s(s+A, )

Ap

0 0
0 0

s+Ap+

Ap~ s+Ap

1

s(s+2A, )+ho

0 0
0 0

s+A, —iho

s +A, +iho

(25}

X"(to)=
4 f,dp W(p)x" (to p» (26)

where the susceptibility for a given configuration of local
polarization p is given by

p Cog, h 2

2CoA, h o Q2
+ 1 QP

(h —co ) +4m', h

(27)

The averaged distribution for the local polarization can
be defined as

W(p)= —y [&(p —&~;-) )),„=[(p—(~;, ) )],„,1
(28)

We may parenthetically comment here that the matrix of
[U(s)],„in (25) is only slightly different from the one ob-

tained from a purely stochastic formalism. "This small
difference is, however, crucial for properly accounting for
quantum effects, characterized, for instance, by the off-

diagonal nature of the underlying density operator of the
system.

Using these matrix elements the relevant correlation
function can be obtained frotn the expression (18). The
susceptibility is then calculated by using the correlation
function in Eq. (11)and averaging over the distribution of
local polarization p. In view of Eq. (5), this is equivalent
to averaging over the excess static noise field g which ap-
pears in the effective single-spin Hamiltonian (3). Since
the experimental results of Wu et al. involve a study of
the imaginary component of the ac susceptibility g"(co),
we calculate the same to facilitate a comparison with our
theory. We finally express y"(to) as

where ( . ) denotes a thermal average and [ ),„a
combined average over the distribution of random in-
teractions. The Edwards-Anderson order parameter q is
thus given by the second moment of W(p}. In terms of
p (z), the local polarization function [Eq. (28)] becomes

W(p}=fDgfi(p p(g)) .— (29)

Using the well-known relation 5[f(g) ]=5(g—go)/f (go),
go being the solution of f ( f)=0, we obtain for the case
CT

2

g2/2
eW(p)= 4

PJ&2n q

x h'&}+
ho(k)

20
Ph (g)h o (g)

(30)

IV. RESULTS, DISCUSSION, AND CONCLUSION

The result of a numerical evaluation of the probability
distribution of the local polarization is presented in Fig. 1

where W(p} is plotted against p for a fixed value of
J ( = 10) and various values of Q ( =5.0, 3.5, and 1.0). It
can be seen from Fig. 1 that, if one varies the transverse
field Q, the shape of W(p) changes from a peak structure
at p =0 to that at p =1 as the value of Q is decreased
from 5.0 to 1.0. The variation in 0 is achieved experi-
mentally by a magnetic field applied perpendicular to the
c axis of the LiHo„Y& „F4 system. It is also observed
from Fig. 1 that, for certain values of the ratio a of Q and
J (-0.35), W(p) is more or less a constant over a wide
range of p values except near the end points p=+1.
From Eq. (30) and Fig. 1 it is clear that W(p) can be ap-

where go=go(p) is the inverse function of p(g) which
satisfies Eq. (5) for p in the interval [ —1, + 1].
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absence of the tunneling term. An efFective single-spin
Hamiltonian has been obtained within a thermofield dy-
namic approach, which is applicable to the spin-glass
phase above the instability surface. We have then com-
puted the dynamic susceptibility g"(co) as a function of
both u and a, a being the ratio of the transverse field 0
to the disorder J. Our main conclusion is that for a cer-
tain range of values of the ratio a(-0.3—0.45) the fre-
quency of the peak of the dynamic susceptibility shifts to-
wards higher values of co as a is increased. The strength
of the susceptibility, on the other hand, is reduced and
the peak is broadened as quantum efFects are
strengthened. The experimental results of Wu et al. are

in qualitative agreement with our calculations for the
selected range of a. Most recently, Wu et al. have per-
formed nonlinear susceptibility measurements at T=0
and have observed a first-order phase transition driven by
the transverse field. Some of these results can be ex-
plained within our theoretical framework and will be
presented separately.
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