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We discuss magnetostatic modes in semi-infinite magnetic-nonmagnetic superlattices in an arbitrary-

angle magnetization geometry. In this case, some very interesting nonlinearity features appear. We also

discuss the consistency condition for the existence of surface waves.

I. INTRODUCTION

In the past decade, the rapid progress in such tech-
niques as molecular-beam epitaxy or metal-organic chem-
ical vapor deposition has made it possible to prepare and
investigate artificial layered systems, especially superlat-
tices. Various kinds of collective excitations in superlat-
tices attract a lot of studies, among which the magnetic
collective excitations in magnetic superlattices have been
an interesting subject. '

Camley and co-workers' ' and Barnas '" discussed
magnetic collective excitations in the cases where the sat-
uration magnetization lies either parallel or perpendicu-
lar to the layers. According to them, there are two types
of collective excitations in a magnetic-nonmagnetic su-

perlattice. One is composed of surface waves in each
magnetic layer and the other is composed of bulk waves
in each magnetic layer. In a semi-infinite magnetic-
nonmagnetic superlattice, these collective excitations are
defined as bulk modes and surface modes, respectively,
according to whether they are located inside the struc-
ture or near the surface. The features of the surface
modes are sensitively dependent on the magnetization
geometry. When the saturation magnetization lies paral-
lel to the surface, the surface mode composed of surface
waves in each magnetic layer has been found to be nonre-
ciprocal with respect to the propagation direction. It
propagates only along a restricted direction and the fre-

quency is identical to the frequency of the Demon-
Eshbach mode in a semi-infinite ferromagnet. But no
surface modes can exist on the structure when the satura-
tion magnetization lies along the normal to the surface,
except that a deviation is introduced in the outermost ele-

mentary unit of the superlattice. This is due to the re-
striction from the consistency condition indicated by
Camley and Cottam, about which, however, there have
been same differences. ' '

So far, to our knowledge, there is no discussion on the
case where the magnetization lies neither parallel nor
perpendicular to the layers. In this paper, we discuss
magnetostatic modes in a semi-infinite magnetic-
nonmagnetic superlattice in an arbitrary-angle magneti-
zation geometry. In this case some very interesting non-
linearity features appear. Using algebraic theory, we also
discuss the consistency condition for the existence of sur-
face modes and confirm it mathematically in a more gen-

eral magnetization geometry.
In Sec. II we develop a general relationship between

the frequency of the surface mode and the direction of
the applied field by solving the magnetostatic equations
and employing the condition for surface modes. In Sec.
III, we show some numerical results for general magneti-
zation geometry.

II. THEORY

H=H, +he

M=Mo+me (4)

Here h and b=h+4vrru also obey the magnetostatic
equations. For sufficiently long wavelengths, the dynam-
ic magnetic properties of the system can be described by
the constitutive relation

where g is the susceptibility tensor, the expression of
which will be obtained by solving the Bloch equation of
motion given by

= MXH.

Here y is the gyromagnetic ratio.
As described in Fig. 1, we take the z axis of the Carte-

sian coordinate system along the normal to the surface of

We consider the case where the wavelengths of spin
waves are so long that the inhuence of short-range ex-
change interactions can be neglected but they are still
short enough that

(2n /k)c )&co,

where k is the length of the spin wave, cu the frequency,
and c the speed of light in vacuum. Under such condi-
tions, called the magnetostatic limit, the Maxwell's equa-
tions become the magnetostatic form

VXH=O,

V (H+4mM)=0,

where the field H and the magnetization M can be writ-
ten as sums of time-independent and time-dependent
components in the forms
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plane. Following Camley and Cottam we neglect the an-
isotropic field and thus the saturation magnetization lies
parallel to the internal field H;. In our case,
H;=Hd+Ho. Here Hd is the demagnetization field

which is antiparallel to the z axis and has the amplitude
~Hd ~=4nMosin(8+/), where 8 and P show the direc-
tions of Ho and H;, respectively. Solving Eq. (6) and

keeping only linear time-varying terms, we obtain
MAGNETIC ~

LAYER

SPA|:ER

r n=S

y, sin 8
—iy2sin8

iy2Sin8

For a ferromagnet

—y, sin8 cos8 i y—2cos8

—y, sin8 cos8

l+2COS8

+1cos 8

FIG. 1. The geometry of the semi-infinite magnetic-
nonmagnetic superlattice. The z axis is taken along the normal
to the surface. The thickness of the magnetic film is d& and the
thickness of the nonmagnetic spacer is d~. The length of an ele-
mentary unit is L =d&+d&. The elementary units are indexed
by n 8an. d P show the directions of the applied field Ho and
the internal field H;, respectively.

H;M
X1

H; (co/y )—
M(coly )X2= 2—Hi (co/y—)

(9)

In terms of the magnetic scalar potential 4, defined by
h= —V4, the magnetostatic equations (1) and (2) reduce
to

B@ c)4
gp;; +2ILc =0 . (10)

the layered structure which occupies the half-space z & 0.
The structure under consideration consists of magnetic
layers and non-magnetic spacers which are labeled by the
indices 1 and 2, respectively. Here d& is the thickness of
magnetic layers and dz the thickness of spacers. The ele-

mentary units, with the length L =d, +dz, are indexed

by the integer n and the first elementary unit corresponds
to n =0. The applied field Ho is restricted to the x-z

Here the magnetic permeability tensor p is defined by
p=I+4ny. We search for a solution in the form of a
plane wave propagating parallel to the surface as follows:

(11)

Following Camley and Cottam, we assume the form of
P(z) as

Ceq', z +0,
(12)

where Re(P)) 0 . (13)

and

+gy

2 ~ 2 2 2 1/'2
Pxx 9'x +Pyy 9y

l
2p~ Pzz Pm

Here q„and q are the components of the wave vector
along the x and y directions, respectively. The
coeScients A+, B+, and C will be determined by em-
ploying boundary conditions. In order to guarantee that
the solution we find is a true surface wave p must satisfy
the inequality given by

Here we confine ourselves to the Voight geometry
where the in-plane propagation wave vector of the spin
wave is restricted to be perpendicu1ar to the saturation
magnetization. In our case, this condition becomes

q =0. Thus a+= —a =a, with a=Qp „/p„q.The
usual electromagnetic boundary conditions are that the
tangential h and the normal b components are continu-
ous across all boundaries. In the case described in Fig. 1,
the boundary conditions become that 4 and

b, = —g;p„.B@/Bx; are continuous at z =nL and
z =nL+d1 ~ The application of the boundary conditions
results in
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C= A++ A

qC=X+ A++A, A

e 'A +e 'A =8 +8

k+e ' A++A, e ' A =q(B+ B—),
e ~ (A++A )=e 'B++e 'B

(14)

+(A, —q)(1 —e ' ')A =0,

(15)

(&+—
q ) A+ +(A, —

q ) A =0,
e ~ (A, +A++A, A )=q(e 'B+ —e 'B ),

with

k+=+ap„+ip, q

Eliminating B+,B,and C from Eqs. (14) we can obtain
a set of three linear homogeneous equations in two un-
knowns A+ and A as follows:

with the attenuation constant P being a parameter. Ac-
cording to algebraic theory, a system of linear homogene-
ous equations has a nontrivial solution only if the rank of
the coefficient matrix is smaller than the number of un-
knowns. In the case under consideration, the number of
unknowns is 2 and thus for a nontrivial solution the rank
of the coefficient matrix must equal 1, which implies that
the determinants of the three 2X2 submatrixes in the
coefficient matrix all vanish, i.e.,

(15a)

(A, ++q)(A, —q)(1 —e ' ') —(A, +q)(A, +
—q)(1 —e ' ')=0,

(A, + —
q )(A, —

q )sinh(ad, ) =0 .

(15b)

(15c)

Here P should satisfy all three equations at the same
time. According to Camley and Stamps. Eq. (15c) has
three possible cases, k+ —

q =0, A,
—

q =0, and

ad, =imm. (here m=0, +1,+2, ). Combining Eqs.
(15a) and (15c), we have

A+ —
q =0 requires PL =+(ad, +qd2),

—
q =0 requires PL =+(ad, —qd~),

ad, =imm requires PL =+qdz+i(2m+1)~ .

Similarly, combining (15b) and (15c), we obtain

k+ —
q =0 requires PL = —(ad

&
+qd2 ),

—
q =0 requires PL =ad, —qd&,

ad, =imnrequires P. L = —qd2+i(2m+1)m .

Obviously, the three consistency solutions for P, which
satisfy the three equations simultaneously, are

PL = —(ad, +qd2),

PL =ad, —qd~,

PL = —qdz+i(2m+1)m .

(Qp p„+1)q ip, —
q =,0 . (16)

35
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el@/cf ) =0.3
H, =22 kC
M, =1.68 kC

25
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When a is real and ad] qd2 & 0, this solution represents
the type of surface modes which are composed of surface
waves in each magnetic layer. Obviously, the other type
of surface modes, which consist of bulk waves in each
magnetic film, cannot exist due to the consistency re-
quirement. Mathematically we confirm the conclusion
made by Camley and Cottam in the case of perpendicu-
lar magnetization and extend it to a more general magne-
tization geometry.

After giving up the solution which does not represent a
true surface mode due to Re(P) (0, we only have the
solution PL =ad, —qdz with A,

—
q =0. In the

geometry under consideration, the wave vector is restrict-
ed to the y direction, i.e., q =

~q» ~. After substituting the
definition of k into the equation, we have

15
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FIG. 2. Frequency of the surface wave versus the direction of
the external field.
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FIG. 3. Critical angle of the surface wave versus dimension-

less geometry parameter d2/d &.

FIG. 4. Critical angle of the surface wave versus dimension-
less magnetic parameter Ho /(4~MD).

It can be easily confirmed from Eq. (16) that the sur-
face wave has the frequency ct) =p(HO+2~MD } and prop-
agates only along the +y direction when 8=0, but can-
not exist when 8=m/2 This a.grees with the earlier re-
sults given by Camley and co-workers. ' ' In the next
section, by solving Eq. (16) numerically we will show
some interesting features of the surface mode in the case
of arbitrary-angle magnetization.

III. RESULTS

In this section, we present a numerical solution of Eq.
(16). It can be seen that under the case considered the
nonlinearity plays an important role in the collective ex-
citations in the layered structure. We use the parameters
appropriate for Fe: M=1.68 kG, HO=22 kG. For Eq.
(16), there are two possible cases where either q

= —
q or

q =q, corresponding to the propagation of the surface
wave in the +y and —y directions, respectively. But we
do not find that Eq. (16) has physical solutions for q =q.
This means that the surface wave cannot propagate along
the —y direction. This is the same as in the situation of
parallel-magnetization geometry.

In Fig. 2 we explore the frequency as a function of the
angle between the applied field and the surface, taking
d2 /d ] =0.5. It can be observed that the frequency de-
creases as 8 decreases. When 8=0, the frequency
co/y =32.6 kG, which is identical to the frequency of the
Damon-Eshbach surface wave on a semi-infinite fer-
romagnet. There exists a critical angle 8, =0.37~, above
which the surface wave cannot exist.

We further investigate the influences of structure pa-
rameters on the critical angle. In Fig. 3 we plot the criti-
cal angle 8, versus the dimensionless geometry parameter
dz/d&. It can be seen that 8, increases as d2/d, de-

creases. This is reasonable in terms of the physics be-
cause the nonmagnetic spacer suppresses magnetic exci-
tations. When d2/d, =0, i.e., dz =0, 8, presents the crit-
ical angle in the case of a semi-infinite ferromagnet under
the same conditions.

In Fig. 4 we show the relationship between the critical
angle 8, and the dimensionless magnetic parameter
Hp/(4NMO), assuming dz/d, =0.5. One can see a rapid
decrease of 8, with increase of Ho/(4n'Mo). Therefore
we can conclude that for a given saturation magnetiza-
tion a larger applied field will result in a smaller critical
angle.

In summary, we discuss the consistency condition for
the existence of surface modes and support the con-
clusion, made by Camley and Cottam, that the surface
wave composed of bulk waves in individual magnetic lay-
ers cannot exist on a semi-infinite magnetic-nonmagnetic
superlattice due to the consistency requirement. We fur-
ther extend the study of surface modes to a more general
case where the saturation magnetization makes an angle
with respect to the surface. Some interesting features are
found as follows.

(1) Like the case of parallel magnetization, in any-angle
magnetization geometry the surface mode is nonrecipro-
cal with respect to propagation direction. It can only
propagate along the +y direction in our system. The fre-
quency decreases with increase of the angle between the
applied field and the surface.

(2} There exists a critical value of the angle, above
which the surface wave cannot exist. The critical angle
depends sensitively on the structure parameters. As oth-
er parameters are fixed, the increase of applied field or
the increase of thickness of spacers will result in the de-
crease of the critical angle.

These features of the surface wave reflect a nonlineari-
ty effect in the system. We hope our results can be
confirmed experimentally by use of Brillouin light
scattering.
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