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We introduce a semimicroscopic discrete-state model appropriate to the orientational glass
phase in mixed alkali halide cyanides with (ill) equilibrium orientations of the CN ions, such
as K(CN) Bri . The order-parameter fields are defined as symmetry adapted combinations of
the occupation number operators along the cubic body diagonals, which transform according to
the T2~ representation of the cubic group. These interact via an infinite-range random interaction
in the presence of quenched local random strains. We then use the replica formalism to derive a
replica-symmetric solution for the components of the orientational-glass order parameter, the lin-

ear susceptibilities, and the elastic compliances. The high-temperature orientational-glass phase
is characterized by an isotropic order-parameter matrix with only the diagonal elements q„being
nonzero. At high temperatures, the behavior of the order parameter q = P q„/3 is similar to that
of an Ising spin glass, however, at intermediate and low temperatures the two models differ signif-
icantly. We also derive the instability line Ty(b, ) separating the replica-symmetric isotropic phase
from the low-temperature anisotropic orientational glass phase, which is characterized by broken
replica symmetry. In contrast to the random-bond —random-field model of an Ising spin glass, the
instability temperature increases with random-field variance, implying. that in quadrupolar glasses
replica-symmetry breaking may be relevant already at relatively high temperatures. Finally, an
expression for the distribution of local strains related to the NMR line shape is derived. It is also
shown that the quadrupolar glass order parameter can be determined by NMR.

I. INTRODUCTION

Orientational-glass ordering which occurs in mixed al-
kali halide cyanides such as K(CN), Bri is character-
ized by frozen-in random orientations of the quadrupolar
axis of CN ions. There is a large body of experimental
data regarding the equilibrium and dynamic properties
of these and similar crystals, i in which the nonspherical
CN ion is randomly substituted by a spherical ion, e.g. ,

Br
In quadrupolar glasses of the above type, the interac-

tion between the quadrupoles is mediated by the elas-
tic deformations of the fcc center-of-mass lattice. The
sign of the pair interaction energy depends on both the
mutual orientation of the quadrupole tensors and their
orientation with respect to the bond vector. In a dis-
ordered system, the signs are expected to alternate ran-
domly, implying that the interactions are frustrated, and
as a result the quadrupolar axes &eeze in random dis-
crete orientations. Thus an orientational-glass phase ap-
pears for concentrations x below a threshold value x,
which for K(CN) Bri is found to be close to 0.7.2 For
0.7 & z & 0.9 a ferroelastic first-order phase transition
&om the cubic to a rhombohedral phase occurs. For
0.9 & x & 1 another first-order cubic-to-orthorhombic
phase transition characterized by a ferroelastic long-
range order occurs, similar to the one in pure KCN.
In K(CN) Bri the phase diagram is strongly asym-

metric with respect to x; i.e., the glassy phase is found
down to very low CN concentrations with progressively
smaller values of the transition temperature. Ultrasonic
measurementss in the glassy phase suggest that the lat-
tice remains effectively cubic down to the lowest temper-
atures. The transition into the glass phase is associated
with an anomaly in the shear compliance. The &eezing
temperature TI can be estimated from the experiments
of Hessinger and Knorr, who observed the splitting be-
tween the field-cooled and zero-field-cooled linear elastic
susceptibilities in K(CN) Bri . It was further found by
NMR on a closely related system Na Ki CN (Ref. 5)
that above the freezing temperature the NMR lines are
broadened, indicating that the orientational-glass order
parameter remains finite at all temperatures, similar to
the dipolar glassess where the presence of local random
fields was found to be responsible for the appearence of
noncooperative order above the nominal transition tem-
perature. Analogous conclusions were also reached by
neutron scattering experimentsr on K(CN) Bri . Thus
random local strains appear to be an essential feature
which should be included into any realistic model of
quadrupolar glasses.

By measuring the nonlinear elastic susceptibility yNL
of K(CN) Bri, Hessinger and Knorrs found a scaling
behavior gNi, (T —TNi, ) ~, where TNL roughly co-
incides with the &eezing temperature Ty. This gives a
strong indication that random interactions do exist in
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these systems along with random strain fields, since the
latter aloae could not produce a diverging nonlinear re-
sponse. Below Ty a remaaent strain was observed, which
disappears on approaching Ty in full analogy with the re-
manent magnetization in magaetic spin glasses. io More-
over, the time dependence of the remanent straia shows
a nonexponetial decay, which again is a characteristic
feature of spin glasses and related systems.

Theoretical coacepts relevant to the subject of
orientational-glass ordering and the results of numerical
simulations on these systems are summarized in a recent
review by Binder and Reger. ii In general, two classes
of models have been studied: (i) models characterized by
continuous orientation of the quadrupolar axis, i2 and (ii)
discrete-state models. i The complexity of a theoretical
description of the orientational-glass phase lies in the fact
that in general the fluctuation field is a m-dimensional
tensor of rank 2. For instance, in the case of continuous

symmetry models with m=3, the orientational-glass or-
der parameter is a 6x6 matrix. In niixed alkali halide
cyanides, however, the CN quadrupoles cannot rotate
&eely due to the strong hindering potential geaerated by
the aeighboring ions. Thus the crystal-field anisotropy
will invariably reduce the number of possible orientations
of the quadrupolar axis to a discrete set of states, which
correspond to the minima of the anisotropy potential on
a mezoscopic scale. is In a cubic crystal these can lie along
the cubic axes (100), body diagonals (111),or face diago-
nals (110). As shown by Vollmayr et at. (to be referred
to as VKZ) the discrete-state equilibrium orientations
of the quadrupolar axis along the (100), (111),and (110)
directions can be described by the s-state Potts model,
with s = 3, 4, and 6, respectively.

In the present work we focus on a discrete-state model
appropriate to the case of (111)equilibrium orientations
of the quadrupolar axis. We investigate the orientational-
glass phase for a range of concentrations z just below the
threshold value z, 0.7, i.e., ia the vicinity of the ferroe-
lastic rhombohedral phase, where the sample-averaged
shear strains disappear; however, they are expected to be
locally nonzero giving rise to local random strain fields.
We start &om the VKZ (Ref. 13) representation of dis-
crete occupation numbers N;„, where p = 1,2, 3, 4 la-
bels the four (111) states. In contrast to earlier mod-
els, however, we explicitly include at the outset both
an isotropic random-bond interaction of the VKZ type
and a set of local random strain fields. In general, local
random strains can be represented by their irreducible
syrxirnetry components, which couple linearly to the or-
der parameter field. Thus a set of syminetry-adapted
linear combinations of N;„appears as a natural choice
for the appropriate order parameter fields, which —like
the random strains themselves —transform according to
the Tq~ representation of the cubic group. An extension
of the present approach to the cases of (100) and (110)
equilibrium orientations appears straightforward, but is
rather tedious in view of the algebra of the appropriate
order-parameter Gelds, and will be discussed in a future
publication.

The organization of the paper is as follows: In Sec. II
we introduce the model and by using the replica the-

A theoretical model capable of describing the
phase transition into the orientational-glass phase in

K(CN) Bri crystals can be set up by first introducing
the orientational degrees of freedom —i.e., the orienta-
tions of the uniaxial-quadrupole axis—which are linearly
coupled to elastic strains. On a semimicroscopic scale the
lattice remains cubic ia the orientational-glass phase. For
simplicity, we will assume that each lattice site is occu-
pied by a discrete-state quadrupole, and that these are
interacting via randomly &ustrated long-range interac-
tions. For concentrations z in the vicinity of the ferroe-
lastic rhombohedral phase, the predomiaaat quadrupo-
lar axis orientations are along the cubic body diagonals
(111). In this case the orientational degrees of freedom
can be adequately represented by the occupation num-
bers N;„, where p=l, 2, 3, 4 labels the cubic body diago-
nals at lattice site i. By definition, N;„=1 or 0 and thus
(N;~)2 = N;~. Following VKZ we assume that the inter-
action J;~ is isotropic in the discrete-state representation;
i.e., we write the quadrupolar Hamiltonian including a
random-field term in the form

4 4

'Rg = ——) ) J~NpN~p —) ) ) h;„A„pNp
ij p=l i p=1 p

Here J;~ are random interactions and h,„are random
fields due to local random strains, which are generated
by the disorder, with A„„representing a set of dimen-
sionless coupling coefficients. In general, the components
h;„will transform accordiag to the irreducible represen-
tations I' of the cubic Oh, group. In the present problem,
however, the occupation numbers N,„restrict the space
of p(I') to Ais and T2s representations only. Thus we

may introduce a set of symmetry adapted variables Z;„
at each lattice site, namely,

Z;„=) A„„N;p,
p

(2)

where the matrix A» is given by the following explicit
relations:

Z1 ——N1 + N2 —N3 —N4 )

Z2 ——N2 + N3 —N1 —N4,
Z3 ——N3 + N1 —N2 —N4,
Z4 ——N1 + N2 + N3 + N4 .

(3)
(4)
(5)
(6)

ory derive an expression for the averaged &ee energy. In
Sec. III, the replica-symmetric solution is obtaiaed aad
the temperature dependences of the orientational-glass
order parameter, the linear susceptibilities, and the shear
compliances are calculated numerically. We also derive
an analytic expression for the local shear strain distri-
bution. In Sec. IV we investigate the stability of the
isotropic syaiinetric solution against replica-symmetry-
breaking fiuctuations. Finally, Sec. V is devoted to a
discussion and a short summary of the results.

II. DISCRETE-STATE MODEL
AND MEAN-FIELD THEORY
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Here we have dropped the site indices L Clearly, the
Ai~ component is Z4 ——1 in view of the closure relation

N, ~ = 1. Thus Zi, Z2, Zz are the only three non-
trivial components of the order parameter, which trans-
form according to the T2~ representation. The algebra of
Z„,p = 1, 2, 3, is &om Eqs. (3)—(5) given by

Z~Z„= 8„—Zp(1 —b~p)(1 —8 p)(1 —8~ ) . (7)

for the orientational-glass transition, which according to
the experimental results remains continuous, in contrast
to the ferroelastic transition which is first order. 2 Obvi-
ously, in the present model only the elastic constant C44
will be directly affected by the orientational-glass order-
ing. In general, however, third-order terms in Rs do exist
and will lead to a weaker softening of the elastic constant

It may also be noted that P i Zp —Ni + N2 + N3-
3N4 g l.

In terms of Z„variables the orientational part of the
Hamiltonian can be rewritten as

3 3

&a=--) ) 4Z'. Z~. —) ) h*.Z'.
@=1 i p, =l

(8)

The total Hamiltonian

includes in addition to the quadrupolar Hamiltonian
(8) the elastic energy 'Rs due to propagating acoustic
waves, and the interaction between the acoustic waves
and quadrupoles, 'Rz. These are given by the following
two expressions:

A. Mean-Beld theory of the orientational glass

In order to discuss the equilibrium properties of the
orientational glass phase we first apply the replica for-
malism to the subsystem described by the Hamiltonian

(8), ignoring for the moment the interactions with the
elastic degrees of freedom. The effects of orientational
&eezing on the acoustic properties will be discussed in
Sec. III.

Within the standard replica approach, one writes down
the averaged partition function of the n-replicated Hamil-
tonian and subsequently takes the n m 0 limit in order
to find the &ee energy as

[S"],—1

1 2gs = vo) —(Cii+2Ci2)e;i

+(C» —C»)(e,'2+ e,'s)

+ C44(e'4 + e'5 + e's)
1 2 2 2

4
(10)

where the averaged partition function is

[8"] = Tr„exp —P ) ) J,~ Z;„Z.„
UiP

+P) ) h Z,„
Cl $P, av

3

'Rz. = p) ) Z;„e, „+s.

Here vo is the unit cell volume and e,„are the corre-
sponding syniinetry components of the strain tensor e at
site L In the present case, only the shear components
e4 ——e „, e5 ——e „and es = c& couple to Zi, Z2, and
Z3, respectively, all with the same coupling constant p.

The third-order and higher anharmonic terms not in-
cluded in 'Rz are not expected to play an important role

and [ ], denotes a joint random average over the
probability distributions of random bonds J;~ and ran-
dom fields h,„. As usual, we assume that these dis-
tributions are Gaussian and uncorrelated. Their first
and second moments are given by [J;~], = Jo/N and

[J2] „=J/~N for random bonds, and by [h;„] = 0
and [h;„h~„],„=b.b,~h„„ for random fields, respectively.
The trace in Eq. (13) is over all possible values of Z„.
After performing the Gaussian averages in Eq. (13) we

have apart from a constant:

2 2

[Z"] = Tr„ex ') ) Z,„)) ) Z,„Z~~ + ) ) Z,„Z~„ (14)

The quadratic forms in the above expression can be decomposed in order to achieve an effective single-site Hamiltonian
by introducing two sets of 6eld variables,

q„~(Z) = —) Z,„Z~„,a g P, P„(Z) = —) Z,„.
Then the trace in Eq. (14) can be evaluated by constraining the above expressions to constant values q„~ and P„,
respectively, and integrating over all possible paths of q„„(Z)and P„(Z). The constraints are imposed by introducing
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two sets of Lagrange multipliers r„~ and A„. Using the appropriate measures 17[%„],17[r„„],'D[P„], and 1)[q„„]we

can write

[~"]- = f~A] f~P ] fyfy~ ] f~I".-1 «r n')
I

~ i„---ly~l(&. I*
I

x exp N—) ) ~

r„„q„„—PJ—(q„„)
~

+ /3 J—nN
pv ~gp

2

+ln Tr„exp ) ) A„Z,„+) ) ) r„~Z;„Z~ + ) )
@ex z pv clap ap ip,

(16)

In the limit N ~ oo, the integrations over q„„, r„„,
P„, and A„can be evaluated using saddle-point meth-

ods, which is equivalent to replacing q„„, r„„,P„, and

A„by their stationary values. These are

~P 2J2 aP1
pv 2 pv

A„= PJpP„,

(19)

(20)

;- = N):(;, ;.) (17) where

Jp = Jp+PJ (21)

representing the order parameters in the problem, and

By inserting the saddle-point values (19) and (20) back
into Eq. (16) and returning to Eq. (12), we finally obtain
the formal result for the free energy per particle f:—
PP/N:

f = ——P J —limn max~ PJp) (P—„—) ——P J ) ) (q„~)
pa pv ~gp

+ laTr exp i pjt) Z„P„+—p J ) ) (q„„+Ah„~~ Z„g„ (22)

Here we have introduced the notation 6, = 6/J2.
Using the algebra of Z„[cf. Eq. (7)], the terms in Eq. (16) proportional to P J with a = P have been combined

with the quadratic term proportional to PJp, thus renormalizing the interaction parameter Jp according to Eq. (21).
In the following we will consider the case

]Jp] ( J, implying that long-range order is absent. As discussed later, the
above condition is satisfied in the range of temperatures and concentrations which is of interest experimentally.

III. ISOTROPIC REPLICA-SY'MMETRIC ORIENTATIONAL-GLASS PHASE

In this section we search for the replica-synUnetric solution for the orientational-glass order parameter by assuming

that for all pairs a g P,

egg qp pv ' (»)
The ofF-diagonal components q„~ with p, g v must be zero, since they are not invariant with respect to a set of gauge
transformations in which the indices of N„ in Eqs. (3)—(5) are relabeled in all possible manners. Inserting the ansatz
(23) into Eq. (22) and using standard Gaussian transformations, we find that apart from a constant, the free energy
per site is given by

f = — PJ ) (q„—1) —+ —PJp) P„— "e & ~~*~ ln Trexp P) II„Z„, (24)
P P V

where the trace is to be taken over the Z„variables, and the eQ'ective field H„acting on Z„ is given by

H„= J q„+0 x„+J,'P„+E„"'. (25)
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Here x„ is the component of the Gaussian static field induced by a nonzero orientational-glass order parameter q„
and random-field variance 6, and E„'"' is the conjugate field to Z„ formally introduced to generate the static response
functions.

Calculating the trace in Eq. (24) we finally obtain the following expression for the &ee energy in the replica
symmetric case:

f ———P J ) (q„—1) + /3Jo—) P„—ln
~

4cosh(PHi) cosh(PH2) cosh(PHs)
~

P p

(26)

where [ ]i23 denotes a triple Gaussian average over the
fields z„, p = 1, 2, 3, and H„ is given by Eq. (25).

A. Orientational-glass order parameter
and linear susceptibilities

P„ = p„
123

(27)

and

2
qP I IJt

. 123

where p„ is the local "polarization" —corresponding
physically to a shear strain —which is given by

We now obtain equations for the "polarizations" P„
and components of the orientational-glass order parame-
ter q„ in the replica-symmetric phase by imposing the
corresponding extremal conditions on the free energy
functional (26). This leads to the following expressions:

[

trix are equal, thus leading to an isotropic glass phase
with qi ——q2

——qs ——q. In Fig. 1 we plot the order pa-
rameter q as a function of reduced temperature T/J for

various values of the reduced random-field variance b, .
Here we have assumed that the effective first moment of
the distribution of random interactions Jo vanishes. (See
Sec. V for a more detailed discussion of the conditions
under which long-range order is suppressed. ) In Fig. 2
the linear susceptibility g„= y = P(1 —q) is plotted
against T/J for the same values of A. For comparison,
we also plot qI and gl, i.e., the spin-glass order parame-
ter and linear susceptibility, respectively, obtained for the
random-bond —random-field (RB-RF) Ising model with

b, = 0.01 (dotted curves in Figs. 1 and 2). It is easy to
see that at high temperatures the orientational-glass or-
der parameter q and the linear susceptibility y are very
well approximated by the corresponding quantities ob-
tained in the case of Ising spins. This justifies use of the
Ising RB-RF model in analyzing the experimental data
obtained by NMR measurements at high temperatures. is

At lower temperatures, however, the difference between
these two cases is significant.

tanh (PH„) —g„&„tanh (/3H„)

1 —Q„ tanh (/3H )
(29)

As before, [ ]i/3 stands for the average over three Gaus-
sian fields zi, z2, zs. The corresponding linear suscepti-
bility y„ is determined as

I.O

0.8

( BP„ l
E~xt ) @ext—o

(30)
O.6

From the above expressions it follows that in the case
Jo = 0 one has

q

123
(31) 0.2

We may also define a scalar order parameter q (Ref. 11)
as the sum over all components q„„,namely, 1.0 2.0

q= 3):q~. (32)

From the expressions (28) and (29) we see that in the
replica-symmetric phase and in the absence of external
fields all three components of the order-parameter ma-

FIG. 1. Orientational-glass order parameter q in the
isotropic replica-symmetric phase plotted against reduced
temperature TjJ for various values of the random-field vari-
ance 3,jJ (solid lines top to bottom) 0.2, 0.1, 0.05, and 0.01,
and for the RB-RF Ising model (dotted line) for A jJ = 0.01.
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Evaluating the last expression by using Eq. (34), we have

~. =
C ~1+P C

(Z') —(Z.)'
P vpC„ i2s)

(36)

0.80— Thus by virtue of Eq. (31) we finally obtain for the rele-
vant elastic constant C44(T):

0.40-
C44(T) =

0
44

1+V'P(1 —q)
'

0.20-

0.00
0.0

I

1.0
I

2.0

B. Elastic anomalies

FIG. 2. Linear susceptibility in units of J plotted vs T/J
for various values of b,/J (solid lines top to bottom) 0.01,
0.05, 0.1, and 0.2 . Also plotted is the linear susceptibility for
RB-RF Ising model (dotted line) for 4/J = 0.01 .

where C44 is the value of the shear elastic constant far
above the transition temperature, and p = p /voC44
defines the reduced coupling constant, which appears as
a phenomenological parameter in our model. In Fig. 3
the reduced elastic constant C44/C4o& is plotted versus re-

duced temperature T/J for b, = 0.01 and various values
of p. For T/J » 1, the behavior of the elastic con-
stant is determined by the asymptotic behavior of the
order parameter, i.e., q(T) 1/T . At low tempera-
tures, however, q(T) difFers significantly from the T 2

law (see Fig. 1) and consequently C44(T) cannot be de-
scribed by the corresponding asymptotic expression, as
already found experimentally.

The orientational-glass ordering discussed above af-

fects the elastic properties of the lattice leading to an
anomaly in the temperature dependence of the elastic
constant C44 due to a coupling between the orientational
degrees of freedom and shear elastic strains [see Eqs. (9)—
(ll)]. Within the framework of a mean-field theory for
the orientational-glass phase, we may write the efFec-

tive single-site Hamiltonian involving the orientational
degrees of freedom as

gq~ ——) H„Z;„,

where H„ is the efFective field acting on Z;„as given

by Eq. (25). Then the f'ree energy associated with the
total Hamiltonian which is appropriate for a quantitative
evaluation of the elastic anomaly of C44 becomes

C. Local-strain distribution and NMR line shape

In the isotropic orientational-glass phase, long-range
ferroelastic order is absent —i.e., the order parameters
(27) vanish —for a range of parameters such that

~
Jg/J &

1. However, the local shear strains p„given by the ex-
pression (29) are nonzero, i.e., p„g 0, p = 1, 2, 3, since
they are induced by the local fields z„. As Eq. (29) sug-
gests, if two of the local strains p„are nonzero, then the
third one is automatically generated.

The probability distribution W(pi, p2, ps) of local

PE = —ln Trexp~ P'Rq —P'Rs ——Pp) ) e;~+sZ;„

6
—pvo ) ) o„'"'e;„~ .

0.80-

0.70-

As mentioned earlier, within our model only the shear
strains are coupled to the orientational degrees of free-
dom Z„. We may further assume that the coupling con-
stant p is the same for all three strains e4,es,es. In the
syaunetry representation, the elastic part of the Hamilto-
nian 'Rs, which is given by Eq. (10), is diagonal. There-
fore, we may write for the elastic compliance S„

0.50-

0.40
0.0

I

1.0
I

2.0 3.0

8(e„) 1 8 /' BX )
gtrext Q go.ext

~~ go.ext

= p& ((e'.) —(e~)') . (35)

FIG. 3. Shear modulus C44/C44 plotted vs T/J for E =
0.01 and various values of the reduced coupling parameter
p/J= 0.3, 0.6, 0.9, and 1.2 (solid lines top to bottom) and
for RB-RF Ising model for b, = 0.01 and 7/J = 1.2 (dotted
line).
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strains p„ is an important quantity which characterizes
the orientational-glass phase. In the isotropic replica-
symmetric glass phase, W(pi, p2, p3) is implicitly given
by a triple Gaussian distribution of static fields zi, z2, z3.
We may write

I))(e) = Re f dp W„[p„pepe)

Xb V —Vo —Vi CX P)d)
(41)

W(pi) p2) p3)dpldp2dp3

, exp -- ) z2 dz, dz2dz3 . (38)

Equation (38) implies that the second moments
of W(pi, p2, p3) determine the components of the
orientational-glass order parameter q„via

d» p W(pi p2 p3)»'. =— p'.
P 123

(39)

in full analogy to the Ising spin glass. The relation be-
tween the local strain distribution and NMR line shape
is, however, not trivial in the present case where more
than two different orientational states are involved. Let
us assume the following relation between the NMR &e-

quency v of the i N nucleus in a CN group and the
local strains p„:

v = vo + vi ) cdddp)d )

P

(40)

where the coefficients a„determine the shift of the Lar-
mor frequency due to the electric field gradient tensor,
which depends on the orientation of the CN ion. The
above relation is valid in the fast motion limit where
the motion between the discrete orientations of CN
quadrupoles is fast as compared to the difference in the
Larmor f'requencies between these sites. Thus the NMR
line shape i.e. , the number of lines per unit frequency
interval —is given by

It follows from the above expression and Eq. (39) that
the second moment of the NMR line shape (41) is pro-
portional to the orientational-glass order parameter q de-
fined in Eq. (28), namely,

M2 = Iq(v)v dv = qvi ) n„. (42)

The coefficients a„can be calculated for each particular
orientation of the external magnetic field. For instance,
when the field is along (ill) we have

cxi = —A2 = —D3 = 2/3 . (43)

W(»i p2 p3) = l~lexp --) *'„(pi,p2, p3), (44)

where each of the three fields z„(pi, p2, p3) is to be cal-
culated for a given set of values of local strains p„ from
the three coupled equations (29), and J' is the Jacobian
of the transformation. We find using Eqs. (29)

The dependence of M2 on the direction of the magnetic
field due to the a„ terms is expected to be relevant at low
temperatures, where the calculated NMR line shape dif-
fers from the corresponding result for the Ising model, 's
in which case only two difFerent sites of the Ising pseu-
dospin are involved.

In order to calculate the entire NMR line shape, not
just its second moment, one needs to know explicitly the
probability distribution W(pi, p2, p3) as a function of lo-
cal strains pi,p2,p3. Here we only present a formal result,
which can be derived from the definition (38):

1 (1 —tit2t3) 1 2

+ & (
— i)( —2)( —3) (

—tit2)(1 —tit3)(1 —t:t:) tit. t.(t; —1)(t,' —1)(t,' —1)

1 1

t (t —l)(t —1)(l. —t t ) t (t —1)(t —])(] —t2t2) t2(t2 —1)(t2 1)(1 t2t2) (45)

where t„—:tanh(PH„), and H„ is again given by Eq.
(25).

IV. STABILITY
OF THE ISOTROPIC SYMMETRIC PHASE

So far we have considered the equilibrium properties
of the replica-symmetric quadrupolar glass phase with-
out specifying the conditions for its stability. As shown
in Sec. III, the replica-symmetric solution for the order
parameter q„ turns out to be isotropic with respect to
the symmetry indices p if no symmetry-breaking external

I

fields are present. Following the well-known arguments
from the theory of spin glasses, " however, one may ex-
pect that on lowering the temperature an instability with
respect to replica-syrnrnetry-breaking modes will appear.

As usual, we consider Gaussian fluctuations arround
the isotropic replica-syiiunetric solution (28) and write

q„~ = q+g„t', (46)

where we allow for the possibility that the Quctuations
g„~ may depend on the symmetry indices p, . Here we
assume that Jo ——0 or equivalently I„=0. Without any
loss of generality we may require
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) q„-i'=0.
p

(47)

Inserting the ansatz (46) into expression (22) and ex-
panding up to second order in the small fluctuations iI„i,
we find the deviation of the free energy bf from the
saddle-point value (24). This deviation can be expressed
in terms of the appropriate averages of Z„variables as
follows:

'f =-4„~'J' ).):(& )
awp p

) - )- (z„zPz„z„')
agP, gab pv

{z-.z~)(z~z')
~

&.~&" (48)

The expression in the square brackets has the following
general structure:

hf = ) ) (a~o" +a~i" +2a~2")g„~g„~(1—b p)+) ) (a~i" +4a2 )rj„~rl„~(1—b p)(1 —bp~)(l —b ~)
pv ~p pv ~p

+) ) a2"q„~@~ (1 —b~p)(1 —b~g)(1 —b ~)(1 —bye), (49)
p, v app8

where the diagonal a,"" and off-diagonal a,""
(p, g v)

coefficients can be determined by a comparison between
the two expressions (49) and (48). By evaluating the
averages of Z„variables at the saddle point, we find

(50)

|' 1 )
g1 I

~ )

EI)
belonging to Ai, while in the case of A2 one has

g2 1
7

0
(56)

(51)

as well as two analogous equations for aois and a~os. Here

p„, p = 1, 2, 3, are local polarizations introduced in

Eq. (29), and q = q„ is the replica-symmetric order pa-
rameter given by Eq. (28). The expressions for the re-

maining coefficients a~i" and a2" can also be found; how-

ever, due to the constraint (47) they do not enter ex-
plicitly the stability criterion, which now reduces to the
following condition:

Therefore, the stability of the isotropic replica-symmetric
solution (28) is violated if one of the eigenvalues (53) or
(54) becomes zero. In terms of the more familiar random
averages the two limits of stability can be expressed as

$f = ) ) ao "iI„~g„~b„„yao "rI„~rl„~(1—0„„)
pv ~gp

1 PJ |'I+ p—, +2p,„, ~=O,
123)

(58)

&0. (52) 1 —P J
~

1 —3q + pi —p,pz = 0 .
l i2S]

(59)

12~2 ——Gp —Q

The corresponding eigenvectors are

(54)

From the expressions (50) and (51) and the corre-
sponding expressions for local polarizations (29) and or-
der parameters q„(28), we see that all diagonal elements
ao" are equal, i.e., ao" = aors, and similarly all the off-
diagonal elements are ao" = aoi2. Having this in mind,
we realize that the condition (52) implies the positivity
of the nondegenerate eigenvalue Ai as well as the doubly
degenerate eigenvalues A2, which are given by

A1 = GO + 20()
12

By solving numerically each of these equations together
with Eq. (28) for the order parameter q, we find that the
condition (58) is satisfied at a higher temperature Tg(b, )
than the condition (59) for all values of b, . Therefore,
Eq. (58) determines the instability line in our model. In
Fig. 4 the instability line Tg(A) is plotted against the
random-field variance b, . For comparison, the instabil-
ity line Tr(E) for dipolar glasses obtained from the RB-
RF Ising model using the same parameter values is also
shown. It turns out that the instability temperature of
the discrete-state quadrupolar glass Tg(b, ) always lies
above the one obtained for the RB-RF Ising model at
the same value of L.
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FIG. 4. Instability temperature Tg/ J of the isotropic
replica-symmetric phase plotted vs reduced random-field vari-
ance 6/ J (solid line). Also plotted is the instability temper-
ature for the RB-RF Ising model (dotted line).

V. DISCUSSION AND CONCLUSIONS

The model of interacting quadrupoles presented in this
paper is characterized by three essential features: (i)
Due to a strong hindering potential the quadrupolar de-
grees of freedom are described by a set of discrete states
corresponding to the equilibrium orientations along the
(111)cubic directions; (ii) quenched shear strains —which
transform according to the T2~ representation of the
cubic group —give rise to quenched local random fields
which couple to the symmetry-adapted projection oper-
ators Z;„describing the quadrupolar orientations; (iii)
also included are infinite-range quenched random inter-
actions between pairs of Z;„variables. This model is ex-
pected to be applicable to the orientational-glass phase
in K(CN) Bri and similar mixed cyanide crystals for
the range of concentrations of CN ions x below T, = 0.7,
where long-range order disappears. In our model, both
the variance 6 of the random-field components and the
variance J of the infinite-range random interactions are
concentration dependent, and appear as phenomenologi-
cal parameters in the theory.

Applying the replica mean-field theory we have derived
the temperature dependence of the orientational-glass or-
der parameter q, the linear susceptibility y, and the shear
elastic constant C44 in the isotropic replica-symmetric
orientational-glass phase. We have also determined the
instability temperature T~(6), below which at least one
of the components of the order-parameter field q„be-
comes unstable against replica-symmetry-breaking Buc-
tuations. The physical meaning of this instability relates
to the fact that the response of the system to an ap-
plied external 6eld starts to depend on the history of
the system; i.e., field-cooled yF~ and zero-field-cooled
yzpc susceptibilities, which are equal for temperatures
T above Tg(A), begin to difFer for T ( Tq(6) Thus.
the instability temperature in the presence of random
fields, Tg(A), may be identified as the true &eezing tem-

perature. The splitting between gpss and y7F~ observed
both in dipolaris and quadrupolars glasses suggests that
the random interaction plays an important role in these
systems. In contrast to other models of quadrupolar
glasses, we require the presence of both random
interactions and random fields in order to describe prop-
erly the experimental data obtained in these systems.
Namely, models with random fields alone and no random
interactions would not be capable of describing the ex-
perimentally observed splitting between yFC and yzFc
and the divergence of the nonlinear susceptibility yNL.
On the other hand, models with random interactions
alone and no random fields correctly describe the cooper-
ative ordering, which is responsible for the freezing tran-
sition into a quadrupolar glass phase; however, they im-

ply q(T) = 0 above the transition temperature and hence
cannot be directly applied to the present system, where

q(T) has an experimentally observable high-temperature
tail.

One should perhaps redefine the order parameter for
systems containing both random bonds and random fields

by considering the difference between the appropriate
stable solution in each temperature range and the replica-
symmetric solution q(T) apo—int which deserves further
attention. By construction, such an order parameter
would measure just the cooperative glassy ordering and
would in general vanish above Tq(6). It is corronon,
however, to refer to q(T) as the quadrupolar glass order
parameter, since it represents an experimentally acces-
sible quantityi5 analogous to the magnetic-field-induced
magnetization in the paramagnetic phase of a ferromag-
net. Strictly speaking, the high-temperature phase can-
not be regarded as a true quadrupolar glass —in spite of
q(T) being nonzero —but should rather be referred to as
the random-field-induced Edwards-Anderson i order.

It is interesting to mention that the instability tem-
perature Tq(6) in our model appears to be slightly
above the maximum of the linear susceptibility, in qual-
itative agreement with the experimental results of Hes-
singer and Knorr. It has recently been shown2o using
a dynamic theory based on the soft-spin RB-RF Ising
model that the nonlinear susceptibility yN& of dipolar
glasses diverges at the instability line Tl(A), i.e. , at the
same temperature where the splitting between the field-
cooled yFc and zero-field-cooled yzFc linear suscepti-
bilities occurs. Experiments on the quadrupolar glass
K(CN) Bri (Ref. 9) show, however, that the diver-
gence of yNI, occurs close to, but not at the same tem-
perature as the splitting between gF~ and yzFc. A theo-
retical explanation of this effect can only be sought within
the framework of the appropriate dynamical model, and
will be left for future work.

We have also derived an expression for the probability
distribution of local strains and the NMR line shape, the
second moment of which is directly proportional to the
orientational-glass order parameter q. N NMR second-
moment measurements can be thus used for a direct de-
termination of the glassy order parameter in quadrupolar
glasses such as K(CN) Bri

1n the 4 = 0 plane, according to our model the fer-
roelastic phase becomes inevitable at low temperatures,
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similar to the case of continuous model studied in Ref. 12.
In the present case, the condition that the orientational-
glass transition temperature is higher than the one of
the ferroelastic phase transition becomes Jo/ J & 0; i.e.,
the average random interaction must be kept nonposi-
tive. The presence of random fields (6 P 0) is expected
to reduce the region of parameter space where long-range
order occurs, thus leading to a possible relaxation of the
above condition. A schematic phase diagram in the pres-
ence of random fields is shown in Fig. 5. The appearance
of long-range ferroelastic order in the range of concen-
trations of CN ious z & 0.7 might be an artifact of the
mean-field theory. In reality, however, the formation of
microdomains due to both random interactions and ran-
dom fields prevents the onset of long-range order in this
range of concentrations.

In the present model, only the shear strains are cou-
pled to the components of the order-parameter field, and
thus only elastic modulus C44 exhibits an anomalous tem-
perature dependence due to orientational-glass ordering.
Theoretical predictions of C44(T), given by Eq. (37), in-
volve the phenomenological coupling parameter p, which

may be also concentration dependent. s

Below the instability temperature Tq(6), replica-
synnnetry breaking presumably occurs, which may also
include breaking of the isotropy between the compo-
nents of the orientational-glass order parameter matrix
q„. Theoretical investigations of the replica-syniinetry
breaking and its consequences on the relevant physical
properties of the system is deferred for a future study.
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FIG. 5. Schematic phase diagram in the (T, Jo) plane for
nonvanishing random-Seid variance b, g 0.

U.T. Hochli, K. Knorr, and A. Loidl, Adv. Phys. 39, 405
(1990).
R. Jimenez, K.P. Bohn, J.K. Kriiger, and J. Petersson,
Ferroelectrics 10B, 175 (1990).
J.K. Kriiger, R. Jimenez, K.-P. Bohm, J. Petersson, A.
Klopperpieper, E. Sauerland, and H.E. Miiser, Phys. Rev.
B 42, 8537 (1990); H. Hessinger and K. Knorr, Ferro-
electrics 127, 29 (1992); S. Elschner, J. Petersson, J. Al-

bers, and J.K. Kriiger, ibid. 78, 43 (1988).
J. Hessinger and K. Knorr, Phys. Rev. Lett. 65, 2674
(1990).
S. Elschner and J. Petersson, Z. Naturforsch. A 41, 343
(1986).
R. Pire, B. Tadic, and R. Blinc, Phys. Rev. B 3B, 8607
(1987).
A. Loidl, T. Schrader, R. Bohmer, K. Knorr, J.K. Kjems,
and R. Born, Phys. Rev. B 34, 1238 (1986); A. Loidl, K.
Knorr, M. Rowe, and G.J. McIntyre, ibid. 37, 389 (1988).
K.H. Michel, Phys. Rev. B 35, 1405 (1985).
J. Hessinger and K. Knorr, Phys. Rev. B 47, 14813 (1993).

K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801
(1986).' K. Binder and J.D. Reger, Adv. Phys. 41, 547 (1992).
P.M. Goldbart and D. Sherrington, J. Phys. C 18, 1923
(1985).
H. Vollmayr, R. Kree, and A. Zippelius, Phys. Rev. B 44,
12238 (1991).
A. Loidl, R. Feile, and K. Knorr, Z. Phys. B 42, 143 (1981).
W. Wiotte, J. Petersson, R. Blinc, and S. Elschner, Phys.
Rev. B 43, 12751 (1991).
R. Blinc, J. Dolinsek, R. Pire, B.Tadic, B. Zalar, R. Kind,
and O. Liechti, Phys. Rev. Lett. B3, 2248 (1989).
J.R.L. de Almeida and D.J. Thouless, J. Phys. A 11, 983
(1987).
V.S. Dotsenko, M.V. Feigel'man, and L.B. IofFe, Sov. Sci.
Rev. A Phys. 15, 1 (1990).
A. Levstik, C. Filipic, Z. Kutnjak, I. Levstik, R. Pire, B.
Tadic, and R. Blinc, Phys. Rev. Lett. BB, 2368 (1991).
R. Pire, B.Tadic, and R. Blinc, Physica B 193, 109 (1994).
S.F.Edwards and P.W. Anderson, J.Phys. F 5, 965 (1975).


