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Localization of light in coherently amplifying random media
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We derive and analyze the statistics of reflection coefficient of light backscattered coherently from an

amplifying and disordered optical medium modeled by a spatially random refractive index having a uniform

imaginary part in one dimension. We find enhancement of reflected intensity owing to a synergy between wave

confinement by Anderson localization and coherent amplification by the active medium. This is not the same

as that due to enhanced optical path lengths expected from photon diffusion in the random active medium. Our

study is relevant to the physical realizability of a mirrorless laser by photon confinement due to Anderson
localization.

Light-wave propagation in a passive random medium and
the associated phenomena of Anderson localization' and of
resonance fluctuation of the reflection and the transmission
coefficients are now well understood. The bosonic nature of
the light quanta, however, brings in some additional features,
namely those of wave amplification and attenuation (absorp-
tion) that have no analog for their fermionic (electronic)
counterpart. By amplification here we mean the coherent am-

plification, as by stimulated emission of radiation in an "ac-
tive" medium, wherein the phase of the amplified wave is
protected in time. And similarly for the coherent attenuation

by absorption, sometimes referred to as the stochastic rather
than deterministic absorption, wherein the light wave is
taken to be in a coherent state —an eigenstate of the photon-
annihilation operator. This persistence of phase coherence
despite amplification raises the interesting possibility of ob-
taining synergetic enhancement of wave amplification, or la-
ser action without mirrors, due to confinement by Anderson
localization in an intentionally disordered, optically pumped,
laser-active condensed matter. Indeed, the recent
observation of multimode laser radiation from an optically
pumped and strongly scattering colloidal suspension of
TiOz (rutile) nanoparticles in methanol containing a laser
active dye (rhodamine 640 perchlorate) supports the above
possibility.

A proper understanding of this phenomenon, however,
raises several basic questions that need to be addressed first:
(a) Is the enhancement due merely to an increased sojourn
time because of the slow classical diffusion of the multiply-
scattered photons as in a DWS (diffusing wave spectroscopy)
setup, or (b) is it due to Anderson localization, i.e., below the
mobility edge anomalous diffusion of photons, and (c) how
can the mode-selection possibly take place despite the non-
self-averaging fluctuations of the localization length, well
known from its electronic counterpart as conductance fluc-
tuation? Motivated by its obvious relevance to photonics,
and not a little by the pure physics of it, we have studied here
a fundamental aspect of this phenomenon, namely, the statis-
tics of a non-self-averaging fluctuation of the coefficient of
reflection for a light-wave incident on such an active ampli-
fying optical medium with an index-of-refraction disorder in
one space dimension. More specifically, our active disor-
dered medium stimulates an optical fiber, made active by Er

t/ E(x) to QJ

e„(x)E(x)= —z( op+i e")E(x) (la)

or

8 E(x)
Bxz +kp[1+ r/(x)]E(x) =0, (1b)

with kp= to ep/c and r/(x) = E /ep+ l(E/ep) = 'l7„(x)'
+i';, where ko and c are, respectively, the wave vector
magnitude and the speed of the light in a vacuum.

As is now well known, the Schrodinger-like wave equa-
tion (1b) can be transformed so as to give directly an equa-
tion of evolution for the emergent quantity, namely, the am-

plitude reflection coefficient R(L) = v'r(L)exp[i8(L)] as
function of the sample length:

c/R(L) k()= 2ikpR(L) + i —[r/„(L)+i r/;][1+R(L)] . (2)

A similar equation, though somewhat complicated, can be
written down for the transmission amplitude. We are, how-
ever, interested here in the statistics of the reflection coeffi-

doping and optical pumping, say, and rendered disordered

by having the real part of its dielectric constant e'(x) vary
randomly along the fiber length. The coherent amplification
(active) aspect is modeled by introducing a phenomenologi-
cal nonrandom negative imaginary part (e"&0) to the di-
electric constant, i.e., e(x) = e'(x)+ i e"(x) with the real part
e'(x)=ep+e„(x) and e„(x) random. Inasmuch as we are
concerned here only with the aspect of enhanced coherent
amplification and not the self-sustaining laser oscillations
above thresold pumping, it is sufficient to confine ourselves
to the linear regime where e" is independent of the wave
amplitude. We will discuss briefly the nonlinear regime rel-
evant to laser oscillations at the end. For simplicity we as-
sume the fiber to be polarization maintaining so that a scalar
wave treatment should suffice.

We take our one-dimensional sample of disordered active
medium of length L to be connected to perfect leads at either
end, and consider an analytic signal of circular frequency
co incident on the disordered section at one end. The complex
wave amplitude E(x) then obeys the Maxwell equation
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cient r(L) and, therefore, confine our study to the reflection
mode only. This stochastic equation can be solved analyti-

cally for e„(x) a Gaussian white noise, i.e., for (r/„(L)) =0
and (r/„(L) r/„(L')) =gb(L L—'). With this, the "Fokker-
Planck" equation for the probability distribution P(r, I) as-
sociated with the stochastic equation (2) turns out to be '

BP(r, i) 8 P BP(r, I)
Bl Br

= r(1 —r) 2 + [I+(—6+D)r+Sr ] Br

+
I ( —2+D)+4r]P(r, l), (3)

limP (r, l)~P(r, ~)= &

(~ao

D&0

IDI ~

ID Iexp-
r I& fo—r r~1

(1 —r)2

for r&1,
(4a)

limP (r, l)~P(r, ~)
(~ oo

D&0

ID I «p(ID I)«p

(1 —r)
0 for r&1,

(4b)

limP (r, l)~P(r, ~) = 8(1—r) (4c)

It is to be noted that in all cases the length scale is essentially
set by the localization length l, independently of amplifica-
tion and/or absorption. It is also readily seen that for D~O
(amplification), the limiting form gives a weak (logarithmic)
divergence for the mean (r), due to the long tail of the dis-

where we have introduced the dimensionless length
I= zgkoL= L/I, —and D=4rA/gko. Also, we have assumed
the phase angle 8 to be uniformly distributed. Here D&0
corresponds to coherent arnplification, D&0 to attenuation

by coherent absorption, and D=O to the unitary case. To
emphasize the dependence of P(r, l) on D we will write

explicitly P(r, l)=P (r, l) whenever necessary. It is to be
noted that the assumed Gaussian white-noise randomness of
a quantity (the dielectric constant) within the sample
(O~x~L) translates as the equivalent Gaussian white-noise
randomness of the terminal quantity at x=1. in the exact
sense of invariant imbedding where the given sample is as-
sumed imbedded invariantly in its extension, i.e., extension
of L to L'()L) maintains the statistics of randomness.
Hence the dielectric constants at L and L'()L) are all sta-
tistically at par.

Some asymptotic features of P (r, l) can be obtained di-

rectly froin Eq. (3). First, let us note that our Eq. (3) reduces
to the unitary case (D =0) in the limits e"=0 (trivially) and

g =0 (nontrivially). The latter case is dominated by disorder
and the localization length is too short for the wave to have
penetrated the amplifying medium appreciably. Next, the sta-
tistics P (r, l) saturate to a broad limiting form as l~~. It
can be obtained by setting 8P(r, l)/8!=0 and solving the
resulting equation analytically. We get

1.5

UI
C
6)
U

CQ~ 0.5
CL

4

I

I l

l

I

I

I
C I0 ~

c
1

l

C

~&Q
4

t
4

+a~eg

Amplification

D=1

D=O

D=-1

2 3
Reflection coefficient r

FIG. 1. Limiting probability density P (r, ~)=Pof —refiection
coefficient r for (a) coherent absorption (D = I), (b) coherent am-

plification (D = —1), and (c) unitary (D =0).

tribution P+(r, ~) for large r. This is clearly due to the

amplified reflections from deep within the sample for l~~.
In Fig. 1 we have plotted P (r, ~) for the three limiting

cases with D=+1,0,—1. In order to see the approach to
these limiting forms (Fig. 1), we have also solved Eq. (3)
numerically for finite length, and the results are plotted in

Fig. 2 and Fig. 3.A technical point is to be noted here for the
amplifying case. Equation (3) is essentially a diffusion equa-
tion with a diffusion coefficient r(1 —r), a function of r
that vanishes as r~G or 1. This is a singularity that makes
the initial value problem of P (r, l) from the initial condi-
tion, P (r, I)~ 8(r) as l~0, numerically difficult to follow.
The plots shown in Fig. 3 have been obtained by regularizing
r(1 —r) as r(1 r) + 8 with a non—zero BC&1. With this it is
again noticed that the probability density PD(r, l) quickly
saturates to the limiting form P (r, i~~) for I)1, for a low
value of amplification as in Fig. 3(a). For higher amplifica-
tions, however, the approach to the limiting form is relatively
slow as in Fig. 3(b), where one can barely discern a shift in
the peak towards the limiting position. This is readily under-
standable as for large arnplification parameters, reflections
from deep within the sample also begin to contribute despite
exponential localization. The value of the reflection coeffi-
cient rm, „at which P (r, l) peaks, however, increases with
increasing ID I. All of these strongly suggest that, for not too
large an arnplification, the reflected light is amplified mostly
within a localization length of the point of incidence. This
localization-enhanced reflection is quite different from what
one would expect from the diffusion of photons familiar
from DWS. In the diffusive case the distribution of the op-
tical path length together with the exponential growth of
wave amplitude due to coherent amplification would give in
one dimension P (r, co)-1/r(lnr)" for r&) 1 which decays
inuch slower than the actual P (r,~) obtained in Eq. (4a).
The former would represent the effect of long, diffusive re-
turn paths traversing the deep interior of the sample much
more beyond the l, than in the present case.

The above analysis based on linear amplification (i.e., the
wave-amplitude independent of the imaginary part e" of the
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FIG. 2. Plot of Po(r, l) against the sample length I for coherent

absorption parameters: (a) D=1 and (b) D=10. Solid line is the

analytical result for l~oo.

FIG. 3. Plot of P (r, l) against the sample length I for coherent

amplification parameters: (a) D= —0.5 and (b) D= —1. Solid line

is the analytical result for l~oo.

dielectric constant) cannot by itself address the real problem
of laser oscillations and mode selection in an optically
pumped (active) random medium. For this we must

make e' a function of the local wave intensity, e.g.,
e~E*(x)E(x). The resulting nonlinear Schrodinger-like
equation can again be reduced quite straightforwardly to the

equation for the reflection coefficient via invariant

imbedding. ' One expects to get a narrowing of the statistics
P (r, f) as the threshold for lasing is crossed. This nonlinear

aspect, however, calls for further analysis.
In conclusion, we have analyzed the statistics of the co-

efficient of reflection of light from a coherently amplifying

(active) medium with refractive-index randomness in one di-

mension. The coherent amplification has been modeled by
giving an imaginary part to the refractive index. Our results

strongly suggest that the enhanced reflection coefficient is
due to a synergy between Anderson localization and coherent
amplification. It is not simply a result of enhanced optical
path length subtended by the classical diffusion of photons.
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