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The model Hamiltonian describing the partially delocalized f-electron system has been generalized to
include both hybridization and band-f exchange Coulomb interaction. A method has been developed to
calculate the parameters appearing in such a model Hamiltonian from first principles. This enables us to
calculate f-electron-based electronic and magnetic phenomena of pertinent materials on a quantitative
basis. Calculations have been done for cerium monopnictides and monochalcogenides. Results are in

agreement with experiment on various unusual behaviors of these materials, such as anomalous crystal-
field splitting and anisotropic magnetic ordering, all of which are caused by the interactions between f
electrons and band electrons. In contrast to the earlier version of this theory that included only hybridi-
zation effects and produced range parameters (two-ion "exchange" coupling) that failed by an order of
magnitude in matching the phenomenologically determined parameters which provide agreement with

experiment, the present first-principles theory calculations which also include band-f Coulomb exchange
provide excellent agreement with the phenomenologica11y required magnitude.

I. INracODUt&ION

There is much interest in the magnetic behavior of
correlated f-electron cerium and light actinide materials.
In cerium monopnictides, below the Neel temperature
TN, the materials have various phases with peculiar mag-
netic structures which are strongly anisotropic. ' The
paramagnetic crystal-field splitting of the 4f, zz state in
these compounds in much less than expected from extra-
polation from heavier rare-earth monopnictides. These
unusual properties can be understood on the basis of the
hybridization between the localized f electrons and the
non-f band electrons, as well described by the lattice An-
derson Hamiltonian. Studies have shown that the hy-
bridization shifts the different crystal-field states by
different amounts, and thus suppresses the crystal-field
splitting. Studies also showed that the indirect two-ion
interaction mediated by the hybridization is strongly an-
isotropic. By treating the parameters in the Anderson
Hamiltonian as phenomenological input, Cooper et al.
successfully explained the diverse magnetic behavior of
these materials. The theory is also available for broader
classes of materials such as light actinide compounds.

To elucidate the origins, in the electronic structure, of
the observed behavior of different materials, and to make
the theory materially predictive, techniques have been
developed to calculate the parameters entering the theory
from first principles. Wills and Cooper calculated the
hybridization strength using a resonance-width scheme
based on a linearized mufiln-tin orbital (LMTO) band
structure using a warped mu%n-tin potential with a true
interstitial, and this enabled them to calculate the f-
electron properties of cerium monopnictides on an ab ini-
tio absolute basis. Their calculation is in close agreement
with experiment for the crystal-field splitting. For the
two-ion interaction, which determines the magnetic

structure, the calculation ' successfully predicts range
and angular dependence similar to those found by phe-
nomenological theory, which agrees with experiment,
but the overall magnitude is about one order of magni-
tude smaller than that in the phenomenological theory.
The situation is similar when applying the same sort of
calculation to light actinide compounds. s

The success in predicting the suppression of crystal-
field splitting and the anisotropic structure of the two-ion
interaction, and the failure in predicting the overall mag-
nitude of the two-ion interaction, suggest that the calcu-
lation has captured only part of the origins of these
effects. In fact, the Anderson Hamiltonian focuses on hy-
bridization but has left out other interactions, such as the
band-f exchange Coulomb interaction. It is common for
model Hamiltonians to attribute all effects that give qual-
itatively similar physical properties to a single
parametrized interaction, regardless of the variety of the
origins of those effects, and one can often make the
theory satisfactory by adjusting the parameters in model
Hamiltonians. However, when calculating those effects
from first principles, it may lead to serious discrepancies
if we include only part of the underlying elects but omit
the others. Thus, to make the ab initio calculation of
those effects realistic, one has to go back to the very be-
ginning to check whether the model Hamiltonian refiects
the real system completely, and what the origins of the
interactions appearing in the model Hamiltonian are.
For the two-ion interaction in the materials we are study-
ing, there are contributions from both band-f hybridiza-
tion and band-f exchange Coulomb interaction as we
shall see below, and indeed it is necessary to include both
these effects.

The undercalculation of the two-ion interaction in
Refs. 4 and 5 may arise either from an undercalculation
of the hybridization strength or from the neglect of
band-f exchange or from both. The excellent agreement
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with experiment of the suppression of crystal-6eld split-
ting, which is a pure hybridization effect, suggests that
the hybridization strength calculated is of the correct
size. This is also supported by the calculation of the hy-
bridization strength using the tight-binding fitting
scheme. In fact, anisotropic magnetic ordering and high
T~ are the case not only for monopnictides of cerium,
but also for monopnictides of other light rare-earth ele-
ments; but crystal-Geld splitting data suggest that only
cerium monopnictides have considerable hybridization
effect. Therefore, there must be contributions to the
two-ion interaction other than hybridization, namely, the
band- f exchange Coulomb interaction.

In the attempt to perform ab initio calculations of the
parameters appearing in the model Hamiltonian from a
realistic band structure, one has to be careful about the
following question. The model Hamiltonian describing
the f-electron systems is a many-body Hamiltonian
which refiects the many-body nature of the f-electron
problem. However, the band calculation is based on an
effective one-electron theory —the effects of two-body in-
teractions are approximated by an effective crystal poten-
tial and its output gives one-electron quantities with
two-body effects effectively included therein. Because of
this difference between the many-body model Hamiltoni-
an and one-body band calculation, one must make clear
which two-body effects have been effectively included in
the one-electron quantities by the method used in the
band calculation; and their corresponding terms in the
many-body model Hamiltonian must be excluded to
avoid double counting. On the other hand, for those
two-body effects which are not effectively included by the
band calculation, such as band-f exchange Coulomb in-

teraction, their corresponding terms must be kept in the
many-body model Hamiltonian, and one must develop
schemes to calculate these terms using the output or in-
termediate results of the band calculation. Only when
this is taken care of can the model Hamiltonian so syn-
thesized with the band calculation re6ect the real systems
completely, and quantitative comparison of calculated re-
sults with experiments be trusted.

Commonly, the RKKY (Ruderman-Kittel-Kasuya-
Yosida) type of two-ion interaction is regarded as an in-
teraction between spin parts of the local moments only,
and, as a consequence of the spin-only interaction, is iso-
tropic. This is a good approximation only for d electrons
whose orbital angular moments are quenched by the crys-
tal field. For f electrons, which are much more localized
than d electrons, the orbital angular moments are well re-
tained and coupled to these spins. Therefore, it is the to-
tal angular moment instead of the spin which is the good
quantum number for f-electron systems. The two-ion in-
teraction in f-electron systems occurs between the total
moments and is no longer isotropic. For magnetic prop-
erties, the contributions from band-f hybridization and
band-f exchange are complementary: both lead to aniso-
tropic magnetic ordering due to the orbital-motion-
driven interactions.

In Sec. II, we start from the fundaxnental origins in the
interelectronic Coulomb interaction and derive a model
Hamiltonian which reflects the real system comp1etely.

This is done with particular concern paid to which quan-
tities are available from the band-structure calculation
and what two-body effects have been included in these
quantities. In Sec. III, we derive the expression for the
two-ion interaction from this model Hamiltonian. In Sec.
IV, we describe a scheme to calculate the band-f ex-
change interaction based on a LMTO (linearized com-
bination of muffin-tin orbitals) band calculation. (The
techniques used to calculate the other parameters enter-
ing the model Hamiltonian, and the two-ion interaction,
have been discussed previously. ' ) Finally, in Sec. V we
will present the results of the calculation of the two-ion
interaction and consequent ordering temperature and or-
dered moments for cerium compounds and compare the
results with experiments; and in Sec. VI we provide a
summary and discussion.

II. THE MODEL HAMILTONIAN

(2.1)

here r; stands for ~r; r~, and we h—ave set the electric
charge unit e = l. Vo(r) is the periodic potential from
the fixed background of type-(1) charges. I/r; is the
Coulomb interaction between type (2) (f and conduction)
electrons and is a two-body interaction. Hamiltonian
(2.1) can be regarded as the "true Hamiltonian" and is
our starting point.

We then compare Hamiltonian (2.1) with the Hamil-
tonian in the band theory. Band theory approximates the
real system by use of an effective one-body Hamiltonian

H = V' + V(r), (2.2)

where V(r) is the effective potential in which a single
electron moves. In the band calculation, this potential is
obtained by a self-consistent iterative procedure. The
effects of the two-body interaction in (2.1) are partly in-
cluded in V(r) in the sense of the local-density approxi-
mations (LDA). We can write V(r) as

V (r) = Vo(r )+ V, (r), (2.3)

In this section, we will derive a model Hamiltonian
describing f electrons interacting with non-f band elec-
trons, where all the quantities in it can either be matched
to the output of a LMTO (linearized muffin-tin orbital)
band calculation or be calculated separately using the in-
formation given by a LMTO band calculation.

We first classify the electric charge in the crystal into
two types with regard to atomic origin: (1) the charge of
the nuclei and filled-shell electrons, and (2) that of the f
(partially filled transition-shell) electrons and of the
outermost s, p, and d valence electrons which form the
non-f conduction bands in the solid. We are interested in
the solid-state behavior of the electrons giving the type-
(2) charge, with that of type (1) being viewed as an essen-
tially rigid background on which the f and non-f valence
electrons move and interact. We write the Hamiltonian
for this f-electron plus conduction-electron "active" part
of the solid-state electronic system as
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+—Wr, )4(r~) 4(r~)4(r&)),
1 1

f)2
(2.4)

where 14(r) ) is the field operator of electronic states. To
treat the band states and nonband f states as distinct
states as the Anderson Hamiltonian does, we separate the
field 14(r}) into a band field 1@s(r)) and a nonband f
field 14+(r) ):

4(r) =4&(r}+4r(r),
@ ( }=Xkk( }bk

k

4~(r)= +1t (r —R)c (R),
Rm

(2.5a)

(2.5b)

(2.5c)

where bk is the annihilation operator of band state Pk(r),
and k signifies both momentum and band index; c is the
annihilation operator of the local f state g (r); R stands
for an atomic site; and m is the index of a local state. We

where Vo(r) is from the fixed background charge, and

V, (r) represents the effect of the two-body interaction
with the other active electrons as included by use of the
LDA. Vo(r) in (2.3) is identical with Vo(r) in (2.1). By
comparing the matrix elements of Hamiltonians (2.1) and
(2.2}, we can see how the matrix elements of the many-
body "true Hamiltonian" and the matrix elements of the
one-body band-theory Hamiltonian should be matched to
each other. Below we give a detailed term-by-term
analysis of the matrix eleinents of the "true Hamiltonian"
(2.1) into those parts included in the (LDA) band theory
and those parts not included in the band-theory treat-
ment and thereby requiring separate explicit representa-
tion in the model Hamiltonian. Besides allowing us to
recognize explicitly the terms not already included by the
(LDA) band theory, among such terms we can recognize
which terms are qualitatively the same and thereby quan-
titatively additive. This procedure allows us to be
confident in the absolute scale of our final calculated re-
sults and the significance of absolute comparison between
calculated and experimentally measured quantities such
as magnetic ordering temperature.

To obtain the model Hamiltonian, we now second-
quantize the "true Hamiltonian" (2.1):

H = (C (r) IV'+ V,(r)14(r) )

can further restrict the local f states to a subspace of a
spin-orbital multiplet of total angular moment j. Since
most of the physics happens in the subspace of the par-
tially filled spin-orbital multiplet, it is proper to do this.
In this subspace, m is the magnetic quantum number of
the f states.

We expand the right-hand side of (2.4). The first term
on the right-hand side of (2.4) is of one-body type and is
simple in nature. It is expanded into three terms.

(i) (@e(r)1V2+Vo(r)1@ii(r) ) = g ei, bktbk .
k

This is the bare band-state energy (i.e., not containing
LDA corrections from interactions with other non-f
band electrons or with f electrons).

(ii) {@r(r)1V+ Vo(r)1@+(r))= g e c (R)c (R) .
Rm

This is the bare f-state energy (i.e., not containing LDA
corrections from interactions with other f electrons or
non-f band electrons}. In writing this, we have neglected
the direct overlap between f states centered on different
sites, i.e., the RAR' terms. In other words, we have
neglected the self-banding effect of the f states. For a
system in which f states are well localized (e.g., typical
cerium systems), it is proper to do so; but in some more
itinerant f-electron systems (e.g., typical uranium sys-
tems}, the self-banding effects should not be neglected.
We further approximate that all the f states with
difFerent quantum number m have the same energy E&,
i.e., neglect the effects of the crystal-field splitting and
magnetic polarization for the f states at this stage.
(iii}

(4 (r)1V + V (r)14 (r))+H. c.
= g Vk

e'"' bktc (R)+H.c.
kmR

This is the bare hybridization between band states and f
states (i.e., not containing the LDA correction due to the
changes of the f electrons and non- f band electrons).

The second term on the right-hand side of (2.4) is of
two-body type. To make it more comprehensible, we
write it in the form of an integral, and the summation
over spins is implicit in the integral operation:

1—4(r, )4(r2) @(r2)4(ri) =—Jf [e', (ri)+4F(ri)][@+(ri)+4+(ri)]
1 1

P')2 2

X [@e(r2)+Cr(r2)][4&e(r2)+@+(r2)]dr,dr2 .
12

When it is expanded, we have terms (iv) through (xi).

1 1
(iv) — Ce(ri)@e(ri) @ii(rz)@ii(r2)dridr2 .

This is the Coulomb interaction between non-f band elec-

trons. When 4e(r) is expanded in k space as in (2.5b),
this integral contains the direct Coulomb parts and
exchange-correlation parts, both of which are included in
the band-state energy ek given by LDA. Therefore we
merge this term into term (i) and replace the bare band
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energy ek by a LDA band energy E'k.

(v) — 4 F(r, )@F(r, ) 4~(r2)@F(r2)dr, dr2 .
1 1 3 3

2

This is the Coulomb interaction between local f elec-
trons. By neglecting the interatomic part (RAR') which
is very small and keeping only the intra-atomic part, this
term can be regarded as a correction to the f-state energy
Ef in term (ii). Generally, it contains a direct Coulomb
part, which can be written as

U
n (R)n (R),

R, m/m'
(2.6)

[U (k, k') —J (k, k')]
kk' mm'R

Xe '" " '
bkbk c (R)c (R),

where U .(k, k') is the direct Coulomb term

(2.7)

U, (k, k )=f f ya(r&)Pk, (r&) g (r2)g (rz)dr, dr&
1

12

(2.8)

and J .(k, k') is the exchange Coulomb term

1
Jmm (k, k ) =f f $k(r) )fm (r] ) $~(r2)fk (r2)dr ]dr2

12

(2.9)

In (2.8) and (2.9), we have neglected the terms with
RXR', since g (r) is very localized and I lr, z decays
with distance so that the integrals (2.8}and (2.9) are very
small when g (r, ) and g, (r2) are centered on different
sites. In the band energy ek given directly by the LDA

and an exchange Coulomb part. If the exchange
Coulomb part is included, there will be energy splitting
between different multiplets when there is more than one

f electron in one atom. If we neglect this effect, then we
can neglect the exchange Coulomb part and keep only
the direct Coulomb part U in (2.6).

Here we do not merge the U effect into the f-state en-

ergy Ef as LDA does, since this approximation would
eliminate the effects of the interconfigurational fluctua-
tions of the f states, such as f"~f"*',which are impor-
tant for f-electron phenomena. Because U is not includ-
ed in Ef,Ef is different from the f-state energy given by
the LDA band calculation. However, one can relate the
non-LDA energy Ef and U to the LDA energies of
different f" configurations, which can be evaluated by a
supercell calculation.

(») f fC,'(r, )C,(r, )
' +',(r, )+,(r, )«', «2 .

r12

(vii) f f4s(r, )4F(r, ) 4~(r2)@s(r2)dr, dr2 .
12

These are Coulomb interactions between band and non-
band f electrons. (vi} is the direct Coulomb interaction
and (vii) is the exchange Coulomb interaction. Written in

explicit form, they are

and the f-state energy Ef indirectly by LDA (i.e., using
the supercell calculation and taking pertinent energy
differences ), (vi) and (vii) make their contributions
within the LDA approximation. However, when we go
to the higher orders of U {k,k') and J (k, k'), there
are terms connecting different atomic sites, e.g., the two-
ion interaction terms. For such two-ion interactions, the
energy of an f electron at one location is determined by
the state of an f electron at another location, and vice
versa. This is quite different from what is presumed in
the LDA, that the energy of an electron depends only on
the charge densities at its own location. Thus, the two-
ion interactions are not contained in the LDA energies.
For the purpose of calculating the two-ion interactions,
U .(k, k'} and J (k, k') should be retained, while
keeping in mind that their lowest-order effects are al-
ready included in ek directly by the LDA, and in Ef in-

directly by the LDA, as are their higher-order effects in-
volving only one atom. However, when the random-
phase approximation (RPA) is applied, the contribution
of U (k, k') to the two-ion interaction is in effect the
screened Coulomb interaction between two f electrons at
different sites. Such interaction is very small even before
the screening effect is included, and screening only makes
it smaller. Thus we neglect U (k, k'), recognizing that
its contributions to the LDA energies are already count-
ed in and that its contributions to the two-ion interaction
are small. (Traditionally, U (k, k ) is dismissed from
the two-ion interaction for a simpler reason: it causes no
magnetization. This is true only when spin is counted as
the only source of magnetization and orbital moment is
neglected. } We retain J .(k, k'} since the two-ion in-

teraction due to this term, by its nature, cannot be viewed
as an effectively screened Coulomb interaction between
two f electrons at different sites, and thus is not negligi-
bly small. We can also take into account the screening
effect for J (k, k'). This will be discussed in Sec. IV.

(viii) f 4z(r, )4+(r& ) @s(r2)@s(r2)dr,dr2+H. c.1 3 3

12

(ix) f f 4's(r))CF(r)) 4~(r2)C'~(r2)dr)drq+H. c.
12

The net effects of these two terms are hybridization be-
tween band and local f electrons. As an approximation,
we replace @s(r2)4&(r2) by (p&(r&}& in (viii} and

4F(rz)4~{re) by (pF(r~)) in (ix). Thus (viii) and (ix) can
be written together as

&pa( 2)+p~( 2)&
4~t r1 4F(r& )dr, dr2+H. c.

12

Since (ps(r2)+pz(r2) }/r, 2 is included in the effective
potential V, (r) in (2.3), the effect of this term is to dress
the bare hybridization Vk of term {iii) by replacing
Vo(r) by the LDA potential V(r) of (2.3). Thus, we

merge the effects of (viii) and (ix) into term (iii) and re-
place the bare hybridization Vk with a LDA hybridiza-
tion Vk
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H =Ho+H, ,

Ho = g ekbkbk+ g Egc~(R)c~(R)
k Rm

(2.10a)

(x) —J7 JI @tt(r, )@I,(r, ) @tt(r, )@r(rz )dr, dr 2
1 1 3 3

2 12

(») —j~ fC'r(r))@e(r)) @F(rp)&s(r2)dr)dry .~ 1 1 3 3

2 12

These two terms create or annihilate two local f elec-
trons. We neglect them since such processes incur very
high energy costs.

We Snally obtain the following model Hamiltonian:

f exchange term or as the Kondo Hamiltonian plus a hy-
bridization term.

The Schrieffer-Wolff transformation on the Anderson
Hamiltonian gives an effective indirect exchange term
arising from the hybridization, and makes the Anderson
and Kondo Hamiltonians equivalent in some phenomeno-
logical sense. Although phenomenological theories based
on these model Hamiltonians do not distinguish the true
band-f Coulomb exchange and the hybridization-induced
effective exchange, these two are from different physical
origins and their contributions to the properties of ma-
terials are additive. For a first-principles calculation,
these two should be evaluated separately and regarded as
simultaneously existing effects.

+—g n (R)n .(R),U

R, mAm

H, = g [Vk~e
'"' bkc~(R)+H. c. ]

kmR

(2.10b)

III. TWO-ION INTERACTION

kk' mm', R

i(k —k') R—

Xbkbkc~(R)c~(R) . (2.10c}

The sources of the parameters in this Hamiltonian are
summarized as follows: term (i) is incorporated in the
LDA band energy ek, term '(ii) in the f-state energy EI,
which is not a LDA energy but can be calculated in-

directly from the LDA (as in Ref. 5); term (iii) in the
LDA hybridization Vk ', term (iv) in ek,' term (v) in the
intra-atomic f-f correlation U, which can be calculated
indirectly from the LDA (as in Ref. 5); term (vi) in ek and

E&', term (vii) partly in ek and E& but with its effects on
the two-ion interaction represented separately by the
band-f exchange Coulomb interaction J .(k, k'); and
terms (viii) and (ix) in Vk . This model Hamiltonian can
be read either as the Anderson Hamiltonian plus a band-

Xc, (2)c„(1)c,(1) (3.1)

I
n2n2

and E ',' is the perturbation energy
nl n1

In this section, we will derive the expression for the
two-ion interaction from the model Hamiltonian (2.10).
Wills and Cooper derived the expression for the two-ion
interaction from the Anderson lattice Hamiltonian by
making a Schrieffer-Wolff transformation (SW) and
keeping terms up to fourth order. The band-f exchange
term in Hamiltonian (2.10) will make the SW transforma-
tion extremely tedious. Here we use a perturbation ap-
proach.

The general form of a two-ion interaction is
I

H(1,2)= —g g E ','(Rz —R&)Xct (2)I, 1 1

n) n ) n2n2

n2n2 1 1 I IE,(R2 —R))= g n„n2 H& E H H& E H H& H& n&, nz
0 0 0 0

(3.2)

where ~n &, n2 ) and Eo are the ground state and its ener-

gy. In the ground state, the band electrons form a closed
Fermi sea, and all the ions are in the f' (i.e., Ce +}
configuration with n, (n2) being the magnetic quantum
number of the f electron located at R, (R2). For the in-
termediate states, the ions can either be in f ',f, or f
configuration. g, means summing over the ith-order per-
turbation, and, for each order of perturbation, taking into
account all the possible virtual excitation processes which
involve electron (hole) exchange between the two ions.

Within the fourth order, all the virtual excitation pro-
cesses can be classified into three categories. (i} The J
effect, which arises from second-order perturbation, and
is a pure band-f Coulomb exchange effect. (ii) The V J
eSect, which arises from third-order perturbation. In this
type of process, hybridization occurs on one ion while
band-f exchange Coulomb interaction occurs on the oth-

I

E ','(R2 —R, )J2= gJ,(k,k')J „,(k', k)
kk'

—i(k —k')-(R —R )Xe

XF)(ek&ek. )+(1~2), (3.3a)

er ion. We call these cross-efFect processes. (iii) The V
effect, which arises from fourth-order perturbation, and is
a pure hybridization effect. In the following formalism,
we set the zero of energy at the Fermi level. For conveni-
ence, we call the hybridization term in H& the V interac-
tion, and the band-f exchange term in H& the J interac-
tion.

J effect. What happens in this process is that the two
ions exchange an electron-hole pair through two consecu-
tive J interactions, one on each of them. Its expression is
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where (1~2) stands for the term which is the same as the
first term with 1 and 2 interchanged, and

Fi(ej eI }= (1—fa )fi (3.3b)

with fI, being the Fermi function.
V~J effect There are four possible V J processes.
(1} First, a J interaction occurs on ion 1, creating an

electron-hole pair (eI, &O, e1, &0) in the band. Then a V
interaction occurs on ion 2, filling the hole (e1, &0) and
leaving ion 2 in an f configuration. Then another V in-

teraction occurs on ion 2, absorbing the electron (ei. & 0)
and returning ion 2 back to the f ' configuration.

(2} First, a J interaction occurs on ion 1, creating an
electron-hole pair (eI, &O, ez. &0) in the band. Then a V
interaction occurs on ion 2, absorbing the electron
(eI, &0) and leaving ion 2 in the f configuration. Then
another V interaction occurs on ion 2, filling the hole

(e1, & 0) and returning ion 2 back to the f ' configuration.
(3) First, a V interaction occurs on ion 1, creating an

electron (e& &0) in the band and leaving ion 1 in the f where

XF~(ei„e1, ) +(1~2), (3.4a)

configuration. Then the electron (ez &0) scatters to an

(e1, & 0) state through a J interaction occurring on ion 2.
Then another V interaction occurs on ion 1, absorbing
the electron (ei, &0) and returning ion 1 back to the f '

configuration.
(4) First, a V interaction occurs on ion 1, creating a

hole (eI, &0) in the band and leaving ion 1 in the f
configuration. Then the hole (e„.&0) scatters to an

(ez &0) state through a J interaction occurring on ion 2.
Then another V interaction occurs on ion 1, absorbing
the hole (ez &0) and returning ion 1 back to the f'
configuration.

Adding (1)—(4) together, we obtain the V J effect in the
two-ion interaction:

I

kk'

—i(k —k') ~ (R —R )
Xe

+2(ek ek')= + (1—fa )fa — (1—fu }(1—6 }
—1 1 1 1 1

Ef ~k Ef U ~k ~k' ~k' Ef ~k Ef

(3.4b)

The meaning of Ef and U has been discussed in Sec. I,
and they can be calculated from a supercell calculation.

V4 egect There are. 12 possible V processes which can
be classified into four categories.

(1) First, two consecutive V interactions occur on ion 1,
either through the (f '~f ~f ') or the (f '+f ~f ')
channel, creating an electron-hole pair in the band and
leaving ion 1 still in the f ' configuration. Then another
two consecutive V interactions occur on ion 2, either
through the (f'~fo~f'} or the (f'~f ~f'} chan-

nel, annihilating the electron-hole pair and leaving ion 2
still in the f ' configuration. There are four processes in
this category.

(2} First, ion 1 ejects an electron (or hole) to the band
through a V interaction; that same electron (or hole) is
absorbed by ion 2 through a second V interaction. These
interactions move one electron (or hole) from ion 1 to ion

2, but the band is left as a closed Fermi sea. By another
two consecutive V interactions which are similar to the
first two, the excess electron (or hole) on ion 1 is moved
back to ion 2. There are four processes in this category.

(3) First, through two consecutive V interactions, both
ions eject one electron each, leaving two electrons in the
band and both ions in the f configuration. Through

X+3 ( EQ Eg' ) +i( 1~2 ) (3.5a)

another two consecutive V interactions, the electron
ejected by ion 1 is absorbed by ion 2, and the electron
ejected by ion 2 is absorbed by ion 1; and both ions go
back to the f ' configuration. There are two processes in
this category.

(4) Similar to (3), but both ions absorb one electron ini-

tially through two consecutive Vinteractions, leaving two
holes in the band and both ions in the f~ configuration.
Through the next two consecutive V interactions, both
ions go back to the f ' configuration. There are two pro-
cesses in this category.

Adding (1)—(4) together, we obtain the V effect in the
two-ion interaction. Its expression is the same as that ob-
tained from the Anderson Hamiltonian by the SVf trans-
formation

I
ftpll pE ','(R~ —R, } 4= g VI,'„Vq, VI,'„V„,
nl n I kk'

V 2 k@2 I k, ~ I

—i (k —k') -(R —R )Xe
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F3(ek~ek )
—1 +

ek —Ef
1 1

e —E —U e —ek f k k' U E E U
( &k'A

2 1 1

1 1+—
2 ek. —Ef

r

1

~k Ef
2 1
U+ E+ 1

~k f
2 1 1

fkfk .
U e.—E —U e —E —Uk' f k f

1

e —E —Uk f
1 1+
2 e —E —Uk' f

The total two-ion interaction is the sum of the J,V J, and V effects.

—i(k —k') ~ (R2 —R) )+ Vk.„Vk, Vk„Vk, , F3(ek, ek. )]e ' ' +(1~2),
k, n2 n] k', n

&

I

E ' P(R2 —Ri)= g [J ~ (k,k'}J,(k', k)Fi(ek, E'k )+ Vk.„Vk,J,(k', k)F2(E'k, ek )
kk'

(3.5b)

(3.6)

IV. CALCULATION OF THE BAND-f
EXCHANGE COULOMB INTERACTION

There are five parameters in the two-ion interaction
(3.6) to be evaluated from ab initio calculations:
ek, E&, U, Vk, and J„„.(k,k'). The values of ek, E&, and
U can be extracted from band-structure and supercell cal-
culations, as described by Wills and Cooper and
Kioussis and co-workers. Wills and Cooper have
developed the resonance-width scheme to calculate Vk

from a linearized combination of muffin-tin orbitals
(LMTO) band-structure calculation. Here we describe a
scheme to calculate J„„.(k, k'}, the band-f exchange
Coulomb interaction, based on a LMTO band-structure
calculation. The form of the band-f exchange interaction
is defined in Eq. (2.7) as

11„„.(k, )=(kit(r, )g„'(r ) 2Q„(r))pk'(~2))
~&2

(4.1)

Since J„„.(k, k') depends on k, there are too many ele-
ments of J„„(k,k') to be calculated directly. However,
taking advantage of the LMTO scheme, J„„,(k, k') can be
expanded in elements which are independent of k and
limited in number. This is done in the following way.
The band wave function (t)k(r) is a linear combination of
Bloch basis functions y&, (r),

Pk(r) y al f'I
1ms

(4.2)

where Ims stand for angular momentum, magnetic quan-
tum number, and spin, respectively. In the LMTO
method, (p&",(r) is represented as a Bloch sum of muffin-
tin orbitals X&,(r), with X&,(r) evaluated for specified
energy parameters E1 and ~, '" so that

where F,(ek, ek ),F2(ek, ek. ), and F3(ek, ek. ) are given by
Eqs. (3.3b), (3.4b), and (3.5b), respectively.

This two-ion interaction is anisotropic. It can be re-
duced to the simple isotropic form of Si S2 only when we
neglect the orbital-transfer terms, in which the two f
electrons interchange orbital states. But such neglect is
inappropriate for f-electron systems.

pk(r)= g ai, g e'" RXi, ('r —R),
lms R

(4.3)

where R is summed over the lattice sites. As discussed
above, the integral giving J„„.(k, k') in (2.7) is very small
when the f-state functions P (r) are centered on
difFerent sites. We make use of this in evaluating the in-

tegral, and therefore adopt the single-site expansion for
the Bloch sum of augmented muffin-tin orbitals so that
(4.3) becomes

yk(r) y [XI (k)xl (r)+X/ (k)xl (r)]
lms

(4.4a)

where Xi,(r) is just the muffin-tin orbital centered at the
site in question, and the second term in (4.4a} represents
the LMTO tails from all other sites when expanded about
the site in question, so that

Xi', (k)=a(", ,

Xtms(k)= X al'm' Stk k

1'm's'

(4.41)

(4.4c)

At this point, we only need to calculate the B tensor.
Since the LMTO method expresses all wave functions in
terms of a limited number of mu5n-tin orbitals, the num-

where S«. ;. is the Korringa-Kohn-Rostoker (KKR)
structure function. ' Having (4.4}, we can express
J„„.(k, k') in terms of coefficients Xf,(k) and the B tensor
given below:

J„„.(k, k')= y y X/", (k)B™„'''Xp';(k'),
tt' Ims

I'm 's'

(4.5)

where 8„' "„'' is the matrix element between the f
states g„(r) and muffin-tin orbitals or reexpanded MTO
tail functions, and is independent of k and k',

Bn n' X1ms Pj n P2 n Pj X1 m's'
12

(4.6)
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ber of the B tensor elements is limited, and the calcula-
tion becomes practical.

To calculate the B tensor, we write down +I,(r) and

g„explicitly in terms of their radial part, angular part,
and spin part:

where Y& is a spherical harmonic, q, is a spinor, R& is
the radial part of the muffin-tin orbital or reexpanded
MTO tail function, F3 is the radial part of the f-wave
function, and C„C2 are Clebsch-Gordan coefficients. RI
and F3 can be extracted from the LMTO band calcula-
tion. Let

yI, (r) =RI(r)YI (0,$)g, ,

g„(r)=F2(r)[CI Yi „1/2(e,p}g+1/2

+C2 Y3,n+1/2(e&4)9 —1/2j

(4.7a)

(4.7b)

(I,(r)= UI(r)YI (g, ltl)71, , (4.8)

where Ul can be either Rl or F3 of (4.7). Then the
Coulomb integral between gI, (r) can be expanded in
terms which are practical for numerical calculation

kl"' "' "'(~1 41" " "(r2 } kl' ' '(rl )kl (~2 }
1

12

/lt I Jl Illl
= g ( —1)' ' [(2l'"+1)(2l"+1)(2l'+1)(21+1)]'

PV

(II I'
X( 1)I"—m"

( 1)l' —m'—m" q m Pl

p I"'
s, s" s', s"'

r~&
X Ut ~ r2 UI r) + UI r2 UI r) r jrpdr) r2p+1 (4.9)

—r/A,

V(r)= (4.10)

1

i2
6me no

2

+Fermi
(4.11)

where n, o is the density of conduction electrons. The ad-
dition theorem for the shielded Coulomb interaction is

where, in the usual notation, r & (r & ) means the smaller
(larger) of r, and r2 Since. the angular part of the in-

tegral has been expressed in terms of 3j symbols in (4.9},
only the radial part of the integral needs to be done nu-
merically. In our calculation, it is done by a Simpson in-
tegral on a 331X331 logarithmic mesh. The radial part
of the f-state wave function F3 is highly concentrated
within the muffin-tin sphere. In the case of CeBi, 98.6%
of the f electron charge is within the muffin-tin sphere.
Therefore, the integral outside the muffin-tin sphere can
be neglected. This is the only approximation involved.

Having evaluated (4.9), we project yI, (r) and p„(r)
onto gi, (r) according to (4.7) and obtain the B tensor.
With the B tensor so calculated, all the elements of
J„„.(It, k') can be obtained according to (4.5).

A11 the above discussions are based on a bare Coulomb
interaction. In real systems, the Coulomb interaction is
shielded. Thomas-Fermi theory gives the shielded
Coulomb interaction,

where i(x) and a.(x) are the first- and second-type
modified spherical Bessel functions. The derivation of
this formula is in the Appendix. To include the shielding
eff'ects, we replace ri'& ir/&+' by

2p+1

in the integral in (4.9). All other treatments remain the
same.

In the case of CeBi and CeSb, A, is 0.89ao and 0.85ao,
respectively. Comparing with the unshielded Coulomb
interaction, the shielding e8ect scales down the 8 tensor
elements by a factor between 1 and 0.5, depending on the
tensor element.

One could raise the question if it is possible to calculate
the screened exchange Coulomb interaction from the
LDA. We consider this in two steps. (1) Is it possible to
calculate this interaction from the LDA in principle? (2)
If it is possible in principle, is it feasible to carry out such
a calculation in practice7 In principle, it is possible to
formulate the screened exchange Coulomb interaction in
a manner which can be calculated directly from the out-
put of the LDA band-structure calculation. To do this,
the bare Coulomb interaction 1!r in Eq. (4.1) should be
replaced by the screened Coulomb interaction V(r); and
V (r) should be calculated from

—rl~/A,
e " 4m r& r&

12 lm

X Yl (82, P2), (4.12)

V(r)= g e
1

E(q)q
(4.13)

where e(q) is the static dielectric constant, and 1!q is
the bare Coulomb interaction in q space. E(q) can be
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written in a form which can be evaluated directly from
the LDA band energies,

1 ~ f(k) —f(k+q)eq =1+
2

k Ek+q
(4.14)

V. RESULTS AND COMPARISON WITH EXPERIMENTS

The calculations in this work are for cerium monopnic-
tides and monochalcogenides. This group of materials is
of interest because of their anomalous crystal-field
behavior and unusual anisotropic magnetic behavior,
both thought to have their origins in relatively weakly
correlated f-electron behavior. ' One can find a sum-

where ek is the LDA band energy and f (k) is the Fermi
function. In fact, when q~0, under some approxima-
tions, s(q) reduces to 1+A, /q, and the screened
Coulomb interaction V(r} reduces to the Thomas-Fermi
form, as we used in this paper. But if we require that the
screened Coulomb interaction be calculated from the
LDA, we have to avoid these approximations and evalu-
ate e(q) directly from Eq. (4.14) and the LDA band ener-
gies.

In practice, to synthesize Eqs. (4.13) and (4.14) with a
realistic band-structure calculation would require a huge
amount of numerical computation. First, to do a reliable
Fourier transformation, as Eq. (4.13) requires, would call
for the values of e(q) for a large number of q points. All
the wave functions used in the exchange integral (4.1) are
calculated on a real-space mesh which has 331 points for
the radial dimension, and V(r) in (4.13) needs to be calcu-
lated on the same real-space mesh. To make the calcula-
tion reliable, the q-space mesh used to calculate e(q)
should not be less precise. To estimate how many q
points are needed, we use the most conservative estimate
for the radial dimension of q space, which is about 331
points; for the angular dimension of q space, we believe
several hundred points are needed [bearing in mind that
s(q) is anisotropic due to the anisotropic distribution of
the screening chargesj. Thus, the number of q points
needed is on the order of 10 —10 . Second, to calculate
s(q) for each q point according to Eq. (4.14), one has to
take the summation over many k points. To do this, one
has to calculate the value of Ek+ for each k point first;
and this coverage over k points must be repeated for each
of the 10 —10 q points. Therefore, to calculate the
screened exchange Coulomb interaction from the LDA,
the amount of numerical computation is too large, and
thus not feasible.

One may ask why not approximate Eq. (4.14) by some
simpler form which is feasible for numerical calculation?
Actually, any approximation will not make a significant
reduction in the amount of numerical computation, un-
less it makes some assumptions to simplify the structure
of the energy surface ek in Eq. (4.14}. But this will wipe
out the ek structure given by the LDA. Thus, any practi-
cally useful approximation will disqualify the calculation
as being "from the LDA, " and has no reason to be be-
lieved as a significant improvement of the Thomas-Fermi
theory.

mary of the experimental properties in the literature. '

For these materials, phenomenological theory has treated
many of the most striking aspects of the experimental
behaviors thoroughly and successfully. First-principles
calculation of band- f hybridization has predicted
hybridization-induced suppression of crystal-field split-
ting which is in excellent agreement with experiment. It
also predicts two-ion coupling constants giving correct
magnetic structures, but seriously underestimates the or-
dering temperature. Here we present the description and
results of a complete first-principles calculation including
both the hybridization and band-f exchange Coulomb in-
teraction.

The following is a brief outline of the calculation. The
band-structure calculation, upon which the evaluation of
parameters in the model Hamiltonian (2.10) is based is a
true interstitial warped-muffin-tin orbital calculation. The
potential within the muffin-tin spheres is spherically aver-
aged; the potential in the interstitial region is expanded in
Fourier series. Exchange and correlation are treated in
the Hedin-Lundqvist version of the local-density approxi-
mation. Spin-orbit coupling is included perturbatively
and self-consistently. The bands located in the vicinity
of the Fermi level are the cerium Sd and the pnictogen p
bands. The cerium 4f states are treated as local states
confined within the core. When calculating their interac-
tion with the band states, they are further restricted to
the spin-orbit coupled states of j=

—,', since the j=—,
'

states are 0.3 eV higher in energy and can be neglected.
We use the resonance-width scheme to calculate the hy-
bridization strength. The band-f exchange interaction is
calculated using the scheme given in Sec. IV. Both hy-
bridization and the exchange interaction are calculated
for an 89-k-point mesh in the irreducible wedge of the
Brillouin zone. When calculating the two-ion interac-
tion, the summation over k, k' is done by projecting the
quantities to be summed into energy space using the
tetrahedral technique' and then integrating over energy
space.

We first compare the results with the phenomenologi-
cal theory. In the phenomenological theory, with the
quantization axis lying along the bonding direction, the
E', ~&2z,'~zz component is regarded as the dominant element
in the two-ion interaction and taken as a fitting parame-
ter. By fitting E', &z&&z for several nearest neighbors, this
procedure gives the correct magnetic structure and Neel
temperature Tz. We calculated the two-ion interaction
for first, second, and third nearest neighbors, with quanti-
zation axis along the bonding direction from first princi-
ples; and we can see how the interaction so obtained com-
pares to that in the phenomenological theory.

The general form of the two-ion interaction is given in

Eq. (3.6) where E ','(R2 —R, ) is the interaction between
fllll I

the two ions, with n„n2, n&, nz, each taking the six
values —,', —,', —,', —

—,', —
—,', —

—,'. Generally, therefore, the
two-ion interaction tensor has 6 elements. However, if
there is approximate axial symmetry about the two-ion
axis, one approximately conserves the component of an-
gular momentum along the interionic axis in transitions;
and if one further selects those such elements correspond-
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ing to exchange scattering, ' this approximation
reduces' the number of independent two-ion interaction
parameters for a Ce + lattice to 6 =36 at each neighbor
distance. (In fact, there is a further reduction because of
hermiticity and because of time-reversal symmetry since
the parameters are calculated in the paramagnetic state. )

To calculate the equilibrium magnetic behavior, we use
a mean-field approximation. Within that approximation,
we choose an ion as a central ion. The neighbors of the
central ion provide an average mean field acting on the
central ion. (This mean Beld is of a complicated multipo-
lar form. ) This can be done by using the average to re-
place the interaction operator. Thus, the mean-field
Hamiltonian for the central ion is written as

X (c,'(J)c.(J) }c'(0)c„(0), (5.2)

where 8 and y are the polar and azimuthal angles of the
bonding axis between the central and jth sites with
respect to the common coordinate system, respectively;
and the coefficient is given by

Bg(8 )= QE(a, P, R))d, (81)d p(8J)d„p(8, )d, (8, ) .
aP

(5.3)

Here the function d~(8 } is the matrix element for the
—,th (six-dimensional) irreducible representation of the full
rotation group. For CeBi, the 6X6 E(a,p) tensors used
in Eq. (5.3}are listed in Table I.

The symmetry about the diagonal is expected from her-
miticity. Thus for Ce + lattices, at each neighbor dis-
tance, we have 21 independent components. Time-
reversal symmetry reduces this' to 12; and if we further
take the large-separation limit, this is further reduced to
two components for each neighbor shell, ' namely, those
involving a,p=+ —,

' with respect to the two-ion axis,
thereby yielding the form of the phenomenologica1
theory. These dominant +—,

' components involve mI =0

KMF = —g Q E (a,p, RJ ) X (c,(j )c&(j ) }c&(0)c (0),
j a,P

(5.1}

where ( }means thermal average, j stands for neigh-
bors, and 0 stands for the central ion.

The expressions (3.6) and (5.1) are written in a coordi-
nate system in which the bonding axis between two ions
is the quantization axis of angular momentum. This
causes a problem because the bonding axes of different
pairs of ions are not parallel. Therefore, it is necessary to
write all two-ion interactions in a common crystal-lattice
coordinate system. This can be done by transforming the
wave function from many "bonding axis" coordinate sys-
tems to the common coordinate system. From experi-
ment, we know that CeSb and CeBi have easy magnetic
axes along a [001] direction. So for convenience we
choose the [001] direction as the z axis of our common
coordinate system for those materials. After the transfor-
mation, the mean-field Hamiltonian for the central ion
becomes

KMF = —g g Q Bg(8, }e
PV ElX J

—0.4
1.3
04
1.3
1.2
0.7

1.3
3.2
4.2
7.7
1.9
1.2

0.4
4.2

18
27
7.7
1.3

1.3
7.7

27
18
4.2
0.4

1.2
1.9
7.7
4.2
3.2
1.3

0.7
1.2
1.3
0.4
1.3

—0.4

P2 (second nearest neighbors)

5.9
3.6
4.9
7.4
5.3
2.5

3.6
2.6
3.0

11
4.0
5.3

49
3.0

14
22
11
7.4

7.4
11
22
14
3.0
49

5.3
4.0

11
3.0
2.6
3.6

2.5
5.3
7.4
4.9
3.6
5.9

P, (third nearest neighbors)

—0.05
0.02

—0.25
—0.09
—0.02
—0.19

0.02
—0.02
—0.49
—0.40
—0.18

0.02

—0.25
—0.49
—0.81
—0.85
—0.40
—0.09

—0.09
—0.40
—0.85
—0.81
—0.49
—0.25

—0.02
—0.18
—0.40
—0.49
—0.02

0.02

—0.19
—0.02
—0.09
—0.25

0.02
—0.05

components for the two ions, i.e., the cooperative hybrid-
ization effect tends to "suck out" ionic charge into a flat-
tened disk with axis along the interionic axis. This then
gives the picture of orbitally driven anisotropic two-ion
exchange interactions. ' This interaction is anisotropic
because the ionic orbital moments tend to align perpen-
dicular to the plane of the hybridized disklike ionic
charge cloud which contains the interionic axis. The ex-
perimentally observed sensitivity to chemical environ-
ment can be easily understood when the close relation-
ship between f-electron charge shaping and magnetic
behavior is recognized.

For CeBi and CeSb, we find the E+', &z +&zz components
to be substantially larger than other components, as can
be seen from Table I for CeBi. This structural behavior
of the two-ion interaction is in agreement with the phe-
nomenological theory. In Table II, we compare the size
and range dependence of the two-ion interaction calculat-
ed from first principles with their values in the phenome-
nological theory. If the exchange Coulomb interaction
is neglected, as was done in the earlier calculations, ' the
two-ion interaction is of the order of magnitude of 1 K.
Thus it is clear that the contribution from the exchange
Coulomb interaction is dominant in determining the
two-ion interaction in the cerium compounds treated
here.

Next we compare the calculated Neel temperature Tz
and low- (i.e., zero-) temperature ordered moment m,
with experiment. The calculation is a mean-field calcula-

TABLE I. Two-ion interaction tensor for CeBi (in K). Here
the quantization axis is along the bonding axis.

E, (first nearest neighbors}



50 COMBINED EFFECT OF HYBRIDIZATION AND EXCHANGE. . . 975

TABLE II. Comparison of the size and range dependence of
the two-ion interaction calculated from Srst principles with
their values in the phenomenological theory. E„stands for
E', f»z& of the nth nearest neighbor. The results for the phe-
nomenological theory are from Ref. 3. CeBi CeSb CeTe'

TABLE III. The calculated results of Neel temperature TN
and low-temperature ordered moment m, and their experimen-
tal values. The experimental data are from Refs. 3 and 14.

First principles

Phenomenological

CeBi
CeSb
CeBi
CeSb

Ei
(K)

18
29
36
22

E
(K)

14
27
39
24

(K)

—0.8
—0.6

neglected
neglected

T& (K) (calculated)
m, (pz) (calculated)
1N (K) (experiment)
m, (pz) (experiment)

'Reference 20.

26
2.1

26
2.1

38
2.1

18
2.1

3.9
0.30
2.2
0.3

ture Tz and low-temperature ordered moment m, and
compare them with the experimental values.

tion using the first-principles results of the two-ion in-
teraction for the first, second, and third nearest neigh-
bors. (The technique used is essentially that of Refs. 3
and 5.)

(i) CeBi. This material is ordered at T&=26 K in a
AF-I structure. ' The structure is an alternating stack-
ing of ordered-moment-up and ordered-moment-down
layers with moment being in the [001] direction and per-
pendicular to the ferromagnetically ordered layers. At
low temperature, the ordered moment rn, is nearly sa-
turated: ma=2. lpga. The calculation gives T&=26 K
and m, =2. lpga.

(ii) CeSb. This material is ordered at TN =18 K in an
unusual structure. '" The structure is a stacking of layers
in a repeating sequence of (m, =2. lpga ~m,= —2. lpga ~m, =0), i.e., every third layer has a zero or-
dered moment. The moment is in the [001]direction and
perpendicular to the layers. By treating the crystal with
three sublattices, the calculation gives T&=38 K and
m, =2.1pz for the two ordered layers and m, =0 for the
other. The entropy behavior is interesting: for the
m, =2.1pz layers; the entropy per atom has a sharp drop
from k ln6 to k ln1.5 when the temperature decreases
across Tz, which indicates a disorder-order phase transi-
tion; for the m, =0 layer, the entropy per atom decreases
to about k ln4 in the region below TN, which indicates
that this layer is still in a disordered, or in other words, a
paramagnetic state below Tz. This is contrary to the
theory which explains the rn, =0 layer as being in a
"Kondo state. " Our results are consistent with our pre-
vious understanding of this behavior on the basis of the
phenomenological theory. '

(iii) CeTe. In contrast with cerium monopnictides, this
material has a low Neel temperature T&=2.2 K and
a diminished low-temperature ordered moment
m, =0.3pz. ' It has antiferromagnetic ordering of the
second type. The calculation gives T&=3.9 K and
m, =0.30pz. Here a small moment does not indicate
that there is disorder at low temperature. The entropy
per atom is k ln1 at zero temperature, and therefore the
atoms are in a perfectly ordered state. It is the anisotro-
py of the two-ion interaction which forces the atomic
ground state to have a small expectation value of m.

We have seen that the orbital-motion-driven anisotrop-
ic two-ion interaction' is behind the diverse magnetic
behavior of the cerium compounds we have studied. In
Table III, we list the calculated results for Neel tempera-

VI. SUMMARY AND DISCUSSION

We have developed a model Hamiltonian describing f
electrons interacting with non-f band electrons. In this
model Hamiltonian, the f-with-non-f interactions in-
clude both band-f hybridization and band-f exchange
Coulomb interaction. We have developed schemes to cal-
culate the quantities in the model Hamiltonian on the
basis of band-structure calculations. For cerium
monopnictides and monochalcogenides, we perform a
LMTO band-structure calculation to calculate these
quantities, and from these quantities calculate the two-
ion interaction. The two-ion interaction so calculated
contains contributions from the orbital motion of the f
electron. This causes the two-ion interaction to be highly
anisotropic, and accordingly causes the peculiar magnetic
behavior in these materials. The first-principles results
are in excellent agreement with phenomenology on
structural and range behavior of the two-ion interaction
and with experiment on ordered moment. They slightly
overestimate the ordering temperatures, being within a
factor of 2 or less of experiment. The results for CeTe
are in excellent agreement with the strongly reduced ex-
perimental TN and ordered moment.

There are several aspects of the physics which are
neglected in our theory. (1) Our band calculation neglects
the influence of the local moments on band states, i.e., the
reciprocal efFect to that of the bands on the local mo-
ments, which we treat. Such an influence can make the
magnetic structure and band structure sensitively corre-
lated, and could be important toward understanding such
correlated behavior in the bands as gives rise to heavy-
fermion behavior. (2) The local moment is calculated in
the mean 6eld of neighboring moments, and moment fiuc-
tuations are neglected. Moment fluctuations can be de-
structive to the mean-Seld ordering, and including such
efFects could improve the Tz calculation. (3) The extend-
ed (delocalized) states are viewed as Bloch (band) states
which extend throughout the whole crystal. In this view,
an interaction with the f-electron charge (and associated
moment) in the 4f shell for a given atomic site will aflect
the band electrons throughout the whole crystal equally.
In reality, a band-f interaction afl'ects the band electrons
only within a region surrounding the local moment. Thus
the charge fluctuations (driven by hybridization in the
presence of the on-site Coulomb repulsion and as
modified by Coulomb exchange) which transmit the two-
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ion exchange presumably involve charge pulsating only
between a given f shell and some "extended shell" rather
than total delocalization. This may alter the formalism
of the two-ion interaction and the consequent description
of the way in which the ordered moment may disappear
in such systems.

While these aspects merit future consideration, we
have achieved at present significant understanding of the
magnetic interactions and ordering in correlated 4f-
electron systems through this first-principles study.
First, we have seen that exchange Coulomb interaction as
well as hybridization plays an important role in the mag-
netic behavior of such f-electron systems. Which of the
two interactions is stronger depends on the material.
Sometimes neglecting one of them may only cause quanti-
tative discrepancies because, as demonstrated by the
Schrieffer-Wolff transformation, there is some
equivalence between some of their effects. The fact that
keeping only the hybridization and neglecting the ex-
change interaction still predicts the correct magnetic
structure while underestimating the ordering tempera-
ture supports this viewpoint. However, it is clear that
sometimes neglect of one of the interactions may cause
qualitative differences. (For example, the crystal-field
dressing is totally a hybridization effect. ) Second, we
have seen that localization and orbital motion (and asso-
ciated orbital moment) are two inseparable characteris-
tics of these f-electron systems. Orbital motion is due to
the spherical symmetry of the field the electron stays in.
But the ionic field is close to spherical only in a small
core region, and outside of it the crystal-field dominates.
So only when an electron is confined within the small
core region will it have a strong orbital motion, and it
must have a strong orbital motion once it is confined
within the core region. From the orbital-motion-driven
anisotropic magnetism, we can conjecture that a higher
degree of anisotropy indicates stronger orbital motion,
which further indicates higher degree of localization. In
fact, anisotropic magnetism is seen more frequently in f
electron systems than in d- and p-electron systems. Here
the relationship of localization —orbital motion-
anisotropy is evident. (We caution, however, that this
does not mean that a band, rather than a highly localized,
point of view may not be a better starting point for im-
portant aspects of the f-electron behavior of higly aniso-
tropic uranium materials. ' However, even in a relative-
ly bandlike material, such as UTe, the great marjority of
f electrons are localized in space and energy. ) Third, we
have seen that a diminished local moment does not al-

ways indicate "Kondo compensation. " It is also possibly
a consequence of the structure of the magnetic interac-
tion. The concept of "Kondo compensation, " which is
transplanted from the single-impurity problem, should be
used only with very special care and justification in a
magnetically ordered system.

The materials we have studied here can be regarded as
"almost localized" f-electron systems. Toward the other
extreme, there are "almost itinerant" f-electron systems,
such as some light actinide compounds, and we will sub-
sequently present our treatment ' of such systems. Note,
however, that as stated above, even in such an "almost
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APPENDIX: ADDITION THEOREM FOR
SHIELDED COULOMB POTENTIAL

The shielded Coulomb potential satisfies the modified
Helmholtz equation

V 4—k 4=0. (A 1)

Accordingly, it can be expanded in terms of the general
solutions of Eq. (Al). Suppose there is a source at point r'

and an observer at point r. Let y be the angle between r
and r'. Rotate the coordinate so that r' lies on the z axis.
Then the expansion is

—)r—r')/A,

(A2)
/r —r'[

= g [ A, ii(kr)+B&ai(kr)]P&( cosy),

where k =1IA, ,P&(x) is the Legendre function, and ii(x)
and ai(x) are the first- and second-type modified spheri-
cal Bessel functions. Switching source and observer, we
have the same expansion in terms of r'. Since the poten-
tial remains finite at r, r'=0 and r, r'~ao, the nonzero
terms in the expansion are

e
—~r —r'j I'X

g C&a&(kr & }ii(kr & )Pi( cosy) .
~r —r

(A3}

To determine C&, consider when k~ ao. Then this equa-
tion should reduce to the well-known equation

Ir&
, P, ( cosy) . (A4)

itinerant" f-electron material as UTe, the great majority
of f electrons are localized. A small change in the frac-
tion of delocalized f electrons has a large qualitative
effect. (Lim and Cooper have developed a spin and or-
bitally polarized band-calculation technique based on the
work of Brooks and Kelly to treat the limit of fully
itinerant f-electron systems. ) Between the two extremes,
there is a wide range of f-electron systems exhibiting
phenomena such as heavy-fermion behavior. The under-
standing of heavy-fermion systems is still lacking. Our
study of the "almost localized" and "almost itinerant"
f-electron systems is an exploration on the outskirts of
the heavy-fermion region. Though it does not address
the heavy-fermion problem directly, it provides a frame-
work of reference for exploring this problema, nd it may
contribute in seeking for a comprehensive understanding
of the heavy-fermion problem.
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Knowing the asymptotic behavior of it(x) and at(x),

x'
i,(x)- „(x«1)

(21 —1 )I)at(x)- t &

"
(x ((1)

(A5)

we have

21+1
I (A6)

Using the well-known addition theorem for spherical har-
monics, we arrive at (4.12}.
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