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We present numerical calculations for the determination of localized modes in one-dimensional finite

chains of atoms with free ends containing harmonic and quartic anharmonic interactions. By adding

step by step the quartic term we can follow the formation of even and odd localized modes arising from
the highest harmonic frequency mode. We have studied the role of crystal inhomogeneity by introduc-

ing a modification of the fourth-order force constant between neighboring atoms at the center of the
chain, where the localized mode has its maximum displacement. For large weakening of this force con-
stant the localized mode develops a double-peaked structure, as has been found in the continuum limit.
In the case of asymmetrical local inhomogeneity the localized mode remains stable and moves toward
the atom with the inhomogeneity. We also show the existence of anharmonic surface modes localized at
the end of the chain.

I. INTRODUCTION

In recent years interest in the study of the anharmoni-
city of crystals has increased considerably. Some exam-
ples of properties of solids which are mainly or partly
determined by crystal anharmonicity are specific heat at
high temperatures, melting, thermal expansion, tempera-
ture dependence of the elastic constants, and damping of
high-frequency sound waves. Anharmonicity is also of
importance in defect properties of crystals because dis-
placements are often large near imperfections.

Recent theoretical studies of the lattice dynamics of
strongly anharmonic crystals' have shown the ex-
istence of localized modes with frequencies above the
maximum frequency of the harmonic crystal. These
modes resemble those associated with point defects or va-
cancies in harmonic crystals. ' Sievers and Takeno ob-
tained analytically this new kind of localized mode, in
homogeneous anharmonic crystals, by studying classical
systems in the rotating-wave approximation" (RWA),
i.e., by including in the time dependence of the displace-
ments a single-frequency component. These modes,
which exist in perfect lattices and are strongly localized
on a lattice site, can appear at any lattice site because of
translational invariance. It was argued that this in-
coherent disorder produces a configurational entropy
term that has to be considered in a complete thermo-
dynamic description of the anharmonic crystal proper-
ties. These modes were called intrinsic localized modes
by Sievers and Takeno in order to distinguish them from
the impurity induced localized modes. The Sievers-
Takeno modes have odd parity. Similar modes of even
parity have been reported by Page. It is of interest to
see how these intrinsic localized modes are modified in an
inhomogeneous system. This problem has been studied
analytically by Kivshar' by considering a mass defect.
He showed that the impurity modes can be treated as in-

trinsic localized modes on the impurity site. Also, a non-
linear thin film covering a surface can give rise to local-
ized modes. ' '

In this paper we examine the efFects on the intrinsic lo-
calized modes produced by a local modification of the
anharmonic part of the force field between atoms. Our
aim is to show the existence of localized modes for this
kind of inhomogeneous system. We treat the problem
numerically by solving the equations of motion of a linear
monatomic chain of a sufBciently large number of atoms
1V in such a way that the results do not depend
significantly on N.

In Sec. II, we show that by switching on the anhar-
monic term the upper harmonic mode becomes localized
on a few lattice sites and it becomes narrower as we in-
crease the strength of the anharmonic term. In Sec. III,
we consider how the intrinsic mode is modified by weak-
ening or by increasing the anharmonic force constant act-
ing on the lattice sites corresponding to the maximum
displacement. We consider the case of even- and odd-
parity modes and we show that for a strong weakening of
the fourth-order anharmonic interactions the displace-
ment maximum of an intrinsic localized mode splits into
two peaks, one on the left and the other on the right of
the lattice site of maximum displacement of the initial in-
trinsic mode. This situation is similar to that described
by Kivshar' in the continuum limit, where a suitable
change of the impurity mass gives rise to a splitting of the
displacement maximum of a soliton mode into two peaks
localized symmetrically about the impurity. In Sec. IV,
we consider the case of moving the modified anharmonic
force constant away from the maximum of the intrinsic
mode. In this case we notice a tendency of the odd local-
ized mode to move away from the initial position toward
the atom with modified force constant. Section V is de-
voted to the study of surface modes. We show the ex-
istence of localized modes close to the end of the chain.
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In the case of pure quartic interactions two modes exist,
one of the type ( —0. 165, 1, —1,0. 166, . . . ) which looks
like an even mode and the other similar to an odd mode.
The inclusion of a weak harmonic interaction produces a
slight distortion of the pattern of the modes. The final
conclusions are drawn in Sec. VI.

dinal displacement of the nth atom. The equations of
motion are easily found to be

mii„+K2(2u„—u„+,—u„,)
+K~[(u„—u„+,) +(u„—u„,)-'] =0 .

We seek stationary solutions of the type

II. THEORETICAL MODEL u„=Ag„cos(cot) . (3)

The study of nonlinear systems often reduces to the
analysis of one-dimensional models, as for instance soli-
tons in optical fibers, e8'ects of lattice-dynamical anhar-
monicity on multilayered structures, dislocations in crys-
tals, etc. For this reason and to greatly simplify the prob-
lem we consider a one-dimensional monatomic chain of
particles interacting via nearest neighbors with harmonic
and quartic anharmonic interactions. The Hamiltonian
has the form

H =
—,
' mgu„+—,'K2+(u„—u„+,)

+ —,'K4+(u„—u„+,)

where m is the mass of the particles and u„is the longitu-

The g„arethe relative displacements of the atoms and A

is the overall amplitude that can be fixed by the initial
boundary conditions. Substituting Eq. (3) into Eq. (2) we
obtain

mco A(„cos(cot)=K2A [2g„—(„+&—g„&]cos(cot)

+K~ ~ '[(4 —k. +»'

+(g„—g„,) ]cos'(cot) .

(4)

This equation can also be derived by considering the fac-
tored form of the displacements of Eq. (3) and by setting
to zero the total time derivative of the total energy of Eq.
(1).This alternative procedure gives

—,'m 2 co g(„2cosin(cot) cos(cot )
—

—,'Kz 2 g(g„—g„+,) 2co sin(cot) cos(cot)
n

—
—,'K4A g(g„—g„+&) 4cosin(cot) cos (cot)=0 . (5)

Since Eq. (5) should coincide with Eq. (4) we get the iden-
tities'

Having performed the RWA we can integrate back the
equations of motion of Eq. (5) to obtain an approximate
expression for the total energy:

&(k.—k. +i)'
2k. —4+i —C. -i

(6a)
F. = —,

' m A co gg„sin (cot )

n

g(k. —k. +i)'
(k. —k. +i)'+(k.

+ ,'K2 A g(g„-——g„+,) cos (cot )
n

1 3K4A+—
2 4

g((„—g„+,) cos (cot) .

To make the equations of motion, Eq. (4), linear in
cos(cot ), we use the rotating-wave approximation, i.e., we
linearize the cos (cot ) factor as follows:

This equation represents the energy of a fictitious oscilla-
tor which oscillates periodically in time. Because of the
conservation of energy we have

cos3(cot ) = —,
' cos(cot ) .

In this way we are left with the equations of motion

g„=K[2g„—g„,—g„,]
3%43+-

4 [(4—@+i)'+(4—4.—&)']

E =—'mA co gg„ for t =
n 26)

E=
—,'K2 A g(g„—g„+) )

1 3K4A+—--- -g(g„—g„+,) for t =0 .

(10a)
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FIG. 1. Odd-parity localized modes. (a)
shows the displacement pattern of the highest
harmonic mode of a free-end one-dimensional
chain of 513 atoms. For clarity the longitudi-
nal displacements have been drawn vertically.
(b) shows the odd localized mode of a chain
with small anharmonicity (S=0.0001), (c)
refers to the case S =0.01, and (d) to the case
S =1.
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This expression for the total energy will be used in the
next section when we introduce a local modification of
the fourth-order anharmonic force constants. Here we
notice that it depends explicitly on the amplitude A.

We now show numerically that the intrinsic localized
modes arise from the highest-frequency harmonic mode
when the anharmonicity is switched on. The anharmoni-
city is measured by the parameter S =(3/4)(K4/K2) A .
We start by considering odd-parity solutions for which

The normalization of the relative displace-
ments pattern is given by choosing $0=1. We take a
linear chain of 513 atoms, so that
n =—256, . . . , —1,0, 1, . . . , 256, with free-end bound-

ary conditions. The pattern of the harmonic displace-
ments is presented in Fig. 1(a). For clarity we draw the
longitudinal displacements vertically. To solve the sys-
tem of nonlinear equations in Eq. (8) we use a standard
routine based on the Newton scaled gradient. Given an
initial guess of the displacements, through an iterative
procedure the routine determines the stable solution for
each value of the parameter S. We found that conver-
gence in the iterative procedure can be obtained by start-
ing from the purely harmonic solution, whose pattern of
harmonic displacements is presented in Fig. 1(a), and
then introducing the anharmonicity in small steps. For
example, the value of S =10 presented in Fig. 1(b) is

1.0- (a) HARMONI C
1.0- (b) S = o.0001

~ 00 Qp
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FIG. 2. Even-parity localized modes. (a)
shows the displacement pattern of the highest
harmonic mode of a free-end one-dimensional
chain of 512 atoms. (b) shows the even local-
ized mode of a chain with small anharmonicity
(S=0.0001), (c) refers to the case S=0.01,
and (d) to the case S = 1.
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reached in 100 steps. At each step we start with the
stable displacement pattern obtained at the previous one,
and when the convergence is reached, we pass to the next
step. In Fig. 1(b), it is clearly seen that even for a small
value of the anharmonicity the mode starts to become lo-
calized. By increasing the anharmonicity as shown in

Fig. 1(c), corresponding to S=10, the mode tends to
become narrower and for S =1 [Fig. 1(d)] it is localized
on very few atoms at the center of the chain. For a pure-

ly anharmonic chain (S~ oo ) we get a displacement pat-
tern (. . . ,0.023, —0.523, 1, —0.523,0.023, . . . ) which is

very close to the analytic result (. . . ,0, —
—,', 1, ——,', 0, . . . )

obtained for anharmonicity order r~ 00. We have also
studied the even-parity localized modes (g„=—g„).In
this case it is convenient to change the particle labeling in
such a way that there is no particle at n =0. The normal-
ization requirement is g, = 1 and the parity of the solu-
tion gives as a consequence g, = —1. We performed cal-
culations for a chain of 512 atoms, starting from the same
harmonic solution as for the odd modes [Fig. 2(a)], in-

creasing the anharmonicity parameter S in the same se-

quence. In Fig. 2(b) is drawn the resulting pattern for
S =10, in Fig. 2(c} the pattern for S = 10 and in Fig.
2(d) the S =1 case. As one can see, the even modes also
become more and more localized with increasing
anharmonicity parameter S. In the fully anharmonic
case we get the displacement pattern
(. . . ,0, +0. 166, —1, +1,—0. 166,0, . . . ) which is very
close to the analytic solution (. . . ,0, + —,', —l, l,
—

—,', 0, . . . ) obtained for anharmonicity order r ~ oo.

III. INHOMOGENEOUS LINEAR CHAIN:
SYMMETRIC LOCAL INHOMOGENE1'l Y

We now consider a local modi6cation of the fourth or-
der force constant E4. We start by considering the even-

parity modes. We Srst consider a modification of the
force constant E4 between the atomic sites with the max-
imum displacement (sites n = —1 and n =+1), as illus-
trated in Fig. 3. The equations of motion for this inho-
mogeneous linear chain with free ends are

+ (—256 (k —256 0 255)+S[(g 256 g 255) ]

0 g „=(2g„—g „,—
g „,)+S[(g „—g „,) +(g „—g „,} ]

20——2 4—1 (—3)+S[(k—2 k—1} +(k—2 4—3} ]

0 g 1=(2)1 g 2 (+1)+S(g,—g 2) +S'(g
1
—(+1)

+ (+I ( 4+1 4 14+2—)+S((+1 0+2} +S (4+1 0—1)

&'0+. =(2k+. —0+.+1
—0+.-1)+S[(4+.—0+.+1}'+(4+.—0+.-1}']

~ 4+256 (0+256 0+255)+ [((+256 4+255}

where 0 =m co /E2. The normalization condition
chosen requires g, = 1. The parameter
S'=(3/4)(K4/K2 ) A characterizes the inhomogeneity
of the lattice. As in the previous section, to obtain results
that are essentially independent of the number X of
atoms in the chain, we use 512 atoms. For a fixed value
of S, decreasing S', we determine for each value of S' the
displacement pattern [g„],by starting from the anhar-
monic solution corresponding to S =S' previously de-

S S S' S
~ ~ ~ ~ ~ ~

-256-255 -2 -» 2 255 256

FIG. 3. Sketch of the anharmonic interactions in the free-end

inhomogeneous one-dimensional chain of 512 atoms. S refers to
unmodified force constants and S' to the modified force con-
stant between the atoms —1 and + 1 at the center of the chain.
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S= .1

FIG. 4. Frequency squared of even-parity modes for S=0.1

as a function of the force constant ratio S'/S.
FIG. 5. Total energy of even-parity modes evaluated with

Eq. (10a} for S =0.1 as a function of the force-constant ratio

S'/S.

rived from the highest harmonic mode. Figure 4 shows
the results for the frequencies of the stationary even
modes as a function of S'/S for the value of S =0.1. By
decreasing S', Q starts to decrease, reaches a minimum,
and then increases. This behavior is clearly understood

by noting that Q ~S(g, —g 2) +S'(g
&

—g, ) . A de-

crease of S' produces an increase of the displacement at
n = —2. In the interval 0.5 &S'/S & 1 the decrease of S'
dominates because the moduli of g, and g &

are both
equal to one, so that Q decreases, while for smaller
values of S'/S the modulus of the displacement at
n = —2 becomes greater than one and Q increases. The
behavior of the total energy of Eq. (10a) as a function of
S'/S is presented in Fig. 5. Note that the spreading of
the localized mode that occurs with decreasing S'/S bal-
ances the decreasing of Q2 through the factor g„g2,so

that the minimum in E is much less pronounced than in
the Q2 versus S'/S diagram. At a certain point as S'/S
decreases, the original intrinsic mode tends to develop a
double-peaked structure with maximum displacement at
n =+2, as shown in Fig. 6. Our iterative procedure can
be carried out also for small negative values of S'/S
(anharmonic repulsive forces). In Fig. 6(d) is shown the
case S'/S = —0.67 that clearly shows double-peaked
structure, which corresponds to a rise of Q to nearly
vertical in Fig. 4. This phenomenon is very similar to the
splitting of the soliton mode peak produced by a mass de-
fect impurity found by Kivshar. ' We present in Fig. 7
the behavior of Q as a function of S'/S for a large value
of the anharmonicity (S =10). Note that in this case the
slope of the curve tends to approach infinity at
S'/S =0.0474, where the intrinsic localized mode devel-
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15

-2.0-

-15

2.0-

I I I I

11
ATOM S

S'/S = -0.67

15 FIG. 6. Displacement pattern of even-parity
modes for S =0.1 as a function of the force-
constant ratio S'/S, as indicated in the legend
of the panels.
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200

FIG. 7. Frequency squared of even-parity modes for S =10
as a function of the force-constant ratio S'/S.

ops the double-peaked structure with maximum displace-
ment at n =+2. Below this value of S'/S the solutions of
Eq. (11) are no longer numerically stable, as happened in
the previous case for the negative value of S'/S shown in
Fig. 6(d). The displacement patterns for various values of
S'/S are presented in Fig. 8. Large anharmonicity S pro-
duces a very narrow mode, involving six atoms only, so
that the efFect of the splitting produced by the local inho-
mogeneity appears less evident than in the previous case.
%e have performed similar calculations for the odd
modes using a linear chain of 513 atoms, with an intrinsic
localized mode centered at n =0, sketched in Fig. 9. The
equations of motion to be solved in this case are the fol-
lowing, where we have chosen the normalization condi-
tion go=1:

0—256 ( 0—256 0—2ss ) +SI:(k—zs6 0—ass )

&'0-. =(2k-. —0-.+i —k-. -i)+S I(4-. 0 .—+i)-'+(k .—k--. -&)'f

Q g, =(2k 1 (0 (—2)+S[((
&

—( 2) +S'(0
& ko) j

II ko (2(o 0—
&

0+&)+S'(ko 0—&) +S'(4o 4+ i)

Q g, =(2k+i ko (+2)+S(g+,—(+2) +S'(0+&—
ko)

(12)

&'0+. =(2k+. —0+.+i —k+. -i)+S((k+.—4+.+i)'+(k+. —0+.-i)'j

+ 0+2s6 (4+256 0+255)+S ((k+256 0+2ss) j

The results are very similar to those of even modes. The
only difference is that the value of S'/S at which the nu-
merical instability of the solutions occurs is much larger
than in the even case. This indicates that a small inho-

mogeneity is suScient to produce the double-peaked
structure. In Fig. 10 are presented the displacement pat-
terns for various values of S'/S for S =0.1. In this case
the numerical instability of the solution occurs at

1.0 )

S'I S=1
1.0

s'/s= o5

-10- -1.0-

-11
ATOM S

S'/S= o.o5

-15

1.0-

I I I I

-11
ATOM S

S'/ s = 0.04'~

FIG. 8. Displacement pattern of even-parity
modes for S =10 as a function of the force-
constant ratio S'/S, as indicated in the legend
of the panels.
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-256 -255 -2

S S' S'

0

S S- QveQ
2 255 256

FIG. 9. Sketch of the anharmonic interactions in the free-end
inhomogeneous one-dimensional chain of 513 atoms. S refers to
unmodified force constants and S' to the modified force con-
stant between the atom at the center of the chain and its nearest
neighbors.

tio S'/S causes 0 to decrease, and for S'/S( —0.002
the mode merges into the quasicontinuum of harmonic
modes, becoming a broad resonance spread out over
many atoms. In Fig. 11 is shown this new type of local-
ized solution for S'/S =0.006 and in Fig. 12 is shown the
broad resonance for S'/S= —0.002. From Fig. 11 one
can see that the displacements of the neighboring atoms
n = +3 and n = +4 are in the same direction, as well as
for the atoms n = —3 and n = —4.

S'/S=0. 37575. We have investigated the reason for
this instability. We have found that below this value
there are solutions with neighboring atoms moving in the
same direction. This indicates that this mode arises from
a harmonic mode different from the mode at the top of
the harmonic band for which two neighboring atoms
move out of phase: g „=(—I )"ig „i.Lowering the ra-

IV. INHOMOGENEOUS LINEAR CHAIN:
ASYMMETRICAL LOCAL INHOMOGENE11 Y

In this section we present the results for the asymme-
trical local inhomogeneity case, with the modified
fourth-order anharmonicity parameter S' moved with
respect to the center of the intrinsic localized mode, as
shown schematically in Fig. 13 for the even modes. The
equations of motions for this configuration are

+ 0—256 (4—256 0—233)+ [(4—236 4—255)

& g „=(2g„—g „+i—g „|)+S[(g„—g „+i)'+(g„—g „|)]

~ k—2 (2k—2 I—j g—3)+S(g—2 g—3) +S (g—2

&'0-|=(2(-i—0-2—0+i)+S[(k-i—0-2)'+(4-|—0+i) 1

0 g+|=(2(+,—g, —(+2)+S'(g~t —/+2) +S(g+|—g i)

0 (+2—(2)+2—g+] —/+3)+S ((+2 fbi) +S(gi2 —gy3)

(13)

fl'0+. =(24+.—0+.+|—0+.-i)+S[(k+.—0+.+i)'+(4+. —0+.-|) )

0 /+236 —(/+256 /+235)+S [(/+236 ~+235)

1.0 ~

S'I S= 1

1.0

8 I S=0.7

-1.0- -1.0 ~

-15
I

0
ATOM8

S'/S= O.S

I

0
ATOMI

O'I 8 ~ 0 37575

1$ FIG. 10. Displacement pattern of odd-
parity modes for S=0.1 as a function of the
force-constant ratio S'/S, as indicated in the
legend of the panels.
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~) I!~

18

s

-20
I I

0
ATOMS

I

20
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FIG. 11. Displacement pattern of the odd-parity localized
mode for S'/S =0.006.

FIG. 14. Frequency squared of the asymmetrical inhomo-

geneous chain for S =1.
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-25
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with the normalization condition g, = l. In Fig. 14, we

plot 0 as a function of S'/S for S =+ 1. There is a rap-
id increase of 0 due to the large displacements acquired
by the atoms at n =+1 and n =+2, as one can see in
Fig. 15. The numerical instability of the solution for this
configuration occurs at S'/S =0.71. It is important to
note the breaking of symmetry in the displacement pat-
tern between atom n = + 1 and n = —1. The even mode
tends to transform into an odd mode with its center on
the atom n =+1. The symmetry reached by the mode is
not exactly odd, because of the diFerent couplings (S' and
S) of the atom in n =+1 with left and right nearest
neighbors. We have also investigated the configuration
with local modification of the fourth-order anharmonicity
between atom n = + 1 and atom n = +2, but in this case
the displacements pattern of the localized mode remains
nearly unchanged because of the initial narrowness of the
mode. The initial relative displacement of atom n =+2
is too small and cannot be enhanced significantly by de-
creasing the ratio S'/S.

V. SURFACE MODES

FIG. 12. Displacement pattern of the odd-parity resonance

mode for S'/S = —0.002.

We have also studied the existence of localized modes
close to the end atom of the finite chain with free ends.
As in the previous sections we have used a 512-atom
chain. The equations of motion that we have used are the
same as in Sec. III with S'=S and a different normaliza-
tion condition. In this case we try to solve Eqs. (11) and
(12) starting with an initial guess for the displacements
that is always zero except on the last few atoms of the
chain. In the case of the pure anharmonic interaction we
have found the existence of a surface even mode and a
surface mode similar to odd symmetry modes. The dis-

placement patterns are reported in Table I for 0 =9.6 in

S S
~ ~ ~ ~ ~ ~

TABLE I. Surface mode displacements. X indicates the end

atom of the chain.

—256 -255 —2 —'l 1 2 255 256

FIG. 13. Sketch of the anharmonic interactions in the free-
end inhomogeneous one-dimensional chain of 512 atoms. S
refers to unmodified force constants and S' to the modified force
constant between the atoms + 1 and +2 shifted with respect to
the center of the chain.

Atom g„(even mode)

—0.165
1.000

—1.000
0.166

—0.0004
+0.0

g'„(quasiodd mode)

0.614
—1.000

0.394
—0.009
+0.0
+0.0
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15 FIG. 15. Displacement pattern of even-

parity modes of the asymmetrical inhomogene-
ous chain for S =1 as a function of the force-
constant ratio S'/S, as indicated in the legend
of the panels.
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the even case and 0 =6.91 in the quasiodd case. The fre-
quency of these purely anharmonic surface modes scales
with the maximum amplitude /st so that all the infinite
modes with 0 //st constant are equivalent.

We have examined also the case of a chain with a weak
harmonic interaction, such as —,', of the quartic anhar-
monic interaction, and we have found that there is a shift
in frequency and only a slight modification of the dis-
placement patterns that does not destroy the symmetry
found for the purely anharmonic case.

VI. CONCLUSIONS

In this work we have studied numerically the forma-
tion of localized modes in a linear chain by including a
quartic anharmonic nearest-neighbor interaction. We
have shown that these localized modes originate from the
high-frequency mode of the harmonic linear chain and
that a small anharmonicity is sufBcient to produce a con-
siderable narrowing of the displacement pattern. We
have also investigated the role of crystal inhomogeneity,
introducing a modification of the fourth order force con-
stant between two neighboring atoms at the center of the
localized mode, which could describe for example the epi-
taxial growth of a layer onto the surface of a film of the

same material. We have found that a small weakening of
this force constant tends to enlarge the displacement pat-
tern, keeping the original location of the maximum dis-
placement, while a large weakening tends to split the dis-
placement maximum of the localized mode into two max-
ima, with one maximum located to the left and the other
to the right of the initial maximum. The creation of
these two maxima is favored for odd modes where a
smaller weakening allows this splitting of the maximum
of the intrinsic mode. We have also analyzed the asym-
metric case, showing that by shifting the modified anhar-
monic force constant one site to the right there is a ten-
dency of the even mode to become a quasiodd mode cen-
tered at that site. Finally, we have studied the existence
of surface modes in the free-end chain finding an even
symmetry mode and a quasiodd symmetry mode for the
purely quartic anharmonic case.
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