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Thermoelectric power above the Kosterlitz-Thouless transition
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Thermoelectric transport due to the motion of free unbound vortices above the Kosterlitz-
Thouless transition temperature is considered. It is shown that the Magnus force, which appears
under the inluence of the temperature gradient, leads to a nonzero thermopower at a temperature
above the Kosterlitz-Thouless transition temperature TKq, but below the mean-field (Ginzburg-
Landau) critical temperature Toi, . The exponential inverse-square-root reduced-temperature de-
pendence of the thermopower above TK~ is predicted with a consequent broadening of the super-
conducting transition detected by means of thermopower measurements. The case of the clean
superconductor is analyzed.

Transport properties in the vicinity of the Kosterlitz-
Thouless (KT) transition have attracted the close atten-
tion of both theorists and experimentalists since the dis-
covery of this phenomenon. Kosterlitz-Thouless behav-
ior associated with the dissociation of vortex-antivortex
pairs due to thermal Buctuations above the critical
temperature TKy is a characteristic feature of two-
dimensional superconductors. In view of the fact that the
main structural feature of high-T, superconductors is the
large value of spatial anisotropy and the essentially two-
dimensional character of their physical properties, in the
recent past there has been considerable effort to investi-
gate experimentally the possibility of the KT transition
in these materials. Kosterlitz-Thouless properties have
been examined in bulk single crystals of YBa2Cu307
(Ref. 2) and Bi2SrzCaCuzOs, oriented TlzBa2CaCu20s,
YBa2CusOr, and BizSr2CaCu20s thin films, and
YBa2Cu307 monolayers . In these papers the resis-
tivity data just below the mean-field critical temperature
were quantitatively compared with the predictions of KT
theory and a rather good agreement between theory and
experiment was demonstrated.

In the present paper we study the thermoelectric trans-
port in high-temperature superconductors above TK~.
Taking into account that high-T, materials are in the
clean limit (I, )) (o, where l is the electron mean &ee
path and (e is the zero-temperature coherence length),
we consider below the model of a clean two-dimensional
superconductor. We show that the thermoelectric effect
in zero magnetic field appears due to the Magnus force,
which causes the motion of &ee unbound vortices above
TK~. Vortex motion under the inQuence of a tempera-
ture gradient is widely discussed now in connection with
studies of the Seebeck and Nernst effects in the mixed
state of high-T oxides. ' In the present work, we fol-
low the assumption that the Magnus force which leads
to the vortex motion has its origin in the ful61lment of
boundary conditions at the vortex core boundary, as was
suggested by Samoilov et al.

We consider now a layered clean superconductor with
in-plane temperature gradient applied near the KT tran-
sition point. %'e neglect below all effects of interlayer

interaction, so the superconductivity is assumed to be
strictly two-dimensional. As was shown, the KT transi-
tion in two-dimensional superconductors involves vortex-
antivortex pairs bound at low temperatures which disso-
ciate into &ee vortices at the characteristic temperature
TK~. The energy of the vortex-antivortex pair is a loga-
rithmic function of the separation and in the absence of
electrical current has the form

U(r) = 2E, + 2mKTln(r/() for ( « r « A, (1)

urn, h2 c252

8m 16e2A

(e is the electron charge and c is the velocity of light),
where n, and A are functions of temperature. To evaluate
TKp explicitly we note that in the clean case

A2~(0) A(T) f b, (T) )
(3)

where AL, is the I ondon penetration depth, b, (T) is the
BCS energy gap, and d is the effective correlation length
along the c axis, which would be the actual interlayer
distance in our consideration. By substitution of Eq. (3)
into Eq. (2) one obtains the implicit equation for TKi

= 3.93—
TGL (TGi ) 1 e p

(4)

where A(T/T~z, ,) is the temperature-dependent function

and for r )) A the interaction energy falls off as 1/r Here.
E, is the vortex core energy, T is the temperature, K is
the renormalized stiffness constant, r is the separation of
the vortex-antivortex pair, g is the Ginzburg-Landau co-
herence length, which for high-T, materials would be the
a bplane -coherence length, and A is the two-dimensional
magnetic penetration depth. The temperature range of
our interest is TK~ & T & TGL. As was discovered by
Nelson and Kosterlitz, ii there exists a universal relation
between TK~ and the two-dimensional superHuid density
+8'
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contained within the brackets in Eq. (3) and p is the
normal-state resistivity. For temperatures near TK~ Eq.
(5) reduces to the simple form

~Gr, —~Km
(5)

4p S„
vt, = —"[VT x z].

'g pn
(7)

Using the Josephson relation we obtain the electric
field across the sample,

cn, S„E = —n, [vt. x z] = ' "VT. —
e 'g pn

(8)

The last equation gives the general expression for the
Seebeck coeKcient due to free vortex motion. Now we

have to evaluate the magnitudes of n, and g above the
KT transition temperature for the case of a clean super-
conductor.

At temperatures just above TKg, n, is proportional to
the inverse square of the average distance between ther-
mally induced free vortices (+. The correlation length
(+ (T) was calculated by Halperin and Nelsonis and then
modified by Minnhagen, taking into account the temper-
ature dependence of n, . The result is

Z/2( Tc,g —T
(+ ——ag(T) exp B

~

n. = 2vrC(+,

where a, B, and C are sample-dependent constants of
order unity.

Let us turn now to evaluation of the viscous drag co-

which is valid when 7. « 1. Compared to the dirty limit
calculations, i the additional factor //( arises in Eq. (5).

Under an external temperature gradient, &ee vortex
motion above TKg results in the thermoelectric effect due
to the Magnus force acting on vortices. As was shown in
Ref. 10, the Magnus force in this case has the form

(S„
FM = 4p

~

"VT——n, evr,
~

x z
)

where 4p ——xch/e is a Hux quantum, S„ is the normal-
state thermopower, vL, is the drift velocity of the vortex,
and z is a vorticity vector. The vortex velocity can be
found &om the force balance equation FM + Fz + f = 0,
where Fz = S~VT —is the so-called thermal force (S~
is the entropy per unit length of the vortex line) and
f = —gvL, is the viscous drag force. We note that the
thermal force Fz acts on the vortex independently of the
direction of the vector z. By this we mean that this force
does not lead to movement of the vortex and antivortex
in opposite directions and therefore to the appearance
of a longitudinal voltage. For this reason we can ignore
the thermal force in our further consideration. Another
simpli6cation is the neglect of the second term in square
brackets in Eq. (6), which results in a transverse volt-

age only. Under these assumptions one finds the vortex
velocity

eKcient g. This value was calculated in a number of
papers, but mainly for dirty systems. We need now the
magnitude of g in the clean limit. Because KT theory
provides the kinetic coefFicients only with an accuracy of
constants of order unity [see Eq. (9)] we can determine il
also within this accuracy. In this case we do not need the
microscopic calculations which alone allow to obtain the
exact values of the numerical coeKcients. Therefore we

restrict ourselves to simple estimations. As was pointed
out in Refs. 17 and 18, there are two main mechanisms
of dissipation near the critical temperature. The first
one is associated with the heating of normal excitations
inside the vortex core. The corresponding value of the
coeScient g has the form

Vrh2

4p e2(2

It is important that dissipation due to this mechanism
is not sensitive to whether the system is in the clean or
dirty limit. The second important mechanism is con-
nected with the inhomogeneity of the order parameter in
the vortex resulting in additional dissipation, as was pro-
posed by Tinkham. If the characteristic time of vortex
motion is tp (/vt. and the relaxation time of the order
parameter wp 6 i(T) during slow movement of the
vortex (rp « tp), the energy dissipated per unit volume
is W = F7pf n, /tp, where F is the average free energy
per unit volume. In this case the viscous drag coefBcient
can be found as

W h2
"l2 =

2 2vt, e (tp„

Compared with the dirty case the additional factor (/t «
1 appears in g2. As a result, the second mechanism of
dissipation dominates over the erst one in the clean limit,
giving the main contribution to the thermopower (as well
as to the resistivity).

Combining Eqs. (8), (10), and (11), we find the See-
beck coefficient due to the free vortex motion just above
the KT transition point in the form

S, l t'TGi, —T)—' = A —exp B~—S„( (T —TK~)
(12)

where A and B are nonuniversal constants of order unity.
Equation (12) is our final result. First of all it is worth

mentioning that the temperature dependence of the ther-
mopower is the same as the temperature dependence of
the resistivity in the temperature interval between TK~
and TcI.. As the thermopower becomes zero in the super-
conducting state, the efI'ect discovered should be observed
experimentally as a tail in the temperature dependence of
the Seebeck coeKcient at the edge of the superconducting
transition. Experimentally, the shape of the S(T) curve
in the proximity of the transition temperature is still
not clearly understood. Nevertheless, pronounced tails
have been observed in a number of experimental papers
(see, for example, Ref. 19). We emphasize that generally
speaking the broadening of the transition in zero mag-



5Q BRIEF REPORTS 9633

netic field can be attributed to the effect of sample inho-

mogeneities. On the other hand, even high-quality sam-

ples of high-temperature superconductors demonstrate a
broadening of the resistive transition, which was found
to be well consistent with KT theory, but the length and
shape of the resistive tails were shown to be strongly de-
pendent on the oxygen content of the sample. The calcu-
lations above show that similar "intrinsic" tails should be
observed in the Seebeck coeKcient. More detailed mea-
surements and quantitative analysis of the experimental
data are required to establish the intrinsic nature of the
broadening of the transition detected by means of ther-
mopower measurements.

Another important point we have to discuss is the ap-
plicability of the theory proposed to high-temperature su-
perconductors. The central point here is the dimension-
ality of the order parameter, which can easily be studied
through investigations of its thermodynamic Huctuations
above TGL. Results reported in a large number of papers
demonstrate that the Buctuation enhancement of conduc-
tivity in Bi- and Tl-based oxides is well consistent with
the two-dimensional (2D) Aslamazov-Larkin theory and
there is no crossover to the three-dimensional regime in
the temperature range of Gaussian fluctuations. This
fact strongly supports the possibility of interpretation of
transport properties in these materials at the edge of the
superconducting transition within the context of KT the-
ory. On the other hand, the treatment of data obtained
on YBa2Cu30y, for which the Huctuation conductiv-
ity was shown to have a complex behavior with a 2D-3D
crossover, requires a comprehensive theory taking into
account the efFects of interlayer interaction.

It is also interesting to note that application of the
KT theory to clean systems leads to an essential increase
of the difference between TKT and TGL and therefore
to broadening of the transition. The resulting value of
the reduced temperature interval 7; = (T~z, —T'KT)/TKT
turns out to be greater than ~, for the dirty case by the
factor l/$ 5—8 in real high-temperature materials. This
fact allows one to improve the agreement between theory
and experiment. Thus taking into account the typical
values of l 80 A. , ( 10—15 A, p„150 20—0 pAcm,
and d 20 A. for BizSrzCaCu20 and TlqBazCaCuzO,
monocrystal 61ms, m we find from Eq. (5) an estimation
for r, in the range 0.01—0.0$. The last prediction is in
close agreement with experimentally found values of this
parameter.

In summary, we have studied the thermoelectric effect
due to the motion of free unbound vortices just above
the Kosterlitz-Thouless transition temperature. For this
purpose the model of a clean two-dimensional supercon-
ductor in the proximity of the superconducting transition
was considered. We found that the motion of vortices
and antivortices produces the thermoelectric efFect due
to the Magnus force which appears under the inQuence
of a temperature gradient. This effect manifests itself as
tails with characteristic exponential inverse-square-root
temperature dependence on the Seebeck coefBcient at the
edge of the superconducting transition.
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