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Renormalization-group calculation of T, -T of the nematic-isotropic phase transition
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The low value of {T, —T*)/T, =0.1%, where T, is the nematic-isotropic phase-transition tempera-
ture and T is the temperature at which the light-scattering intensity diverges in the supercooled isotro-
pic phase for the nematic-isotropic transition is a long-standing puzzle. We show in this paper that by
extending the renormalization-group calculation to second order of c and, alternatively, by considering
that the nematic-isotropic transition is close to the tricritical point, considerable improvement over pre-
vious results is possible.

INTRODUCTION
THEORY

The low value of (T, —T')/T, =0.1% for the
nematic-isotropic (NI) transition has been a long-
standing puzzle. de Gennes' has pointed out how
Maier-Saupe (MS) theory implies ( T, —T* ) /T, = 8.0%.
In order to gain insight into this, several workers showed
how the inclusion of fluctuations can give considerable
improvement. This was done by including spatial inho-
mogeneity in the order parameter in Landau-de Gennes
theory. T* is interpreted as the temperature at which the
light-scattering intensity will diverge in the supercooled
isotropic phase. T* and T, are expressed in terms of
several phenomenological Landau expansion parameters.
It is usually shown that T, —T*= 1 K [i.e.,

( T, —T* ) /T, =0.3% in the case of p-azoxyanisole
(PAA)] is consistent with the jump in entropy and jump
in the order parameter at T, . These calculation include
Gaussian fluctuations only and, as mentioned above, de-
pend on several parameters to be fixed. For including
higher-order fluctuations Priest did a renormalization-
group calculation to show that T, —T*=12.8 K. The
only experimental datum needed in the analysis is the
jump of 0.4 in the order parameter at T„and his method
was an c. expansion about a critical point. In a very re-
cent paper, Tao, Sheng, and Lin argued that fluctuation
effects, being higher-order effects, a remedy for the
mean-field calculation, e.g., MS theory should be con-
sidered first. They have included a density-dependent
term in the pseudopotential and have shown how only
one adjustable parameter can give consistent results in

(T, —T')/T, and also in the drop in specific volume at
T, . Their further argument against fluctuation methods
is that the measured critical indices do not corroborate
with the model critical indices.

The present work is an analysis with fluctuations as the
basis. The primary reason for doing this is that in the
work of Tao, Sheng, and Lin the divergence of the light-
scattering intensity at T* is bypassed. Moreover, the
discrepancy involving the model critical indices is not
serious if we consider that the nematic-isotropic transi-
tion may occur near a tricritical point.

We have followed the method adopted by Priest in our
analysis. Initially, we have tried to improve this result by
doing a renormalization-group calculation up to second
order in c.. The model free energy of the Landau —de
Gennes form can be written as

F = f d x[—,'(rQ;, +VkQ; VkQ, )

bQij QjkQkl+u (QjQij ) H'j'Qij ]

Here d"x indicates a functional integration in d dimen-
sions over the tensor field Q =Q (x). The tensor Q is
3 X3, symmetric, and traceless. The quadratic coefBcient
r is written as r =ro(T —T*)/T„and b, u, and H are
temperature independent. Here ro is a positive constant.
If b were absent, T' would be the mean-field second-
order transition temperature. Since in our model b )0,
T is the (mean-field) absolute stability limit of the isotro-
pic phase. In the isotropic state, (Q) =0. If H; is uni-

axial, then Q; and H; can be expressed as

1 0 0

Qij S 0
2

0

0 0

1 0 0

H, -=H 0 —l 0

0 0

(2b)

Here S = ( P2(cos0) ) is the usual order parameter, where
0 is the angle between the molecular long axis and the
director. We have followed the same E and Feynman-
graph expansion technique to calculate the equation
of state for the uniaxia1 state. The equation of state in
scaling form can be written as
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f2

+ [[4+61n(2) —9 ln(3)+4 ln(X+ 1)][3(X+3) ln(X+ 3}+4(X+1) ln(X+ 1)
576

+6X ln(2) —9(X+1)ln(3)]

+—', (X+1)[ln (X+3)—ln (3)]+36[ln (X+3}—(X+1}ln (3)+Xln (2)]

—541n(2}[ln(X+3)+Xln(2) —(X+1)ln(3)]+12ln( —", )(X+1)ln(X+1)

+ —",,'[(X+3)ln(X+3)+2X ln(2) —3(X+1)ln(3)]+4(X+1)ln(X+1}ln(X+3)

—10(X+1)ln2(X+1)+ '4'(X+1) ln(X+1) —8[(X+6)I,(p) —6(X+1)I,( —,'))
—24[I&(p)—(X+1)I2(—,

'
) ]+16[I3(p)—(X+1)I&(—,

'
)]],

where

p=(X+3)/4(X+1), X=t/S' ~,

Ii(p) =f du [ ln(u)/u (1—u)][(1—u/p)' —1]—f du [ ln(u)/u (1—u)],
0 P

&(Ii(p))
I2(p) =p I, (p) =I,(p)+2I, (p),

+ =1+X+ [3(X+3)ln(X+3)+4(X+1) ln(X+1)+6Xln(2) —9(X+1)ln(3)]S' S"

(3)

(4a)

(4b)

and

5=3+a+0(e ), P= —,
' —

—,
' e+O(e ), a)=1+—,', e+O(e ), t =(T—T )/T' .

From thermodynamic arguments we know that
H = dF/dS. The fr—ee energy may therefore be found by
integrating the equation of state with respect to S. The
conditions that the free energies of the isotropic and
nematic states be equal and that the free energy be a local
minimum with respect to S can be expressed as

f H (S')dS'=0, (5a)
0

H(S)=0 . (5b)

For fixed b these equations are to be solved for S =S, and
t =t, . The resulting value of t, is then expressed as
t, =(T,—T' }/T'. This requires a numerical solution of
Eq. (5) as a function of b by putting the experimental
value S,=0.4. Comparisons of results are given in Table
I.

TABLE I. Calculated values of different parameters.

c=0 Tricritical case
a= 1 O(c ) a= 1 O(c)' (mean field)' (mean field)

S,

b
js
dt

Tc T

0.4 0.4
0.024 899 0.042 83
0.210 0.3819

—9.485 496 —6.08

7.46999 K 12.48 K

0.4
0.08
0.60

—5.0

24 K

0.4
0.0256
0.128

—7.812

7.68 K

'Data are taken from Ref. 2.

In order to avoid some of the obvious drawbacks and
also to conform with experimental value of P and y, we
have done an analysis near a tricritical point. In general,

bg;J Qjk Q—ki +w ( Q;~ Q J ) H~J. Q~J ) . —(6)

When the dimensionality of the system is above its upper
critical dimensionality, Landau's theory becomes exact
and renormalization-group theory reduces to the Landau
theory. Since the marginal dimensionality in this case is
3, we avoided the e, expansion altogether. The scaling
form of the equation of state can be written as

+ =]+X,
S S

where

5=5, co=3, P=0.25, X =

Applying the same procedure adopted above, we get the
results of b, S„ t„and dS/dt. The results are given in
Table I.

DISCUSSION

As can be seen from the table, the renormalization-
group result for the second order of c is approximately

when two coefBcients of the same symmetry in the Lan-
dau free energy vanish simultaneously, such a point is
called tricritical. ' Therefore the experimental situation
has led to the question of whether or not the NI transi-
tion is close to the tricritical point r =u =0. This leads
to an alternative formulation of the NI phase transition
by taking u =0. In that case a positive stabilizing w term
must be added to the free energy:

F =f d x[—,'(rg,"+VkgJVkgj)
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one-half as small as the previous result while still being
too large in comparison with experiment. In our calcula-
tion the value of the cubic coupling is smaller than
Priest's value. The objection against taking the b term as
a perturbation is therefore not serious in the present case.
In our renormalization-group calculation, we have ap-
plied the Maxwell construction. The validity of this is
still an open question in renormalization-group theory.
But in our second calculation, this has been bypassed. It
is not necessary to take a term —Q into account, as it
can be shown that in the presence of the cubic term it
leads to only minor corrections. So all the drawbacks of
Priest's work have been bypassed in our work. Although
this result is still far from the experimental result, the im-

provement is encouraging. The justification for doing

such an analysis instead of the standard Landau —de
Gennes analysis considering the Gaussian fluctuations is

that this method needs only one experimental data input,
namely, the jump in the order parameter at T, .
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