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Thermal fluctuations and NMR spectra of incommensurate insulators
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The effects of thermal order-parameter fluctuations on the NMR line shape of incommensurate sys-

tems are evaluated within the mean-field Landau theory and the results are compared with the Rb and
' K —'~ ——' NMR spectra of Rb2ZnC14 and K2Se04 just below the paraelectric-incommensurate transi-

2 2

tions. We show that thermal fluctuations do not only reduce the effective incommensurate splitting as
compared to the static case but also change the shape of the spectrum. In particular they remove the 5-
function-like form of the two edge singularities in analogy to the Debye-Wailer factor in x-ray scattering.
Two-dimensional NMR separation techniques allow for a separate observation of static and dynamic in-

commensurate line shapes close to the paraelectric-incommensurate transition temperature TI. The stat-
ic inhomogeneously broadened NMR line shape results from the static distribution of quadrupole-
perturbed Zeeman frequencies, reflecting the frozen-out incommensurate modulation wave. The dynam-
ic line shape reflects the time-dependent part of the electric quadrupole interaction resulting from
phason and amplitudon thermal fluctuations of the modulation wave. Close to TI these fluctuations be-
come so low in frequency that they influence the line shape. A precise determination of TI can be ob-
tained from the maximum in the width of the dynamic line shape.

I. &INTRODUCTION

Magnetic resonance techniques have been widely used
in the past decade to study the local structure of the in-
commensurate modulation wave in both dielectrics' and
charge density wave systems. ' At the normal-
incommensurate (N-I) phase transition Tt the NMR line
becomes inhomogeneously broadened. ' In the incom-
mensurate phase it acquires a specific form' showing
singularities at the edges. This reflects the spatial varia-
tion of the NMR or nuclear quadrupole resonance (NQR)
frequencies due to the formation of the incommensurate
modulation wave and the breaking of the translational
periodicity of the crystal. The width of the incommensu-
rate frequency distribution is in the simplest case directly
proportional to the amplitude of the modulation wave
and thus reflects the temperature variation of the incom-
mensurate order parameter. Close to TI thermal fluctua-
tions modify the shape of the NMR line. An approxi-
mate theory of the NMR line shape, appropriate for fast
thermal phase fluctuations and a stationary Gaussian dis-
tribution of local phases, has been developed. This
theory predicts a motional narrowing of the NMR line
close to TI showing up in a reduced splitting of the edge
singularities, but no change in the characteristic incom-
mensurate line shape as TI is approached from below.
The results cannot explain all the complex features ob-
served in NMR, NQR, and electron paramagnetic reso-
nance (EPR) experiments " close to TI, which clearly
show not only a change in the width of the spectrum, but
also a change in the shape of the line.

Here we present a theory of the NMR line shape in in-

commensurate systems in the presence of thermal fluctua-
tions, ' ' which is valid within the Landau theory' '
and which is capable of describing the transition from the
paraelectric to the incommensurate phase. A short ac-
count of a part of this theory has been published recent-
ly. ' Here we present a complete description of this
theory and extend it to the case where the relation be-
tween the NMR frequency and the incommensurate dis-
placements contains also quadratic terms. The theory
takes into account both phason and amplitudon fluctua-
tions. ' It describes the transition from the static incom-
mensurate frequency distribution, which in the absence of
thermal fluctuations is limited by two edge singularities,
to the motionally averaged single line very close to Tt.
To a scaling factor the NMR line shape depends on just
two parameters. The theory allows one to specify the
conditions for the collapse of the incommensurate
broadening. We find that the conditions contain also the
dynamic parameters of the crystal. We also show that
two-dimensional (2D) NMR provides a unique possibility
for a separate simultaneous observation of static and dy-
namic incommensurate line shapes. The former reflects
the static spatial variation of the frozen-in modulation
wave, whereas the latter is affected by the time fluctua-
tions of the amplitude and phase of the modulation wave.
Those fluctuations are slowed down in the vicinity of the
paraelectric-incommensurate transition to the extent that
they influence the NMR line shape in a narrow tempera-
ture interval around the transition temperature TI. This
in turn allows one to determine precisely TI in the region
where the order-parameter fluctuations are large enough
to completely motionally narrow the static incommensu-
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rate line shape. The theoretical line shapes are compared
with the experimental results for the Rb —,

' ~—
—,
' NMR

spectra of Rb2ZnC14 and K —,
' ~—

—,
' spectra of K2Se04

just below the paraelectric-incommensurate transition. A
good agreement between theory and experiments is
found.

II. ORDER-PARAMETER SPECTRAL DENSITY

We restrict the discussion here to the case of a one-
dimensionally modulated incommensurate system with a
two-component order parameter, ' i.e., to the case where
the soft mode, which induces the N-I phase transition,
belongs to a two-dimensional representation of the "nor-
mal" phase space group at a general point k =ko inside
the Brillouin zone.

In the I phase we write the nonequilibrium free energy
F in the vicinity of Tz as a function of the two-component
order parameter p& and p2 as"

g —f...—. (4)

We assume that the incommensurate modulation wave is
overdamped and introduce the dissipation function densi-
ty 15

R = (F1+212),

where the dot stands for the time derivative.
The equations of motion are now obtained from"

Here g, (x, t) represents the amplitudon and 212(x, t) the
phason fluctuations.

We construct the Lagrangian density L by adding to
the free-energy density g(21„212) the external random
driving forces f„,coupled to the order parameter,

~1,2

f,.t = ri—1f„, rt2—f'„
so that

F(p1 p2)= f dV —(p1+pz)+ —(p1+p2)'
aL. aL

dx BV21, 571,
= 1.2

~(P1VP2 P2VP1)

+ —[(Vp, ) +(VP2) ] ',

where a=ap(T —Tt), ap, P, 5, A, )0, and V=51'ax. It is
convenient to make a transformation

We are interested in small variations of g &
and g2 about

their equilibrium values, ri', (x, t) = rt, (x, t) rt, z a—nd

rid(x, t) = rt2(x, t) rt2z. T—he resulting equations of
motion are linearized. The spectral densities of the
Fourier components of the amplitudon and phason
order-parameter fluctuations

g &

=p &coskox +p2sinkox

g2 = —
p &

sink Ox +p2cosk Ox

(lb)

ri;'(x, t)=g r,' (tp, q)e'q"+."", i =1,2,
co, q

are obtained in the form

with kp=A, /5, which eliminates the Lifshitz invariant
A, (P,Vp2

—
p2Vp, ) from Eq. (la). We thus obtain

F(vl1, r/2)= f dV g(vl1, vh)

&
I g1(tp, q) I' &

= 1 rka T

~V y a) +(—2a+5q )

yk, T
& l212'(tp, q) l') =

~V y'co'+ 5'q 4

(7a)

(7b)

= fdv —(q2+q2)+ —(q', +q2)2

+—[(V21, ) +(Vg2) ] ', (lc)

Y)2+ 0

for the amplitude and the phase of the order parameter.
In the close vicinity of Tz, where the plane-wave ap-

proximation is valid, the incommensurate distortion rt(x)
can be expressed as

g(x ) ~ g, coskpx + 7)2sink px . (2a)

Thermal fluctuations wi11 disturb the equilibrium dis-
placements, resulting in a time-dependent

g(x, t) ~ q, (x, t)coskpx+g2(x, t)sinkpx . (2b)

where a=a —5kp and kp is the equilibrium wave vector.
Minimization of F(rt„rt2) with respect to rt1 and rt2 yields
the equilibrium solutions

rc = ~(q', +q', ), (10)

so that L =K —g f,„,. Here p is the effec—tive-mass
coefficient. Equation (6) has to be replaced by

Here V is the crystal volume, q =k —ko, the brackets
( ) designate a thermodynamic ensemble average,
and the identity

yk~ T
( Ifg;(~, q)l2) = (8)

has been used. This identity has been derived ' for the
case that the generalized random forces show no space or
time correlations. Since rt', (x, t) and rt2(x, t) are normal
excitations of the incommensurate phase they are not
correlated:

(g', (cp, q)q2( —co, —q) ) =0 .

So far we have assumed that the incommensurate wave is
overdamped. Let us now consider the case of an under-
damped mode. In that case we have to add to the La-
grangian density [Eq. (4)] a kinetic energy density
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d as, d aI.
dt ai, dx aVn;

/ =1,2 . (11)
a'9 art;

S(co)= f G(t)e'"'dt, (16)
0

where the autocorrelation function G (t) is defined as
In the long-wavelength limit we write the phason and
amplitudon dispersion relations for an ideal crystal as

CO =V +Kg

602 =Kg

(12a)

(12b)

where ~=5/p. Both modes are damped with a constant
damping factor I'=y/p. The amplitudon mode has an
intrinsic gap b, , =(2a /op)(T t—T) in the excitation spec-
trum, whereas the phason gap for an ideal incommensu-
rate phase vanishes. In real systems defects and discrete
lattice effects pin the modulation wave and introduce a
gap in the phason excitation spectrum' ' so that Eq.
(12b) becomes

CO =5 +Kg2q 2 (13)

The order-parameter spectral densities are now obtained
as1'13

rk, T
& li},'(~, q) l') =

m.@V[1 co +(co b,; Kq )—]—
i=1,2 . (14)

G(t)=e

P(X)dX=n(x)dx =constXdx,

where n (x) represents a (constant} one-dimensional den-
sity of nuclei along the direction of the modulation wave.
The average ( )„ is thus defined as

X
~ ~ ~

-i V'1 —X'

Inserting expression (15b) into (15a), we find the auto-
correlation function in the form

G(t) =e ' ((G, (t)G, (t) ))„,
where

(18a)

' (( exp —i f [Q(x, t') Q—o]dt' ))„. (17)

The inner brackets of the symbol (( . . . ))„represent a
thermodynamic ensemble average, whereas the outer
brackets ( . . )„represent the average over the inhomo-

geneous static distribution function of resonance frequen-
cies. From Eqs. (15a) and (15b) it follows that for the
static case Q(x) =Qo+ ri, zcoskox. We define X=coskox
and find the distribution function P (X) from the identity

In the limit p~O one recovers the results of an over-
damped mode [Eqs. (7a) and (7b)].

—
cabal&et coskox

(18b)

III. THE ADIABATIC NMR LINE SHAPE

A. Linear case

and

G2(t) =exp —ia [rii(x, t')coskox
0

Q(x, t) = Qo+ art(x, t), (isa)

where

i}(x,t) ~ [giE+ri', (x, t)]coskox+gz(x, t}sinkox . (15b)

The adiabatic NMR line shape S(co) is now obtained as'

The efFect of phason and amplitudon fluctuations on
the spin-lattice relaxation rate of incommensurate sys-
tems has been considered in detail. ' Let us now investi-
gate the efFect of these fluctuations on the NMR line
shape. We shall assume first that the NMR resonance
frequency 0 of a nucleus at a site x is linearly related to
the displacement ri(x, t) at that site:

+re( xt' s}i nkox]dt' . (18c)

We perform the ensemble average first by taking the
order-parameter fluctuation probability distribution to be
stationary and Gaussian. We use the relation'

(expI i f co(t')d—t'] ) =exp[( —
—,'[f ai(t')dt'] ) j .

Taking into account that various Fourier components
ri,'(co, q }of the order-parameter fiuctuations

rA'. (x, t) =g rt,'(co, q)e'i"+ "
co, q

are statistically independent, we obtain after performing
the ensemble average

(G2(t)) =exp. —a2 g (le', (co,q)l2) coszkox+g (lrt2(co, q)li) sin2kox
co, q CO

Q)s q N

Next we perform the summation over q. We replace the
summation by an integration over half of the Brillouin
zone" between 0 and

l k,„l:
)k,„(f '"

q'dq .

We define

y Jk

& lg,'(~)l') =,f '*
& lri,'(~, q)l')q'dq,

0

and perform the integration using Eq. (14). We get
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k, rs
& li};(~)I'& = (b,; c—o +il co)

277 pK CO

(iii) Phase fluctuations for the case of a gap smaller than
the Larmor frequency (b 2 «coL }. Here we get

1/2
kmax

X arctan
[Q2 co2+i rco]~ /2

k, T&2r
& lrt,'(co)l'& =, „, , co„„&r»co,

817 pK v co
(21c)

C.c. (20)

k~ TI
& lrtz(co)l &=, co „&b, »co, I'co . (21b)

8% pK

The above expression for the order-parameter spectral
density is rather complicated and it is difFicult to proceed
analytically. The NMR line shape, however, will be
affected only by those fluctuations which are slower than
the nuclear Larmor frequency, m(mL, where coL =10
Hz. In the following we will take into account this re-
striction and treat separately three cases with respect to
the size of the gap 5;.

(i) /lmplitudon fluctuations (b, ,
=v' —2a/p, ). We take

into account that K' q,„=co h is of the order of phonon
frequencies' —10' s ', whereas NMR frequencies fall
in the range 10 —10 s '. Thus we have soph))N In the
range of validity of the mean-field approximation (MFA)
theory (v' 2a/5=re —' & k,„), where rc is the correla-
tion radius for the amplitude of the modulation wave, we
also have 5& &&co,coL. The damping constant I deter-
mines the phonon line width and is of the order"
(10 —10 )co h. Expression (20) now simplifies to

k~ TI
& I'g~(co)l &=

2 3/z, co h&4&&&co, +I co . (21a)8' pK ~1

(ii) Phase fluctuations for the case of a large phason gap
(hz »coL ). We get the same forrnal expression as in the
case of amplitudon fluctuations with the phason gap 62
replacing the amplitudon gap 5&.

and the fluctuations diverge for co —+0.
The next step in computing & Gz(t) & is to perform the

summation over co. Here we have to distinguish two
different cases: the case of a large phason gap (b, 2 »cot )

and the case of a small phason gap (52 « cot ).

1 —coscot
dc@=—t, t)0 .

co
(22)

The dynamic contribution to the autocorrelation function
in this case becomes

& Gz(t) & =exp I
—(co„„t)cosikox

—(co)„2t)sin kox I,
where the following definitions have been made:

a kqTI T
16~@' a. +2ao(Tt —T) QTt —T

a k~TI
loc2

(23)

(24a)

(24b)

co&„, and m& 2 measure the sizes of amplitude and phase
fluctuations in frequency units. We write also X=coskox
and define

n, =ari, E~QT, T. — (24c)

The adiabatic NMR line shape is now given by Eq. (16}:

1. Large phason gap ( h,z)& coL, )

We insert expressions (21a) and (21b) into Eq. (19) and
use

I(co)=f ' f "dt e'" "'"&G,(t,X)&&G,(t,X)&
1 —X

dX co)oc(X +co)„2(1—X )

co X +e)i„2 1 —X + co —Qo —QiX
(25)

un approaching TI from below, the amplitude fluctua-
tions critically increase in a narrow temperature range
whereas the phase fluctuations practically do not change
with temperature. The spectrum [Eq. (25)] depends on
two parameters

~&oci T
TI —T

~ioc2 T
Q ( T T)1/2

which measure the relative sizes of fluctuating order-

parameter components with respect to the static order
parameter itself.

1 coscot v 2$'

0 Q) 12
co t, t& e (26)

The dynamic contribution to the autocorrelation function
becomes

2. Small phason gap (h,&&&col )

Here we insert expressions (21a) and (21c) into Eq. (19}
and use the identity
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(G2(t) ) =exp{ —(p)„„t)cos kpx

(p))pp2t) alii kpx ] (27a)

(27b}

The adiabatic NMR line shape is given by

I(co)= —f X
-) V'1 —X'

where cp)~) is given by Eq. (24a) and p))„z is defined as

a k~Ty2 1/2

1oc2 3/2 3/248ir 5

B. Quadratic case

Q(x, t) =Qp+ Art (x, t) . (30)

Here we have as before

rt(x, t) = [rt)z+ri')(x, t}]coskpx+r}2(x,t}sinkpx,

so that

7/ (x, t) =7])zcos kpx +2')zi}I(x&t)cos kpx

Let us now look into the case where the NMR frequen-

cy Q of a nucleus at a site x is quadratically related to the
displacement r}(x,t) at this site:

t'(co—Qo —0 iX)t
dte

0
+2i})zrtz(x, t)sinkpxcoskpx . (31)

—[co tX +(8& 2t) (1—X )]
Terms quadratic in i}',(x, t) and rid(x, t) have been neglect-
ed here. Again we have

(28)

The expression (28) cannot be evaluated analytically be-
cause of the t ~ term. Up to a scaling factor it depends
on two parameters

G(t) =e ' ((G (t)G (t) ))„,
where now

—
ibsen)ecos (kpx)t2 2

G, t =e

(32a)

(32b)

~loci T
OC

and

Gi(t)=exp —ib f [rt)(x, t')cos (kpx )
0

and

@loc2 T2/3

Q ( Z Z. )1/2
with

+ i}z(x,t ')sin( kpx )

Xcos(kpx)]dt', (32c)

I(p)) = 1

+1 —[(p) — Q)p/ Q]

(29)

Phason and amplitudon fluctuations become important
for the NMR line shape in the close vicinity of TI. Ac-
cording to the Fourier theorem, the product of two func-
tions in the time domain is equivalent to the convolution
of their Fourier transforms in the frequency domain. The
Fourier transform of (Gi ) thus represents the dynamic
line shape, which convolutes the static line shape Eq.
(29}.

which as before measure the relative sizes of fluctuating
and static parts of the order parameter.

A decrease of the parameters g„g2, and gz corresponds
to moving away from the N-I phase transition tempera-
ture TI into the incommensurate phase. Far away from

Tt, g„gz, and gi tend to zero and & Gi ) =1. Equations
(25) and (28) yield in that case a static incommensurate
frequency distribution function, ' which exhibits two edge
singularities at +0,,

b=2bii)z . (32d)

+(p)I„2t) ~ cos kpx sin kpx ]

with co)„,=[b/a] p))„, and p))„2=[b/a] p))„2
Introducing

Q(x) —Qp
X =cos2(kpx ) =

02

(33)

(34)

where Qz=brt)z, and using P(X)dX=constXdx we can
again evaluate the spatial average ( . )„as

( )
+) dX
-) &1—X' '

so that the adiabatic NMR line shape now becomes

Expanding i}',(x, t) and ijz(x, t) in a Fourier series in q and
co, and using the same procedure as in the previous sec-
tion we find for the case of a small phason gap

(Gz(t})=exp —[(p)I„)t)cos kpx

1(~)=f" f "dt e '
&G, (t})& G, (t))

+1 dx oo i(co—Qo—Q2X )t —[ co& &t)X + co& 2t) X (1—X )]
-) &1—X' (35)
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Far away from TI, ( G2 ) = 1 and we recover the static
frequency distribution for the quadratic case:

1SO.
II

t2

const

Q [(Qo+ Qz —co ) /Q~ ][(co—Qo) /Q2]
(36)

The case with a large phason gap is analogous except for
the replacement of the t term with a term linear in t.
In reality one expects that the expansion of the NMR fre-
quency in powers of the displacements contains both
linear and quadratic terms. The expansion of the above
theory to this case is trivial.

IV. 2D NMR SEPARATION OF STATIC
AND DYNAMIC LINE SHAPES

It is interesting to note that two-dimensional NMR
provides for a unique possibility to separate the static in-
homogeneous line shape, represented by (G, ), and the
dynamic homogeneous line shape, represented by ( Gz ).
The shape of the incommensurate NMR spectrum of a
nucleus with spin I& —, is determined by the electric
quadrupole interaction with the electric field gradient
(EFG}tensor at the nuclear site. This interaction is space
and time modulated by the presence of the incommensu-
rate wave. The static inhomogeneously broadened NMR
line shape results from the static distribution of
quadrupole-perturbed Zeeman frequencies, reflecting the
frozen-out incommensurate modulation wave. Thus it
shows directly the static incommensurate distortions.
The dynamic line shape, on the other hand, reflects the
time-dependent part of the electric quadrupole interac-
tion due to phason and amplitudon fluctuations of the
modulation wave. It has been shown' that the static
quadrupole interaction can be eliminated from one fre-

quency domain in a 2D "separation of interactions" type
of NMR experiment (Fig. 1). The 2D line shape shows in
the co2 frequency domain the normal 1D line shape of
Eqs. (25}and (28), which is a convolution of the static line

shape with the dynamic one. In the co1 domain only the
dynamic line shape appears. This is so as the spin preces-

"g ='X, (& ) &=&usuvic' u( )

FIG. 1. 2D NMR pulse sequence for elimination of the static
part of the quadrupole interaction from the col domain, while

retaining the dynamic part. The sequence is designed for half-

integer spins I & —,
' with only the central transition —,

' ~—
—,
' irra-

diated. Since only two levels are involved the problem is for-
mally equivalent to the separation of chemical shift from dipole
coupling for spins I= 2. In the co& domain the static line shape

convoluted with the dynamic one is obtained, reflecting the full

Hamiltonian %&„„;,+A&(t). In the col domain, only the dy-

namic line shape appears, reflecting the dynamic part of the
quadrupole Hamiltonian %&(tj.

sion under the static quadrupole interaction in the first
half of the evolution period has been compensated by the
opposite precession in the second half of that period.
This is achieved by the application of a refocusing pulse
in the middle of the evolution period. It is important to
note that only the precession under the static quadrupole
Hamiltonian can be refocused, whereas the evolution of
the spin system under the time-dependent randomly fluc-
tuating quadrupole Hamiltonian cannot be time reversed.
The time-dependent part of the Hamiltonian determines
the adiabatic line shape and produces relaxation. The
term "dynamic line shape" stands here for the adiabatic
(homogeneous) line shape and is appropriate when the
phason- and amplitudon-induced fluctuations of the EFG
tensor slow down to the extent that they influence the
line shape. This is the case in the close vicinity of the
paraelectric-incommensurate transition temperature TI.

We write the 2D line shape for an incommensurate
modulation wave with a large phason gap (52»~L ) in

the linear case [Eq. (15a)] in the form

dX ~ ~ i(cu2 —QP
—QlX 2 t2lm]oclX +~oc2(l —X )I im&

&

—
l [co& lX +m&oc2(1

—X )]
1~ 2 ~ 2 1 2 (37a)

(37b)

Here t, is the evolution and t2 the detection time of the 2D experiment. The Fourier transform integrals in Eq. (37a)
can be done analytically, yielding Lorentzian shapes in both frequency domains:

—
& V'I —X~ [co„„X+co„,~(1 —X )] +(co2 —Qo —Q,X) [co„„X+co„,2(1 —X )] +co,

In Eq. (37a) the information on the static distribution of
resonance frequencies is retained in the co& domain via the

i (co2—Qp —Q lX) t2term e ' ' '. In the co1 domain this information
is eliminated by the refocusing effect of the pulse in the
middle of the evolution period. The static inhomogene-
ous line shape convoluted with the dynamic one is ob-
tained as the co, =0 cross section of the 2D spectrum [Eq.

(37b)]. The dynamic line shape is obtained in the co,

domain and varies over the inhomogeneous line shape
through its dependence on X=coskox =(co2 —Qo)/Q&.

The theoretical inhomogeneous and dynamic line
shapes in the vicinity of Tz are shown in Figs. 2(a) and
2(b). Figure 2(a) shows the inhomogeneous line shape
convoluted with the dynamic one as it appears in the cu2
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domain of the 2D NMR experiment. The parameter

g, =to)„(/0, has been varied between 0.5 (closest to TI )

and 0.05 (far away from Tl) refiecting the T/(TI —T)
dependence. The parameter gz=coi„z/Qi has been kept
constant for the top five line shapes at a value 0.2 due to a
weaker teinperature dependence as compared to g, . The
line shape at the bottom was obtained with $2=0.05 and
represents the almost static case. As can be seen, the line
shape is drastically changed in the region where the
thermal fluctuations are large, whereas outside that re-
gion the static incommensurate line shape appears
unaffected.

The dynamic line shape is shown in Fig. 2(b) for
different values of the parameter g, between 0.83 and
0.05. The paratneter g'2 has been fixed at a value 0.2 for
the top five line shapes. The line shape at the bottom is

obtained with /x=0. 05, representing the almost static
case. The line shape shown is the cop=Op cross section of
the 2D spectrum [Eq. (37b)]. The linewidth exhibits a
maximum at T= TI due to its dependence on
coi„,~ T/t/Tz —T and narrows on going away from TI.
As long as the width of the dynamic line shape is compa-
rable to that of the static inhomogeneous line shape,
thermal fluctuations drastically affect the shape of the
spectrum. Moving away from TI the dynamic line shape
narrows and the static inhomogeneous line shape
broadens, so that thermal fluctuations are of increasingly
smaller importance.

In the case of a gapless phason (b,x « cot ) the situation
is quite different. There the 2D spectrum can be written
in the form

a)

inhomogeneous line shapes

=D.5

dynamic line shapes

.83

inhomogeneous line shapes dynamic line shapes

.5

= 0.3 = 0.3

D.4

g)=026 i =0.26

g) =0.2 g) =013
.3 0.3

gq =0.05

gt =0.05
)i =0.05

gt=005 0.2

-1 01 -1 D 1

FIG. 2. Linear case. (a) Theoretical static inhomogeneous
line shapes convoluted with the dynamic ones in the vicinity of
T& for the case of a phason gap larger than the nuclear Larmor
frequency, 62)&coL. The line shapes are displayed on a normal-
ized frequency scale X=(N Qp)/QI ~ The parameter
g, =co, , /Q, is varied between 0.5 (closest to T~) and 0.05 (far
away from Ti) while the parameter gi is kept constant at the
value 0.2 for the top Sve line shapes. The line shape at the bot-
tom represents the almost static case obtained with pi=0. 05.
(b) Theoretical dynamic line shapes for the case of a large
phason gap (hz »coL ). g', is varied between 0.83 and 0.05. The
parameter gi has a fixed value of 0.2 for the top five hne shapes.
The line shape at the bottom represents the almost static case
obtained with g'2=0. 05.

-1 0 1 -1 0 1

X

FIG. 3. Linear case. (a) Theoretical static inhomogeneous
line shapes convoluted with the dynamic ones in the vicinity of
Tl for the case of a small phason gap (42«coL ). The line
shapes are displayed on a normalized frequency scale
X=(co—Qo)/Qi. The parameter g2 is varied between l (closest
to Tl) and 0.2, whereas g, has a fixed value of 0.2. (b) Theoreti-
cal dynamic line shapes for the case of a small phason gap
(b,, «eel ). fi is varied between l and 0.2 and $, =0.2. A
Lorentzian shape (dotted line) is shown for comparison at the
top spectrum, where the two lines are scaled to have the same
area.
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dX ~ ~ i(m2 —0()—01X)tg —
~mloci~2+ +[~ktc2 2)

co(, co2 = t, t2e ' ' ' 'e
1 —X

1 1 [ 1Ocl 1 1OC2 l ]
2 3/2 2

Xe e (38)

The Fourier integrals cannot be done analytically due to
the t dependence and the corresponding dynamic line
shape is no longer Lorentzian. The spectrum depends on
two parameters. g, =co„„/Q, ~ T /( Tz —T) represents as

before arnplitudon fluctuations, whereas the gapless
phason fluctuations are represented by the parameter

~&oc24=
0(

Figure 3(a) shows a set of inhomogeneous NMR spec-
tra, where the parameter gz has been varied in the range
between 1 and 0.2. The parameter g& has been kept con-
stant at the value 0.2. It can be seen that the line shape
with gz=l (closest to T~) shows a characteristic shape
due to the t term. The static inhomogeneous frequen-
cy distribution function is here much narrower than the
dynamic line shape induced by phase fluctuations. This
shape evidently differs from the Lorentzian shape pre-
dicted for a phason with a gap. On moving away from
Tz ((2~0) the line shape transforms into the static line

I

shape. Thermal phase fluctuations are again important
only in the close vicinity of T~, where the dynamic line

shape is of comparable width to the static frequency dis-
tribution. All spectra are co& =0 cross sections of the 2D
spectrum [Eq. (38)].

The dynamic line shape for the case of a gapless
phason is shown in Fig. 3(b). gz is varied between 1 and
0.2 and g, is kept constant at 0.2. On the top spectrum a
comparison to a Lorentzian shape (dotted line) is made
where the two lines have been normalized to have the
same area. Due to its t dependence, the dynamic line
shape for the case of a gapless phason is narrower in the
center and has stronger wings than the Lorentzian line
shape. One should thus be able to discriminate between
these two possibilities by making precise measurements
of the inhomogeneous and dynamic line shapes using the
2D NMR separation of interactions technique.

The 2D line shape for the quadratic case [Eq. (30)] can
be treated in the same way using Eq. (35) for I(co). In the
case of a small phason gap (b, 2 && coi ) we obtain

( dx ~ ao ((a)2 —o~ —f1~x )t~ —(co( (t~x +(8( 2t2) x (( —x ))

—1 1 —X2 0 0

1 1 [ 1OC1 1 1OC2 1 ]
4 ~ )3/2 2 2

Xe e (39)

Theoretical spectra close to T~ are shown in Fig. 4. Fig-
ure 4(a) shows the inhomogeneous line shapes obtained as
the co&=0 cross sections of the 2D spectrum [Eq. (39)].
The parameter g =co,'„,/Q2 has been varied between 0.8
(close to Tz) and 0.1 (far away from Tz), whereas

/&=co('~, 2/Q2 has been kept constant at a value of 0.8.
The line shapes are displayed on a normalized frequency
scale (co —Q(t)/Q2. The line shape for g =0. 1 practically
corresponds to the static case of Eq. (36), which exhibits
two edge singularities of unequal intensities, the larger
being centered at cu=Q&. As in the linear case, thermal
fluctuations destroy the static shape close to T~. Figure
4(b) shows the dynamic line shapes obtained as the co2 =0
cross sections of the 2D spectrum [Eq. (39)]. The param-
eter g has again been varied between 0.8 and 0.1 and
gz=O. 8 has been used. As in the linear case, a change in
the linewidth is observed.

U. RESULTS AND DISCUSSION

A. Rb NMR in RbzZnC14

A 2D separation of interactions experiment has been

performed on the Rb —,
' ~—

—,
' transition in an ultrapure

R12ZnC14 crystal at an orientation alH~, & c,H~ = 122'.
At this particular orientation there are two Rb lines,

l

originating from the two physically nonequivalent Rb
sites of the paraelectric unit cell. The 2D spectrum in the
incommensurate phase at T=291.2 K is displayed in Fig.

In the co& domain the two lines show typical incom-
mensurate shapes with continuous frequency distribution
limited by edge singularities —shown in the projection
above the 2D spectrum. The domain is sensitive to both
the static and the dynamic parts of the quadrupole in-
teraction. Since, however, the spectrum has been taken
far below the paraelectric-incommensurate transition, the
dynamic parts of the quadrupole interaction has a negli-
gible effect on the line shape. The line shapes in the co2

domain are thus here purely static. The effect of phase
and amplitude fluctuations on the NMR line shape in the
vicinity of T~ has been studied on the left line (centered
around co&/2m. =O Hz). In the co& domain, the static
quadrupole interaction is eliminated from the spectrum,
which is determined by the dynamic quadrupole interac-
tion and the much weaker magnetic dipole interaction be-
tween Rb nuclei. At the above orientation the expan-
sion of the resonance frequency in powers of displace-
ments [Eq. (15a)] is well described by the linear term
only. "

A line-shape study in temperature steps of 0.2 K has
been performed in the vicinity of the paraelectric-
incornmensurate transition. The positions v;„h of the
edge singularities obtained in the ~2 domain are shown in
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Fig. 6. The full width at half height of the dynamic line
shape hv& obtained in the ae, domain at the center of the
static line shape is also shown. On the same plot the
spin-lattice relaxation time T& is also displayed. In the
incommensurate phase T& varies over the inhomogeneous
line shape with X=coskax =(co2—Qa)/0&. It has been
shown' ' ' that the variation is well described by the
expression

--40

—-2000

(ali /2K
e~ —

O (Hz)

=X +(l —X )
1 1

(40)
TIA T$

where T,„' represents the amplitudon-induced and T, '

the phason-induced spin-lattice relaxation rate. T,„and
T, can thus be separately determined by measuring the
spin-lattice relaxation time over the inhomogeneous line

4mIO 20000 0 -20000 -4tmtl -60000

&~]'2m (Hz)

- 2000

- 4000

a) inhamageneaus line shapes

gi =0.8

0.5

b) dynamic line shapes

g, -O.8

0.3

FIG. 5. Two-dimensional separation of interactions magni-
tude spectrum of the Rb 2

~—
2 transition in Rb2ZnC14 at an

orientation alHo, & c,Hp = 122', T=291.2 K, and vp( Rb) =
88.34 MHz. The ~2 domain shows the inhomogeneously
broadened incommensurate line shape, reflecting the static and
dynamic parts of the quadrupole interaction. The co& domain
shows the homogeneous line shape, determined by the dynamic
part of the quadrupole interaction and the magnetic dipole in-

teraction of Rb nuclei. Projections on both frequency axes are
also shown. The spectrum is displayed in the magnitude mode.

0.3

0.1 15—
T, (ms)

—350

dog(Hz)

0,2 I

N-Qg
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5 —c

I
Tg =304.4K

l
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FIG. 4. Quadratic case. (a) Inhomogeneous line shapes close
to TI for the case of a small phason gap (42 « coL ). Line shapes
are the co& =0 cross sections of the 2D spectrum [Eq. (39)]. The
parameter /=co,', /Qz has been varied between 0.8 (close to
Tl) and 0.1 (far away from Ti), whereas gz=coi~2/02 has been
kept constant at a value 0.8. The line shapes are displayed on a
normalized frequency scale (co—Qp)/Q2. Thermal fluctuations
close to TI destroy the static line shape. (b) Dynamic (homo-
geneous) line shapes close to TI for the quadratic case and small
phason gap (62« coL ). Line shapes are the co2=0 cross sections
of the 2D spectrum [Rq. (39)]. The parameter g is varied be-
tween 0.8 (close to TI) and 0.1 (far away from TI). A fixed

gal=0. 8 has been used. As in the linear case, the linewidth
changes with temperature.
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FICx. 6. Temperature dependence of the spin-lattice relaxa-
tion time T&, the full width at half height of the dynamic line
shape hvH, and the frequencies of edge singularities of' the inho-
mogeneous line shape v;„h in Rb2ZnC14 in a narrow temperature
interval around TI. T» is the amplitudon- and T&& the
phason-induced spin-lattice relaxation times. vp( Rb) = 88.34
MHz, ~lHo & c,Ho =122
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shape. From Fig. 6 it is seen that the width of the dy-
namic line shape bvH exhibits a maximum at TI =304.4
K. T& in the paraelectric phase decreases on lowering
the temperature and a minimum value is obtained at TI.
Below TI, T, splits into two branches: the temperature-
independent phason contribution T& and the critically
temperature-dependent amplitudon contribution
T,„~QTI—T. The experimental variation of T, over
the inhomogeneous line is shown in Fig. 7 for
TI —T=0. 1 and 0.3 K. The temperature TI =304.4 K is
obviously the phase transition temperature, where the
paraelectric soft mode condenses. In the vicinity of TI its

frequency becomes so low that it affects the NMR line

shape. Thus a very accurate determination of the transi-
tion temperature TI can be made. The inhomogeneous
1ine shape, on the other hand, shows at TI =304.4 K no

typical incommensurate shape, limited by two edge singu-
larities. It rather retains its paraelectric shape and starts
to broaden with decreasing temperature. The incom-
mensurate splitting starts to be seen at TI —T=0.4 K.
The maximum in the dynamic linewidth and the appear-
ance of resolved phason and amplitudon relaxation rates
occur at the same temperature, which is different from
the temperature where one starts to observe the incom-
mensurate splitting of the inhomogeneous line shape. It

I I I

-1 0 1

X (normalized frequency)

Tg -T = 0.3K

.(ms

5 ms

! I

-1 0 1

X (normalized frequency)

FIG. 7. Variation of the spin-lattice relaxation time Tl over
the inhomogeneous incommensurate line shape at TI —T=0.1

and 0.3 K in RbzZnC14. The orientation is the same as in Fig. 5.
Circles represent measured values of T&, fits (solid line) are
made with Eq. (40).

is obvious that there exists a critical region below TI—as
determined from the dynamic-line-shape maximum—
where the phase and amplitude fluctuations affect the in-
homogeneous line shape and destroy its static incom-
mensurate shape. The width of this region is here about
0.4 K. The experimental and theoretical inhomogeneous
line shapes close to TI are shown in Fig. 8(a). At

TI —T=0. 1 and 0.3 K the inhomogeneous line shape is
smeared out by fluctuations so that it exhibits the
paraelectriclike shape. At Tz —T=0.5 K, a typical in-

commensurate shape with two edge singularities becomes
observable. The theoretical fit represents the coi =0 cross
section of the 2D spectrum Eq. (37b). The inhomogene-
ous line shape is not sensitive enough to discriminate be-
tween the case of a large [Eq. (37b)] and the case of a
small phason gap [Eq. (38)] and both expressions fit the
experimental line shape equally well. A discrimination
between the two possibilities can be made, however, by
comparing the experimental and theoretical dynamic line
shapes, which are shown in Fig. 8(b) for the same temper-
atures. The solid lines represent the fits with Eq. (37b)
corresponding to a phason with a large gap whereas the
dotted lines represent fits with Eq. (38) valid for a gapless
phason. Both fits are coz=QO cross sections of the 2D
spectra where Qo is the position of the absorption line in
the paraelectric phase. The fit with a large phason gap
reproduces the experimentally observed homogeneous
line shapes better than the fit without a phason gap. As
can be seen from Fig. 8(b) the difference in the two
theoretical fits is not very large. In a good signal-to-noise
experimental spectrum it is, however, possible to discrim-
inate between the two cases. The line shape of the
gapless-phason case deviates measurably from the
Lorentzian form. The evaluation of the phason gap from
the line shape is not possible, however. The theory can
just discriminate whether the gap is much larger or much
smaller than the nuclear Larmor frequency. In Fig. 8(c)
the observed inhomogeneous Rb line shapes are shown
in a larger temperature interval.

On moving away from TI the dynamic line shape be-
comes narrower, demonstrating the decreasing impor-
tance of order-parameter fluctuations. Thus the
dynamic-linewidth maximum at TI in Fig. 6 is well repro-
duced. Here it should be noted that, on approaching TI
from above, the increasing dynamic width is a conse-
quence of the softening of the paraelectric soft mode.
This is a doubly degenerate opticlike mode, with its fre-

quency being described by cosM QT TI. Figure 9—
shows the temperature variation of the parameters Q„

&«&, and ~&«z, determined by a comparison of experi-
mental and theoretical line shapes. Fits of both the inho-
mogeneous and dynamic line shapes were made simul-
taneously with the same set of parameters. The parame™
ter Q, ~ A ~QTI —T has been determined from the
splitting of the edge singularities in a large temperature
interval. 0& has been then extrapolated into the critica1
region close to TI, where the inhomogeneous line shapes
show no edge singularities. The refined Q& values after
the fit procedure agreed within 10% with respect to the
starting values. The temperature dependence of Q, is in
the general case described by Q, ~(TI —T)~ and the
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C=(1.1+0.1) s ' K '/. co«,2 is also consistent with
the prediction of Eq. (24b), since it is found to decrease
very weakly in a temperature interval AT=0. 5 K below
TI. The fit (solid line) was made with the ansatz
~&„2=DT and the constant D is found as
D =(0.99+0.05) s ' K '. The inset in Fig. 9 shows the
normalized quantities
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FIG. 9. Temperature dependence of the parameters 0&/2m,
~&„&/2n., and co~ 2/2m obtained by comparing experimental and
theoretical inhomogeneous and dynamic line shapes. Dashed
line represents a least-squares fit Q, ~ (T, —T}S with P=0.5.
Solid lines represent fits with Eqs. (24a) and (24b). The inset
shows the normalized quantities (~ =co~, /0, and gq=co~„q/Q~,
which measure the relative sizes of the fluctuating and static
parts of the order parameter. Moving away from Ti, g, and g,
tend to zero.

which measure the relative sizes of the fluctuating part of
the order parameter with respect to the average value of
the order parameter. At TI T=0.—1 K, g& amounts to
0.31 and $2-0. 1. On moving away from TI into the in-

commensurate phase, (, and gz tend to zero, showing the
decreasing importance of phase and amplitude fluctua-
tions.

The values of (,=0.31 and (2=0. 1 at TI —T=0. 1 K
indicate that the fluctuating and the static parts of the or-
der parameter become of comparable size at that temper-
ature. An interesting question arises when one considers
how close to the phase transition temperature TI the
above treatment —based on the Landau theory —can be
applied. It is well known that the Landau theory is appli-
cable in the range where the order-parameter fluctuations
are small compared to the static part of the order param-
eter. Thus approaching TI one necessarily violates the
above condition. From the normalized quantities g& and

g2 one can see that the parameter Q, —a measure of the
magnitude of the static order parameter —and parame-
ters co&„& and co&„2—measures of the fluctuating parts of
the order parameter —become of comparable size 0.1 K
below TI. The above treatment thus does not apply at
temperatures closer than 0.1 K to TI.

B. K NMR in K2Se04

determination of the critical exponent p strongly depends
on the choice of Tz. In Rb2ZnC14, NMR measure-
ments yielded a nonclassical value of p=0. 35. It has
been shown recently that the p=0. 35 result is generally
found in one-dimensionally modulated incommensurate
crystals. These results were obtained from NMR stud-
ies of the temperature variation of the order parameter
over a large temperature interval. Our calculations are
based on the Landau theory which uses the classical criti-
cal exponent P=0.5. The fit with Q, ~(TI —T) is

shown as a dashed line in Fig. 9. This fit is made over a
temperature interval ET=1.6 K close to TI and in this
interval the value p=0. 5 reproduces rather well the ex-
perimental data. In a larger temperature interval
p=0. 35 has to be used for a proper fit. The fit parameter
co&~, behaves as T/QTI T, in agreement w—ith Eq.
(24a). The solid line represents the fit with the ansatz
co&„,=CT/QTI Tand the constan—t C is found as

A similar e8'ect of thermal fluctuations as in RbzZnC14
has been observed also in the quadrupole-perturbed K
NMR spectra of KzSe04. The K —,

' —
—,
' transition has

been measured at the Larmor frequency 12.6 MHz
around the paraelectric-incommensurate transition tem-
perature TI=125.2 K. The orientation of the crystal
(QlHp & c Hp= 100 } has been chosen in such a way
that the expansion of the frequency in powers of the dis-
placements [Eq. (15a)] is linear. The K inhomogeneous
spectra are shown in Fig. 10(a} for a set of temperatures
below TI. Care has been taken to decrease the tempera-
ture gradient across the sample to less than 0.1 K by
proper thermal isolation in the cryostat and by waiting at
least thirty minutes before the measurement was started
after the desired temperature has been reached. The in-
homogeneous spectrum at TI —T=0.4 K preserves its
paraelectric shape, whereas the spectra between

TI —T= 1.6 and 3.4 K gradually transform into the stat-
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-T =0.4K

1.6 K

2.2 K

2.8 K

nally pure crystal, we believe that this alternative descrip-
tion is not appropriate in our case. The two possibilities
cannot, however, be discriminated solely from the spec-
trum shape. The line shape at TI —T=6.2 K corre-
sponds to the static modulation wave, where thermal
fluctuations are no longer important. Experimental line
shapes have been reproduced theoretically [Fig. 10(b)] by
the adiabatic inhomogeneous-line-shape formula [Eq.
(28)]. As pointed out already in the Rb2ZnC14 case, the
inhomogeneous line shape is not sensitive enough to
discriminate between difFerent combinations of parame-
ters g, =co,«, /0, and $2=coi«2/Q, or $2=ro,«2/0, . The
fits with Eqs. (28) are thus qualitative only. In our fits g,
assumes a small constant value 0.1 and gz is chosen in the
form g2=B/Q(TI —T)/Tz with a dimensionless con-
stant B=5 X 10 . From Figs. 10(a) and 10(b), it can be
seen that the temperature region —3 K—where thermal
fluctuations afFect the line shape is substantially broader
in K2Se04 than in RbqZnC14.

VI. CONCLUSIONS

3.4 K

6.2K

I

20 10
~~2~ (kHz)

I I I

X

-1 0 1

ic incommensurate shape. The central peak arises from
the parts of the modulation wave which fluctuate fast on
the linewidth scale. Another explanation for the central
peak could be a distribution of TI values due to impuri-
ties in the crystal lattice. As we are dealing with a nomi-

FIG. 10. (a) ' K
2

—
~ inhomogeneous NMR line shapes in

K2Se04 in the vicinity of Tz = 125.2 K [vo(' K) = 12.6 MHz,
a WHO, (c,Ho = 100']. (b) Theoretical inhomogeneous line

shapes in the vicinity of TI [Eq. (28)], derived for the case of a
small phason gap. The spectra are displayed on a normalized
frequency scale X=(co—Qo)/0„' (=0.1 and
g2=B/V'(TI T)/TI.

The obtained results show that the adiabatic incom-
mensurate line shape is given by the Fourier transform of
(G) =(GiGz) and not just Gi as tacitly assumed so far
in nearly all NMR studies of incommensurate-
paraelectric phase transitions. This fluctuation correc-
tion, which is similar to the Debye-Wailer factor in x-ray
scattering, determines the form of the NMR spectrum in
the vicinity of the N-I transition. The 2D NMR separa-
tion technique allows for a separate observation of the
static and dynamic line shapes. The latter has maximum
width at TI, thus allowing for a precise determination of
TI. This is important, since order-parameter fluctuations
change the shape of the static incommensurate spectrum
in such a way that the edge singularities of the static line
shape disappear in a narrow temperature interval below
TI, thus masking the onset of the I phase.

One should note that the above fluctuation corrections
are evaluated for an ideal defect-free crystal and that the
NMR line shape close to TI will be greatly influenced by
impurities.
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