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Anomalous behavior of the complex conductivity of YI Pr, Ba2Cu307 observed
with THz spectroscopy
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We have measured the complex conductivity of Y& „Pr„Ba2Cu307 single-crystal thin films using coherent
THz spectroscopy. We obtain directly the London penetration depth, the plasma frequency co~, and the

quasiparticle scattering rate 1/r. We And 'that 1/v drops rapidly with temperature below T, in all the super-
conducting samples, implying that this is a signature of high-T, superconductivity. co„decreases with increas-

ing x, indicating that Pr takes mobile carriers from the CuO planes. Both the THz and dc conductivity yield
evidence for the opening of a spin gap above T, .

The large body of vital spectroscopic data on the high-

T, superconducting compound YBa2Cus07 s (YBCO) mea-
sured in the far infrared (FIR) as well as the GHz region has
revealed many interesting features. Among them are: the
presence of one' or more energy gaps in the superconduct-
ing state, a temperature-dependent penetration depth that is
indicative of d-wave pairing, and a quasiparticle scattering
rate which is proportional to frequency in the normal state'
and which drops by four orders of magnitude at T, .

The technique of THz-time-domain spectroscopy bridges
the gap between the FIR and the GHz regime. THz measure-
ments of YBCO display a peak in the temperature depen-
dence of cr& below T, , which appears to be related to a
temperature-dependent scattering rate I/r rather than to BCS
coherence effects. Other experiments using the same tech-
nique have revealed that the penetration depth Xz, has a
temperature dependence inconsistent with BCS theory.

Here we report results of a THz investigation into the

Y&,Pr„BazCu&O& (YPrBCO) system. These measurements
are of great interest because samples covering a wide range
of critical temperatures can be obtained simply by varying
the Y/Pr ratio. Also, because YPrBCO is fully stoichio-
metric in the oxygen content, it is more homogeneous than
oxygen-depleted YBCO and does not change from an ortho-
rhombic to a tetragonal lattice upon decreasing T, . Several
mechanisms have been proposed for the T, suppression, in-
cluding magnetic pair breaking and depletion of holes in the
Cu02 planes.

Recently, the opening of a spin gap at temperatures above
T, in oxygen-deficient YBCO has been deduced from vari-
ous experiments, e, dc resistivity and Hall coefficient, ' "
neutron scattering, ' and NMR measurements. ' However,
until now only few electromagnetic measurements on under-
doped YBCO have been linked to the presence of a spin
gap." In this paper, we report evidence for a spin gap ob-
tained from measurements both at dc and at THz frequencies
in YPrBCO, which is consistent with Pr depleting holes from
the CuO planes.

Our spectroscopic technique involves a coherent time-
dornain measurement of a ps microwave impulse E(t) trans-
mitted through the sample. A Fourier transform yields the

complex transmission spectrum t(to) and the complex con-
ductivity o(co), without the use of Kramers-Kronig analysis.
The London penetration depth kr(T), the plasma frequency
to~ in the clean limit, and the scattering time r(T) are ob-
tained with the aid of a two-Quid model.

The microwave source is a biased 30 p, m transmitting
antenna fabricated on low-temperature-grown GaAs, trig-
gered with —100 fs optical pulses from a colliding-pulse
mode-locked dye laser. The emitted microwave pulses have
spectral components spanning the 0.1—1.0 THz spectral re-
gion which is difficult to access with conventional
electronics. ' The receiver is a 30 p, m antenna, fabricated on
ion-implanted silicon-on-sapphire and gated with a second
pulse from the laser. The receiver photocurrent is propor-
tional to the incident microwave field.

We investigated five YPrBCO samples having Pr compo-
sition x = 0.0, 0.2, 0.3, 0.4, and 1.0. The films are grown by
pulsed laser deposition' onto NdGa03 substrates. The film
thicknesses are approximately 150 nm (Table I). NdGaO& is
the ideal substrate because it remains transparent and nondis-
persive over the entire spectral bandwidth of our pulses, as
well as over the entire range of temperatures investigated
here. The excellent lattice match of NdGa03 to YprBCO is a
prerequisite for a low density of misfit dislocations on the
film-substrate interfaces. The substrates have a (001) orien-
tation, yielding c-oriented, twinned films. The critical tem-
peratures T,' (Table I) are determined from the temperature-
dependent resistivity, as measured with a four-point probe.

x d (nm) kt(0) (nm) ca (cm ') T,' (K) T (K)

(4-point probe) (microwave)

0..0 155
0.2 134
0.3 170
0.4 170

170 + 10
350 ~ 10
375~ 7

590 ~ 15

9500
4560
4244
2693

93
68
53
40

92
72
59
41

TABLE I. Film thickness d, London penetration depth kt(0),
plasma frequency co, dc-transition temperature T,', and ac-
transition temperature T," for Y& „Pr„Ba2Cu307 with x= 0, 0.2,
0.3, and 0.4.
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FIG. 1. (a) o~(v) and (b) oz(v) for Y& „Pr„BazCu307 at
T=50 K. The solid and dashed uppermost curves are fits (a) to a

Drude form, and (b) to 1/co (see text).

The transition width (90—10%) varied from 0.3 K for x=0
to 3 K for x=0.4. X-ray diffraction showed the presence of
sharp (00l) peaks only; no traces of other orientations and/or

phases could be detected. Critical currents of samples with
x =0 are typically 6x10 A/cm at 4.2 K and
&10 A/cm at 77 K.

To calculate the conductivity, we make use of the multiple
reQection formula for the Geld transmitted through a layer of
(complex) index nz, thickness d, bounded by media of index

n& and n3.'

1+n3
t(cu) =

1+n3+Zoo(co)d ' (2)

where Zo is the impedance of free space.
The effect of varying Pr content x (hereafter [Pr]) on the

conductivity spectra o.(co) at T=50 K is similar to the effect

t &ztz3exp[inz( co/c) d]
t(co) =

1+r,zrz3exp[2inz(co/c)d]
'

where t;, =2n;/(n;+ n, ) is the field transmission coefficient
at the ijth interface, and r;J =(n; n~)/(n;+n. ,) is —the field
reAection coefficient. In our geometry, n

&
represents vacuum,

nz= $1+io(tu)/(coco) is the index of the superconducting
layer, and n3 is the measured index of the substrate. As
nz(cu/c)d&&1, and nz&&n3&1 in our samples, Eq. (1) re-
duces to

FIG. 2. (a) crz(T) and (b) o, (T) for Y, „Pr„BazCu307 at 480
GHz. The dashed curves in (b) show 1/p* (see text). The vertical
lines indicate T,".For clarity, the data for x=0.3 in (b) have been
multiplied by 1.5. The error bars for the alloys with x&0 are com-
parable to the symbol size.

of varying the temperature for a given alloy (Fig. 1). The
addition of Pr has at least two interrelated effects: (a) The
suppression of T, changes the partitioning between normal
and superconducting carriers. (b) The total number of carri-
ers N (or their mobility) may be reduced. To the extent that
the superconducting carriers make the largest contribution to
o z, both factors (a) and (b) lead one to expect that at a given
temperature, pure YBCO would have the largest a2, and it
does. Samples with 20% and 30% Pr have smaller values of
cr2, since they are only slightly below their T, . The sample
with 40% Pr has o.2=0 because it is above T, at 50 K.

Only normal carriers contribute to o.
&

for co 4 0, but now
factors (a) and (b) compete. At 50 K, o.

&
decreases with [Pr],

therefore the effect of a reduction in N dominates the effect
of the shift in T, which increases the fraction of normal
carriers. The data for pure YBCO and 20%%uo Pr have been fit
to a frequency-dependent Drude form, and one can see that
1/r lies in our spectral range. For 30%%uo and 40% Pr, we
observe frequency-independent o.

&
and can conclude that

1/7 is large compared to 1 THz. Pure PrBCO is a dielectric at
50 K, as seen by a conductivity proportional to frequency,
i.e., a dielectric constant independent of frequency.

Examining o.z at a fixed frequency, e.g. , 480 6Hz (Fig.
2), we see that it is close to zero at high temperature, but
rises sharply at the onset of superconductivity, thus providing
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FIG. 3. (a) The dc resistivity p(T) and (b) the normalized dc

resistivity p*(T) for Y, „Pr„Ba2Cu307.

an independent ac measurement of T, (Table I). In all of the

superconducting alloys, below T, , 0.
&

displays a peak, which
has been previously observed only in fully oxygenated
YBCO using microwave techniques ' as well as by measur-

ing the thermal conductivity. ' It has been attributed to a
sharp rise in the scattering time r of normal carriers below

T, offsetting the decrease in the fraction of normal carriers,
although coherence effects remain a possibility. For pure
YBCO, the peak value is about 20 times higher than

o, (100 K). With increasing [Pr] the peak height in o, de-
creases but the temperature corresponding to the peak posi-
tion does not shift significantly.

The normal-state behavior of our samples is particularly
interesting because underdoped materials such as
(124)YBCO and oxygen-deprived (123)YBCO undergo a
phase transition associated with the opening of a spin gap at
a temperature TD&T, . Evidence for the presence of a spin

gap has been seen in neutron scattering, ' ' dc resistivity
measurements, ' " and FIR reflectivity. ' Recent
experimental ' and theoretical work confirm that YPrBCO
alloys are also underdoped, i.e., superconductivity is sup-

pressed, because holes are removed from the Cu02 planes.
If the normal carriers couple strongly to spin fluctuations,

the opening of a spin gap should be accompanied by an
increase in the scattering time ~, giving rise to an enhance-
ment in o &

below TD for t0( 1/r For pure (op. timally doped)
YBCO, at 480 GHz, o.

&
shows only a single transition at

T, [Fig. 2(b)]. For the (underdoped) alloys, o
&

has two tran-

sitions, one at T, , the other at a higher temperature which
increases with [Pr]. To accentuate the two transitions, Fig.
2(b) is shaded in the region bounded by T, , the experimental
curve, and a dashed line representing 1/(a+/3T) behavior.

A second, higher transition temperature in the underdoped
samples is also observed in the dc resistivity [Fig. 3(a)]. The
transition is manifested as a deviation from a linear T depen-
dence. To show the deviation more clearly, the resistivity is
first fit to a line p = a+ PT between 250 and 300 K, and then
the experimental values are normalized to the value deter-

0.2-

0.0
0.0 0.2 0.4 0.6 0.8

V

1.0

C

mined by the line as p* =p/(a+ PT). The normalized resis-
tivity [Fig. 3(b)] of the YPrBCO alloys shows a transition

occurring at a temperature above T, similar to that which has
been observed in underdoped YBCO, and connected to the

opening of a spin gap.
' "

For the evaluation of XL we are using a two-fluid model
of the form

E'p COp 7 1 l
o(co) = . x„+ 2

—7rB(o))+ —x, ,1 —i co'T p, pQg Mf
(3)

where co& is the plasma frequency, and x„and x, are the
fractions of normal and superconducting carriers, given by
x„+x,=1.We derive the penetration depth from a fit to Eq.
(3). In our frequency range, we can ignore the Drude contri-
bution to crz for temperatures which are more than a degree
below T, . As x„=O at T=O in the two-fluid scenario, we
have x,=[kL(0)/KL(T)] . Shown in Fig. 4 is the measured

[kL(0)/kL(T)] vs T/T", for all samples. Also plotted are
theoretical curves from weak-coupling BCS theory and the
functional form

[kL(0)/Xt(T)] =1—(T/T, ) . (4)

Power-law behavior in the dependence of Pz on T for
T~O is one signature of "unconventional superconductiv-
ity,

" i.e., nodes in the energy gap in k space. Our data are
intermediate between BCS theory and a=2, which is the
exponent redicted for d-wave pairing with impurity
scattering. Microwave measurements at lower frequencies
have indicated both a=2 (Ref. 4) and a=1 (in the T~O
limit) corresponding to d-wave pairing in very high-quality
samples. ' The Gorter-Casimir two-fiuid model (a=4),
as well as d-wave pairing (a=1) are clearly inconsistent
with our data.

XL(0) is obtained by extrapolating lN L(T) to T=0 using a
quadratic regression (Table I). Our value for pure YBCO,
170~10 nm, is close to the 145 nm value typical for good
samples. XL (0) increases with increasing [Pr] as the
samples become less superconducting.

FIG. 4. Normalized London penetration depth KL(T/T,") for

Y& „Pr„Ba2Cu307.Also shown are curves corresponding to the pre-
dictions of BCS theory (solid line), as well as to the functional form

(4) for a= 1 (dash-dotted line), 2 (dashed line), and 4 (dotted line).
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FIG. 5. Quasiparticte scattering rate 1/r(T) for
Y& „Pr„BazCu307 at 480 GHz.

The plasma frequency tu„(Table I) is determined with the
relation to~ = c/kt (0), which is valid in the clean limit, pro-
vided all carriers are superconducting at T=O. The clean
limit assumption becomes less valid upon substitution of Pr,
therefore the values for the alloys are only estimates. Our
value of 9500 cm ' in pure YBCO is close to the 12000
cm ' value indicative of good sample quality.

The quasiparticle scattering rate 1/r is calculated by fit-
ting Eq. (3) to the data for o & and using, for x„, the relation
x„=1 —x,=1—[XL(0)/kt(T)] . We find that 1l/r decreases
slowly with decreasing temperature until T=T„after which
it decreases exponentially rapidly (Fig. 5), possibly reflecting
the opening up of a gap in the fluctuation spectrum. Similar
behavior has been reported in YBCO samples. " The scatter-

ing rate 1/r reveals an exponential decay below T, by more
than two orders of magnitude for all samples with different
[Pr]. Thus we are led to conclude that this behavior is a
universal feature of high-T, superconductivity.

For T)T, , we find the surprising result that 1/r de-
creases with [Pr] implying that alloy scattering plays a neg-
ligible role, and that depletion of carriers in the Cu02 planes
dominates the scattering. It should be noted, however, that
the drop in 1//r with [Pr] may be due to an underestimate of
~~, if the clean limit assumption breaks down for the alloys.
A more precise determination of the scattering rate depen-
dence on [Pr] above T, is beyond the scope of this paper.

In conclusion, we have presented complex conductivity
experiments in the THz range on thin films of
Y, „Pr„Ba2Cu307. o.&(T) reveals the anomalous coherence
peak for all superconducting alloys. Both the conductivity in
the THz region and dc resistivity measurements provide evi-
dence for the opening of a spin gap in the excitation spec-
trum of the underdoped samples. o 2(tu, T) yields directly the
penetration depth. For the superconducting YPrBCO alloys
the plasma frequency co~ in the clean limit decreases with

[Pr] above T, due to a reduced number of carriers. The
temperature-dependent quasiparticle scattering rate 1/r(T)
shows an exponential drop below T, in all the alloys. These
observations fit into the picture of Pr suppressing supercon-
ductivity by reduction of the mobile carrier concentration in
the superconducting Cu02 planes.

%e acknowledge discussions with L. Genzel, A.
Bussmann-Holder, P. Horsch, I. Mazin, T. Timusk, J.P. Car-
botte, P. Littlewood, and S. Anlage. S.D.B. and J.O.W. ac-
knowledge support by the Alexander von Humboldt Founda-
tion.

Electronic address: buhleier@servix. mpi-stuttgart. mpg. de

~Current address: Tele Danmark Research, DK-2970 Hoersholm,
Denmark.

~Current address: Dept. of Physics and Astronomy, Rutgers Univer-

sity, Piscataway, NJ 08855-0849.
~On leave from Hughes Research Laboratories, Malibu, CA.
' L. D. Rotter et al. , Phys. Rev. Lett. 67, 2741 (1991).
L. Genzel, M. Bauer, H. U. Habermeier, and E. H. Brandt, Z.

Phys. B 90, 3 (1993).
3W. N. Hardy et al. , Phys. Rev. Lett. 70, 3999 (1993).
D. A. Bonn et al. , Phys. Rev. B 47, 11 314 (1993).
M. C. Nuss et al. , Phys. Rev. Lett. 66, 3305 (1991).

6S. D. Brorson et al. , Phys. Rev. B 49, 6185 (1994).
H. B. Radousky, J. Mater. Res. 7, 1917 (1992).
G. Y. Guo and W. M. Temmermann, Phys. Rev. B 41, 6372
(1990).

R. Fehrenbacher and T. M. Rice, Phys. Rev. Lett. 70, 3471
(1993).

' B. Bucher et al. , Phys. Rev. Lett. 70, 2012 (1993).
"T. Ito, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 70, 3995

(1993).
J. Rossat-Mignod et al. , Physica B 169, 58 (1991).

' H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. Lett. 63, 1700
(1989).

' C. C. Homes et al. , Phys. Rev. Lett. 71, 1645 (1993).
' D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, J.

Opt. Soc. Am. 7, 2006 (1990).
' A. A. Volkov et al. , Sov. Phys. JETP 68, 148 (1989).
' H. U. Habermeier et al. , Physica C 180, 17 (1991).
' D. A. Bonn, P. Dosanjh, R. Liang, and W. N. Hardy, Phys. Rev.

Lett. 68, 2390 (1992).
' R. C. Yu et al. , Phys. Rev. Lett. 69, 1431 (1992).

P. M. Gehring et al. , Phys. Rev. B 44, 2811 (1991).
2'K. Takenaka et al. , Phys. Rev. B 46, 5833 (1992).
2 B. Miihlschlegel, Z. Phys. 155, 313 (1959).

M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
P. Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993).
Z. Ma et al. , Phys. Rev. Lett. 71, 781 (1993).

26C. J. Gorter and H. G. B. Casimir, Phys. Z. 35, 963 (1934).
Following O. Klein [Phys. Rev. Lett. 72, 1390 (1994)],we cannot

be certain about the exact form of 1/r near T, , as our model,
which includes no direct absorption, breaks down near T, when
the gap goes to zero. Nevertheless, our model is good outside
the region right below T, , and the magnitude of the drastic
change in 1/v is still valid.


