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The central gap in the density of states and the localization of states on a Penrose lattice are
investigated within a tight-binding model for the vertex problem. The results show that the gap is a
consequence of frustration. There are surface states within the gap in a finite lattice. The correlation
between the appearance of the gap and the localization of states is also studied.

I. INTRODUCTION

It is well known that the atomic arrangement of solids
is essential to determine their physical properties. In
fact, the translational symmetry of crystals provides the
existence of extended electronic states (Block waves) and
disorder induces localization of states.

Since 1984, a new type of structure called
quasiperiodic, 2 which is intermediate between periodic
and disordered solids, has aroused much interest be-
cause new physical properties are expected. Quasicrys-
tals (QC's) are generally metallic alloys with a quasiperi-
odic structure in three dimensions (3D) [e.g. , the I phase
in NiTi2 (Ref. 3)] and 2D [e.g. , the T phase in AlqsMni4
(Ref. 4)]. There are also quasiperiodic systems in 1D,
like Fibonacci superlattices which are built with two al-
ternating semiconductors. ' Particularly, the Fibonacci
chains provide a simple way to analyze the effects of
quasiperiodicity, like the incommensurate folding of the
Brillouin zone detected in the Raman spectra of Fi-
bonacci superlattices.

Quasicrystals exhibit an intermediate character be-
tween crystals and amorphous; for instance, there is no
translational symmetry, like in amorphous materials, but
they present sharp difFraction spots like crystals As for.
the electronic properties of a QC, we expect intermediate
behavior between a crystal and an amorphous solid, for
example, in the electronic density of states (DOS) and
the localization of states.

In 1D or 2D quasiperiodic systems, three kinds of wave
functions coexist: extended, localized, and critical. The
critical states are neither localized nor extended; they
have self-similar wave functions in real space. For the
Fibonacci chain, it has been proved that the spectrum is
a Cantor set. However, this chain can only be defined
with diagonal (site) or nondiagonal (bond) quasiperiodic
sequences, and it does not present another type of topo-
logical disorder, like variations in coordination or bond
angles, which is an important characteristic in real QC s

in more dimensions. One important effect of these topo-
logical variations on the electronic properties is the frus-
tration of the wave function, as we shall show later.

The natural extension of the Fibonacci chain in 2D
is the Penrose lattice (PL), which is a quasiperiodic
way of 6lling up a 2D planar space with two kinds of
tiles. The PL is the lowest-dimensional model with topo-
logical quasiperiodicity, and has the advantage of low-
dimensional systems which exhibit the effects of disorder
more clearly. It would be useful to understand which
properties observed in a Fibonacci chain are also valid
for a system in higher dimensions.

There are numerous models to study excitations in the
PL (Ref. 11) using first principles Hamiltonians. The
obvious choices for the atomic positions in these models
are the centers (center models'io) and the vertices of the
tiles (vertex model ). This latter choice is convenient
if one is interested in the connectivity properties of the
PL and gives insight into the effects of the topology on
the excitation spectra. In this paper we shall study the
vertex model.

As pointed out by Tsunetsugu et al. , the PL would
be most sensitive to topological quasiperiodicity, one ef-
fect being the frustration induced in the phases of the
wave functions. We show here that this frustration and
the nonperiodicity are responsible for the central gap in
the DOS of the PL. We do this by separating the PL
into two alternating sublattices and by renormalizing one
of them. This renormalization maps central states into
antibonding states. Then, the frustration of the new lat-
tice inhibits antibonding states which means that there
is a gap in the DOS of the PL. Also, the nonperiodicity
of the lattice produces different amplitudes on each of
the sites, which results in a contraction of the band and
localization near the lowest band edge.

This paper is organized as follows. In Sec. II we ex-
plain the model Hamiltonian and the construction of the
tiles for numerical calculations of the DOS. Section III
is devoted to the study of the origin of the central gap.
Finally, in Sec. IV we give the conclusions of the work.

0163-1829/94/50(14)/9834(9)/$06. 00 50 9834 1994 The American Physical Society



El'E'ACTS OF FRUSTRATION AND LOCALIZATION OF. . . 9835

II. ELECTRONIC PROPERTIES
OF THE PENROSE LATTICE

Consider a simple tight-binding Hamiltonian for 8 elec-
trons, with nearest neighbor interactions

~=).t., l')(~l, (1)
~ l2

where sites i and j are vertices of the PL, and the hop-
ping parameter t;~ is —1 for connected neighbors and 0
otherwise. In this situation one avoids site or bond dis-
order. Furthermore, all rings of bonds are fourfold and
there is no ring statistics. Therefore only the diH'erent

coordination of each vertex introduces all the efFects of
quasiperiodicity.

In order to calculate the DOS one needs to diagonalize
a matrix of the order of the number of sites and this
represents a severe limitation on the size of the lattice,
which is undesirable in a quasicrystal, because the finite
size effects cannot be easily identified. We have devised
a renormalization method to calculate local DOS in an
extremely large Fibonacci chain. iz Since the PL can be
regarded as a straightforward extension of the Fibonacci
sequence to 2D, the same method can be extended here.

As the Fibonacci chain is defined by two types of sites,
or two types of bonds, the PL can be constructed from
two basic tiles. It is convenient to consider the Robinson
triangles, ~ obtained when one divides a pentagon. In
Fig. 1 these two basic units are shown and can be con-
sidered as the tiles of generation 1 and 2, respectively.
To obtain the tile of generation 3 one joints the two for-
mer tiles 2 1, as shown in the figure. Observe that the
second tile to be joined at each step has to be the mirror
iinage of the original one, which is equivalent to follow
the matching rules. i4 The shape of a tile of a given gener-
ation is always that of one of the two Robinson triangles,
and a given shape is repeated every four generations. The
ratio of the areas of two tiles of subsequent generations
is the golden ratio r = z(1+ v 5).

The extension of the renormalization procedure fol-
lowed for the Fibonacci chain is carried out by renor-
malizing all the interior sites in a given generation, leav-
ing a11 the sites in the border intact. In terms of the equa-
tion of motion for the Green's function G = (EI —H)

(2)

(s)

FIG. 1. The two Robinson triangles as Penrose lattices
of generations 1 and 2, respectively. Further generations are
obtained by joining the previous two.

this is equivalent to eliminating elements with indexes re-
ferring to the interior sites by substituting them into the
equations involving only the border sites. As an example
consider Fig. 2, in which the tile of generation 5 is shown.
Observe that there are only three lengths of bonds T(l),
T(2), and T(3), and there is only one interior site labeled
6. The equations of motion are explicitly

[E —E(1)]G(1, 1) = 1 + T(2)G(2, 1) + T(3)G(5, 1),
[E —E(2)) G(2, 1) = T(2)G(1, 1) + T(3)G(3, 1) + T(2)G(5, 1) + T(2)G(6, 1),
[E —E(3)]G(3, 1) = T(3)G(2, 1) + T(3)G(4, 1) + T(2)G(6, 1),
[E —E(4)] G(4, 1) = T(3)G(3, 1) + T(2)G(5, 1) + T(2)G(6, 1),
[E —E(5)]G(5, 1) = T(3)G(l, 1) + T(2)G(2, 1) + T(2)G(4, 1) + T(1)G(6,1),
[E—E(6)]G(6, 1) = T(2)G(2, 1) + T(2)G(3, 1) + T(2)G(4, 1) + T(1)G(5, 1).

After renormalizing site 6, one is left with only Ave equations

[E —E(1)]G(1, 1) = 1 + T(2)G(2, 1) + T(3)G(5, 1),
[E —E(2) —W22] G(2, 1) = T(2)G(l, 1) + [T(3) + W22]G(3, 1) + W22G(4, 1) + [T(2) + W12]G(5, 1),
[E —E(3) —W22] G(3, 1) = [T(3) + W22]G(2, 1) + [T(3) + W22]G(4, 1) + W12G(5, 1),
[E —E(4) —W22] G(4, 1) = W22G(2, 1) + [T(3) + W22]G(3, 1) + [T(2) + W12]G(5, 1),
[E —E(5) —Wl1] G(5, 1) = T(3)G(1, 1) + [T(2) + W12]G(2, 1) + +W12G(3, 1) + [T(2) + W12]G(4, 1),
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FIG. 5. Inverse participation ratio (IPR) for a Penrose lat-
tice of generation 19 obtained by exact diagonalization. The
lowest level corresponds to states with C,(j) close to 1/~N
The dashed line indicates the lowest IPR of the degenerate
central states, and some surface states with constant IPR are
indicated by arrows.
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FIG. 4. Local density of states from a Penrose lattice of
generation 23. (s) is taken from a three-coordinated site snd
(b) from s contiguous four-coordinated site.

N

IPR(j) =) C,(j)'.

The IPR is a measure of the reciprocal of the number
of sites occupied by the wave function. In Fig. 5 the
IPR as a function of the energy for a lattice of N = 2176
sites is shown. Surface states are detected in the IPR
by performing several calculations in clusters of different
sizes and different boundary conditions.

The IPR values are between 0.06 and 1/X for all the
studied Penrose lattices. We can see in Fig. 5 that states
near the edges of the band are delocalized with an IPR
closer to 1/%. The vertical line of dots at E = 0 corre-
sponds to confined states, since their IPR presents a min-
imum value (dashed line in Fig. 5), which corresponds
to the maximum extension of the fractal regions.

States at lEl & 0.15 (with arrows in Fig. 5) are expo-
nentiaHy localized because their IPR does not vary with
N. They also have the highest IPR. These states only
present amplitude difFerent &om zero near the surface,
since Conway's theorem would imply that if there is
a configuration of sites with a given amplitude, there
should be a similar configuration at a distance not ex-
ceeding twice the radius of the configuration. Therefore,
they are certainly surface states, not present in the infi-
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FIG. 6. Site amplitude contribution (SAC) for sll sites
of coordination 3 in a Penrose lattice of generation 17. No-
tice the abrupt change of behavior around E = 0.92 and the
sudden increase at E = 0.37.

nite lattice.
Figure 5 shows that for energies below 0.37, the

behavior of the IPR changes. All states with an absolute
energy below this value have an IPR bigger than the lower
IPR value of the central state (dashed line in the figure).
This figure shows that states below 0.37 are not extended.
We shall discuss their nature in the next section.

More information can be extracted if one plots the
quantity "site amplitude contribution" (SAC), defined as

Nv

SAC(v, j) = ) C;(j), (4)
iQv

for all sites with coordination v excluding those in the
surface. In Fig. 6 this quantity is shown for sites of co-
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eigenstates with ~E~ ) 0.92 have constant amplitude in
three-coordinated sites.

In Fig. 7 the corresponding plots for all the other co-
ordinations are shown. Notice that the states near the
center of the spectrum present more amplitude in sites
of lower coordination, while the higher coordination sites
have amplitude near the band edges. This is in agree-
ment with the fact that there is not crossing of the bands
when one varies the ratio between the hopping parame-
ter and the site energy. It also supports the statement
of level repulsion (quantum chaos) in other quasiperiodic
2D systems.
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III. FRUSTRATION IN H~

Since the PL is bipartite, in this section we renormal-
ize one of the original sublattices and define the corre-
sponding Hamiltonian (H2@ = E24'). Then we study
the consequences of frustration and nonperiodicity in the
renormalized lattice.

After renormalizing one of the sublattices the corre-
sponding Hamiltonian is

0 I I I I 'I I i
, 0-4,5 -3.5 -2,5 -1,5 -0.5

~ ~
*

I i' I i I

05 t 5 25 35 45

FIG. 7. The same as in Fig. 6 for sites of other coordina-
tions, indicated in each plot. The value of the gap at E = 0.2,
and the other peculiar values E = 0.37 and E = 0.92 are also
noticeable here.

ordination 3. Notice that a higher value of this quantity
means a larger amplitude in three-coordinated sites of the
corresponding eigenfunction. It is seen that the behavior
of this plot changes at E —0.92 and at E 0.37. This
latter value corresponds to the localization edge detected
in Fig. 5, and the value 0.92 is peculiar because here the

H = t ) Z, )i)(i(+ 2) )i)(l)+ ) 2)(k~ . (5)
iGA

Sites I, and k are the second nearest neighbors of i
in the original lattice. If i is situated in a corner of a
rhombus, t is one of the Z, sites on the opposite corner
of that rhombus. k is one of the M; = g (Z~ —3) second
neighbors of i that belongs to a rhombus that does not
have i as a corner. Here j is a first neighbor of both i
and k.

After renormalization, the new lattice (which we shall
call H2) is composed by two kinds of regions. One
with only triangular cells (regions I) centered in renor-
malized three-coordinated sites, which do not present
crossed (second neighbor like) interactions. The other
type presents crossed interactions (k bonds) and is com-
posed by cells, of six diferent shapes, defined by t bonds
(regions II in Fig. 8). These cells represent the dual
of renormalized vertices with coordination other than 3.

FIG. 8. Sketch of a portion of a H2
lattice obtained after renormalizing one of
the alternating sublattices of the PI. Region
I only contains triangular cells and region
II presents second-neighbor-like interactions
due to k bonds (in light lines) and first neigh-
bor interactions due to l bonds (in bold lines).
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This division is due to the fact that in the PL all non-
three vertices are connected in lines (called strings) which
divide the whole lattice in finite independent parts. s

These parts contain only three-edge vertices. The same
strings confine inside them all eigenstates at E = 0 (the
amplitude of the wave function is always zero in the
strings). is is As was found by Khomoto and Sutherlandis
almost all non-three-edge vertices are sites with zero am-
plitude at E = 0, which means that almost all sites in a
region I have zero amplitude too.

The effect of the renormalization is immediately seen
when one realizes that the center of the band in the orig-
inal Hamiltonian is mapped to the minimum eigenvalue
of H2. Since in Hz the hopping parameter (t ) is posi-
tive, then its highest eigenvalue corresponds to the bond-
ing state while the minimum eigenvalue (Ez = 0) corre-
sponds to an antibonding state in which the amplitude of
neighbor sites changes sign (maximum number of nodes).

The bonding limit is always realizable for all
str uct ure s 2o

T. he situation is quite different for the to-
tally coherent antibonding state. In a structure with
odd-membered rings this is not possible because there
are &ustrated bonds, i.e., bonds which connect sites with
the same phase. Thus, a completely antibonding state
is not realizable. The closest one can get to the anti-
bonding state is to arrange the coefficients C;(j) of the
wave function as to minimize the number of &ustrated
bonds. Moreover, states near this antibonding state
can be expected to be profoundly affected by topolog-
ical disorder. In the renormalized PL one expects a
gap, due to frustration, between the lowest eigenvalue
(E2 = 0, which is confined) and the first band state. It
is also expected a change in the localization properties of
states near the antibonding edge.

The edge due to &ustration corresponds to a state with
the minimum number of frustrated bonds (see the Ap-
pendix). As a first approximation let us calculate this
edge by assuming that all cells in H2 have the minimum
number of &ustrated bonds, and that there are no varia-
tions of the amplitudes C;. Locally, there are eight types
of cells p in the H2 lattice (using the usual notationi4
for p; see Table I), or if one considers cells with the
same number Z„of sides as equivalent, there are only
five types. Note that the number of sides is exactly the
coordination of the renormalized site in the PL at the
center of the cell. Adapting the expressions derived in
the Appendix, the frustration edge, given by Eq. (A7),
can be written as

E~ ——t ) Z„P„—2 ) P(p)N~(p)

TABLE I. Types of cells in 82.

Phase
~ =+1 o= —1

Cell
Name (p)

7-47

K 57-8

S, SS, J 10-6r

S4 137-211~F
S3 13-8v

1V/2 N).Z'C' = ) P(&)Z~ = (Z) = 4.
zqA @&PL

The second term in the right-hand side of Eq. (6) is
obtained by counting the total number of bonds Nt (p)
in each type of cell. Bonds of type k in Eq. (5) belong
to only one cell, while bonds of type l share two cells;
see Fig. 8. Therefore, the latter should have a weight
of 1/2, which cancels the factor of 2 in the hopping pa-
rameter of bonds t. Thus, when counting bonds in a cell
all bonds have the same weight. In the third term only
the number of frustrated bonds per cell Ny(y, ) contribute
with f (m, n) = 4, if one does not allow the relative phase
between sites m and n, connected by a frustrated bond,
to deviate &om zero.

Inspection of Table I shows that Nq(p) = Z~(Z„—1)/2
and that

+4 ) P(IJ,)Ny(p, ) Z„(Z„—2)/4
(Z„—i)'/4

if Z„ is even,
if Z„ is odd.

Here the summations are over cells; therefore P(p) is
the proportion of type p vertices in the PL, which is also
the relative number of the corresponding dual cells in H2.
Observe that C; = g2/N in H2 and

Notice that these numbers are not altered if one makes
another choice of the phases, provided that one conserves
the number of positive and negative signs. By putting
those values in (6) we get
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Ey / P(I") l~P 2 (N&(&) 2Nf (&)}1 ) P(&).
P p, odd

(7)

Jn our case the numerical result, obtained from Table
I is

E~ ——P(Q) + P(D) + P(S) + P(S&) + P(J) + P(Ss)
6= —= 0.87544

or Ey ——0.9356. This number corresponds to the value in
Fig. 6 where the wave functions start having amplitude
preferentially in sites with Z = 3 . Therefore, based on
the ideas in the Appendix let us assume that states below

E& in 02 present amplitude concentrated at the vertices
of cells other than Z„= 3 (regions II) in order to reduce
frustration.

Let us calculate a minimum bound to these states by
assuming that the amplitude at all vertices other than 3
is zero. That is, there is no contribution to the wave func-
tion from any triangular cell in this minimal state. All
cells become even except cells of type S, two J for each S4
site, and all the S4, which become triangles. Therefore,
the new lower limit for states with varying amplitude is

E,' = P(S) + 3P(S4) = = 0.1436
184~ —297

5

or EI ——0.3790, which is very close to the calculated value
in Fig. 6 and the value 0.37 ( E& ( 0.55 obtained by the
method of continued fractions.

States between E~ and Ey are mainly localized in re-
gions II and they are not fully extended. Examination of
the wave functions of states below E~ suggests that they
are fractally localized, in the sense that states close to Et
concentrate the amplitude inside the surroundings of the
fivefold symmetry center (S or Ss) of the largest inflated
PL. As the energy is lower, the amplitude peaks around
the fivefold centers of PL with smaller rhombuses. There-
fore, it is reasonable to say that the lower energy limit
for this kind of state is when the amplitude concentrates
around all the fivefold sites. An estimate for this limit
will give the gap

= P (S) + P (Ss ) = —= 0.0557

or 4 = 0.236, in close agreement with the narrow band
found by Kumar et aL. and in our numerical calcula-
tion. One should notice that an inflated PL with all the
vertices in S or S5 has rhombuses with sides of length
~, which means that one has a characteristic minimum
distance to fractally deflate the states around the five-
foM symmetry centers. This fractallity has been ob-
served in PL built with piezoelectrics with a vibrating
oil membrane. In these experiments, when the wave-
length was comparable to the distance between vertices,
or smaller, features at typical distances showing the de-
flation rules of the PL were observed; that is, the am-
plitude of oscillation is greater where there should be a

fivefold symmetry center inside the rhombuses. As the
smallest strings are formed around a Ss site (So string in
Ref. 19) one is tempted to say that the value of the gap
should be 6 = g(3 —w)/5/v = 0.1241 according to Eq.
(8). However, more numerical calculations are required
to verify this speculation.

As a token, Eq. (6) can be used to estimate the bonding
edge Eb, noticing that in the bonding limit all bonds are
frustrated. Then Ny(p, ) = Nq(p), which gives

Eq2 —) P(p) g„= 3Z„+ 2Ng(p) = 66 —30'

= 17.458 98

or, in the PL, Eg ——4.1784. The diB'erence with respect
to the observed value (Eb = 4.23) is due to variations
of the amplitudes in each kind of vertex, not taken into
account here. If one allows changes in the amplitude, one
reproduces the mean 6eld result, which is correct. Note
that in a square lattice (SQL) Eb = 4.00. This difference
arises from the fact that in the renormalized SQL the
numbers of bonds l and k are 2N, but in the renormalized
PL the number of bonds t is 2N while the number of k
bonds is N~ ——(27 —15')N = 2.729N. Another way of
saying it is that the wid. ening of the band is a consequence
of the coordination fluctuations or the second moment of
z.

The method presented here can be applied to the cen-
ter model, in which there is contraction of the upper
limit of the band of about 1.32. This is due to frustration
in the PL formed with sites of coordination 4, but rings of
difI'erent shapes, as in 02. Assuming again that there are
no amplitude variations, this contraction should be given
by Eq. (All) En ——4Ny/N = 2[1 —P(K) —P(S )] =
1.75, which is larger than the observed value in the DOS,
but very close to the place in which the IPR changes from
being constant.

IV. CONCLUSIONS

In this paper a detailed examination of the tight-
binding spectrum of the vertex model in a PL was pre-
sented. Numerical calculations, made in large PL's built
with a renormalization procedure, suggest the persistence
of the central gap in an infinite PL. A theory based on
frustration ideas in a renormalized lattice (H2) was pre-
sented, and some peculiar values of the energy were sin-

gled out by the theory. At E = 0.9356 the theory pre-
dicts a change of the nature of states, progressively de-

localized above it and localized in specific regions to re-
duce frustration below it due to amplitude variations. At
E = 0.3790 a lower limit for these localized states in re-
gions of low frustration is found, and as one lowers the
energy the states are fractally localized around points of
fivefold symmetry. We also found that E = 0.236 repre-
sents an estimation for the lower limit for these fractally
localized states, and therefore an estimation of the gap.
The numerical calculations in finite PL agree extremely
well with these values of the energy, except that some
states below 0.2 are found in the calculations. Some of



Ei'FACTS OF FRUSTRATION AND LOCALIZATION QF. . . 9841

these states are evidently due to finite size effects, and
are confined to the surface of the lattice. However, some
states between E = 0.154 and 0.23 conserve some of the
&actal properties around Bvefold centers. More theoreti-
cal investigation is required to fully understand the states
between 0.15 and 0.37. This work is currently in progress.
The theory can be applied to other quasiperiodic lattices
as the PL central model or octagonal quasicrystals.

APPENDIX: ESTIMATION
QF THE BAND EDCE

~

~ ~&=). ~ Z'li)(il+). Vali)(jl (A1)

Our aim is to find an expression for the band edge of an
antibonding state. Suppose that we have the following
tight-binding Hamiltonian:
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(M) = ) C;e' '(i). (A2)

This wave function is not necessarily an eigenstate of
Eq. (A1) but the expectation value of the energy calcu-
lated using this function can serve as an approximation of
the band edge. Using Eq. (Al) we obtain the expression

Eo = (MINIM) = ) Z'(Mli)(ilM) + ):V (Ml')(jlM) (A3)

The term (M(i) (i~M) always gives C; . If the bond between i and j is not frustrated, then (M~i)(j~M) = —C;C~.
Otherwise, we label sites connected by the frustrated bond by m and n, , and

(M~i)(gM) = c c„"~'- (A4)

Then,

I

Es ——) ZC; —) VCC, +) V „e'~ "lc C„.
2 fA $A

(A5)

The primed summation is carried out over nonfrustrated vertices. We rewrite this expression as

Eo ——) Z;C, —) V;, C;C~ + ) V „[expi(8 —8„)+ 1]C C„. (A6)

In this equation, the sum over j is now over all the neighbors of site i. If the last sum is made over frustrated
bonds, instead of sites, we get

Eo ——) Z;C; —) V~c;C~ + ) 2V „[cos(8 —8„)+ l]C C„.
f bonds

We can see that there are two contributions to the displacement of the band edge,

{A7)

with

) V „f(mn)C C„,
f bonds

f(m, n) = 2[cos (8 —8 ) + 1).

a~=) z;c,' —) v,,c,c, (A8)

(A9)

(A10)

One is due to the different amplitudes in each site
(A~). For a crystal this term is zero since Z; is a constant
and all the amplitudes are the same, but for nonperiodic
lattices this term may not be zero. The other contribu-
tion (b,y), is produced by the frustration of the lattice
and can be reached either by changing the phase or the
amplitudes on sites connected by frustrated bonds. Note
that in a periodic lattice this terxn could be different from
zero. For perfectly frustrated bonds in a lattice with con-
stant Z and V,.~ = V for nearest neighbors we have that
f(m, n) = 4, and
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EB = 4VNf/N, (A] 1) Eq. (A9), we find that the lower limit of the band is

where Nf is the minimum number of frustrated bonds
As an example, the compression of the DOS due to

frustration in a triangular lattice can be calculated. In
this case the coordination is 6, and we expect that the
DOS limits are 0 and 12 for the Hamiltonian (Al). How-

ever, the basic cell of this lattice is a triangle, and we

cannot construct an antibonding state. Then, we need
to use a trial function with minimal frustration to calcu-
late the lower band edge. The symmetry of the lattice
suggest that the greatest difference of phases between
sites is vr/3 with constant amplitude. Then, using Eq.
(A10) it is found that f(m, n) = 1 and A~ = 0. Note
that all sites are joined by frustrated bonds. By applying

Eo —— ) C C„=3.
f bonds

(A12)

The last step follows from the fact that the number of
frustrated bonds is equal to the total number of bonds, in
this case 3N. All the amplitudes are 1/VN. The exam-

ple of triangular cells is the only one in which frustration
is reduced by distributing the phase uniformly among
the sites in the ring. In cells with a larger odd number of
sites a variation of the phases does not leed to a smaller
frustration with respect to the state in which the phases
differences are 7r in most consecutive sites.

E.N. Economou, Green's Functions in Quantum Physics,
2nd ed. , Springer Series in Solid State Sciences, Vol. 17
(Springer, New York, 1983).
D. Schechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys.
Rev. Lett. 53, 1951 (1984).
T. Janssen, Phys. Rep. 168, 55 (1988).
J. Reyes, J.G. Perez-Ramirez, and R. Perez, J. Mater. Res.
3, 29 (1988).
R. Merlin, K. Bajema, R. Clarke, F.Y. Juang, and P.K.
Bhattacharga, Phys. Rev. Lett. 55, 1768 (1985).
M.W.C. Dharma-Wardana, A.H. MacDonald, D.J. Lock-
wood, J.M. Baribeau, and D.C. Houghton, Phys. Rev. Let t.
58, 1761 (1987).
C. Wang and R. Barrio, Phys. Rev. Lett. 61, 191 (1988).
P. Ma and Y. Liu, Phys. Rev. B 39, 9904 (1989).
M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B
35, 1020 (1987).
H. Tsunetsugsu, T. Fujiwara, K. Ueda, and T. Tokihiro,
Phys. Rev. B 43, 8879 (1991).
J.M. Cabrera- Trujillo, F. Mejia-Lira, and J.L. Moran-

Lopez, in Proceedings of the 2nd Latin America. n Workshop

on Non- Linear Phenomena, edited by P. Cordero and R.
Benguria (Elsevier, New York, 1991).
R.A. Barrio and Chumin Wang, in Quasicrystals and In
commensurate Structures in Condensed Matter, edited by

M. Jose Yacaman, D. Romeu, V. Castano, and A. Gomez

(World Scientific, Singapore, 1990), p. 448.
' R. Robinson, Invent. Math. 12, 177 (1971).

N. G. de Bruijn, Proc. K. Ned. Akad. Wet. A 84, 53 (1981).
' M. Kohmoto and B. Sutherland, Phys. Rev. Lett. 56, 2740

(1986).
R.A. Barrio and C. Wang, J. Non-Cryst. Solids 1538z:154&
375 (1993).

'"M. Kohmoto and B. Sutherland, Phys. Rev. B 34, 3849
(1986).

' V.G. Benza and C. Sire, Phys. Rev. B 44, 10343 (1991).
' M. Arai, T. Tokihiro, T. Fujiwara, and M. Khomoto, Phys.

Rev. B 38, 1621 (1988).
M.H. Cohen, in Topological Disorder in Condensed Matter,
edited by F. Yonezawa and T. Ninomiya, Springer Series in

Solid State Sciences, Vol. 46 (Springer, New York, 1983), p.
122.
M.H. Cohen, in Fundamental Physics of Amorphous Semi-
conductors, edited by F. Yonezawa, Springer Series in Solid

State Sciences, Vol. 25 (Springer, New York, 1981), p. 119.
V. Kumar, D. Sahoo, and G. Athithan, Phys. Rev. 8 34,
6924 (1986).
F. Montero de Espinosa and M. Torres, Appl. Phys. Lett.
(to be published).


