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Kosterlitz-Thouless transition in a two-dimensional isotropic antiferromagnet in a uniform field
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The transition temperature in the classical two-dimensional isotropic antiferromagnet in a uniform

magnetic field, applied perpendicular to the xy plane, is calculated using a self-consistent spin-wave

theory. The effect of vortex-antivortex bound pairs to the transition temperature is estimated.

It is now well known' that the two-dimensional classi-
cal XY model undergoes a vortex-unbinding transition in
a narrow temperature region in which vortex bound to-
gether in pairs unbind. For temperatures low enough, all
vortices are bound together in pairs and the unbinding
transition starts at a critical temperature TKT at which
the model undergoes a thermodynamic phase transition,
the Kosterlitz-Thouless (KT) transition. On the other
hand the isotropic Heisenberg model is believed to have
no phase transition and it is also believed that its magnet-
ic susceptibility diverges strongly as the temperature ap-
proaches zero. However, a two-dimensional classical
isotropic Heisenberg antiferromagnet in a uniform mag-
netic field applied perpendicular to the xy plane is expect-
ed to have the XY-like low-temperature phase and show
the KT transition due to a XY-like degeneracy of a cant-
ed spin-flop ground state. Using Monte Carlo simula-
tions Landau and Binder have studied the phase bound-
ary between the spin-flop phase and the paramagnetic
phase for this model. Their simulations indicate that the

I

KT transition temperature approaches zero extremely
slowly as the field approaches zero. In this paper we cal-
culate the transition temperature for this model using a
self-consistent harmonic theory, develo ed before to
study the anisotropic Heisenberg model. We will start
with the following Hamiltonian

H= —QS„S„+, HgS-;,J
r, a

where S„ is a classical spin (we take S= 1) and r +a labels
the nearest-neighbor sites of r (the sum runs over all pairs
of nearest-neighbor spins on the square lattice). At zero
temperature the spin-flop ground state has the following
polar angles: $0=0, 80=cos '(H/8J), and the spin-
flop-to-paramagnetic transition occurs at a critical field

H, =8 J.
In order to treat the magnetic field term in a proper

way, we will first introduce the parametrization

S„=( —1)"j sin[8„+ ( —1)"8,]cosP„,sin[8„+ (
—1)"8, ]sing„,cos[8„+( —1)"8,]],

where the even n describes one sublattice, the odd n the
other one. Taking Eq. (2) into Eq. (1) we find that keep-
ing only terms of second order the Hamiltonian becomes

H= —,'sin 8, g(P„—P„+, ) —2J g(8, —8, )

r, a

——g (8„—8, )(8„+,—8, )+—cos8, g (8„—8, )

(3)

Redefining the spin component S' by

S„'=cos(8,—8, ),
we see that, from the thermodynamical point of view, our
original model is equivalent to an anisotropic ferromag-
net described by the Hamiltonian

H = ——g [sin 8,(S„"S„'~,+SOS(+, )+S„'S„'+,]
J
2

r, a

+A g(S„')

with A =H2/8J.

Now, in order to use the self-consistent approximation,
we write Harniltonian (4) in terms of the polar representa-
tion for the spin at site r

S„=[[1—(S„') ]' cosg„, [1—(S„') ]'i sing„, S„'j .

Following the same procedure used in Ref. 6 we obtain
the following quadratic form of Hamiltonian (5)

H. =—X [p(1 rq)4, 0 q+—[(1 r,-)+2~ ~—~]S;S'-,],
2

where y =
—,'(cosq„+cosq ), and the spin-stiffness con-

stant is given by

p=sin 8, ([1—(S;) ]' [1—(S„',) ]'

Xcos($„+,—P, )) .

The sti8ness takes into account anharmonic terms
neglected when we write the original Hamiltonian in the
harmonic form. Following Ref. 6 we find that we can
write Eq. (7) as
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p=sin 8, [1—tI(H}]exp( t /p),

where t =T/4J and

(8) lO

I(H)=
(2n) 1 —yq+H /4J

(9)
H

J
Equation (8) is a self-consistent equation giving the

stiffness p for each temperature. The anharmonicity of
the original Hamiltonian (4) results in a abrupt disappear-
ance of the stiffness, indicating a phase transition, at a
temperature T, given by

T,(H)=4J sin 8, [e+sin 8,I(H)] (10)

Near the critical field I(H) is small and Eq. (10)
reduces to

T, (H) = TKT [1—(H/8J ) ], 0
0 0.5

I (H}=—ln
2 4mJ

(12)

leading to

T, (H) = 4J
e+(2/n')ln(4m J /H )

For very small magnetic fields we obtain from Eq. (13)

T, (H) =2m J/In(4m J2/H2)

(13)

in agreement with a result predicted by Okwamoto, who
estimated the transition temperature for Hamiltonian (1)
by calculating the instability temperature at which the

where TKT =4J/e is the critical temperature of the plane
rotator model. ' Equation (11}agrees with the one ob-
tained by Landau and Binder using first-order spin wave
theory. In this limit expression (11) is expected to be
correct because near H, the fluctuations of S„' are
suppressed at low temperatures.

Our theory is also expected to work better for small
magnetic fields. In the region H ((H„Eq. (9) gives

FIG. 2. Phase boundary for the isotropic Heisenberg antifer-
romagnet in a uniform magnetic field. The solid line represents
our theoretical calculation. The solid circles are data obtained
from Monte Carlo simulation for fields between H/J=0. 01 and
7.0 by Landau and Binder.

free-energy vanishes, in the limit where a vortex pair
changes into an instanton.

The stifFness p calculated using the self-consistent tech-
nique does not incorporate the effect of polarization by
bound vortex pairs. This latter mechanism is responsi-
ble by a shift in the Kosterlitz-Thouless transition tem-
perature. At TKT renormalization-group analysis
shows that the stiffness should exhibit a universal jurnp
given by 2TxT/rr. The Kosterlitz-Thouless temperature
for our model can then be determined by the crossing be-
tween the p(T) curve, calculating using Eq. (8) and the
line y =2T/rr. In Fig. 1 we plot both curves for some
values of H. The transition temperature, calculated using
this approach, is shown in Fig. 2 as a function of the
magnetic field, where we compare our calculation with
data obtained from Monte Carlo (MC) simulations per-
formed by Landau and Binder. s For H/J=0. 01 (the
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FIG. 1. Temperature dependence of the stiffness for (a)
H=0.01, (b) H =0.1, and (c) H =1.0. The dotted line corre-
sponds to y=(2/m. )T. The critical temperature occurs at the
point of intersection ofp( T) and (2/m )T.
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FIG. 3. Transition temperature as a function of the Geld H.
The dashed line represents the calculation given by Eq. (10).
The solid line represents the calculation as described in Fig. 1.
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lowest field where data was available) we obtained
T, /J=0. 51 in good agreement with the value of T, ob-
tained in MC simulations. In Fig. 3 we show T„as a
function of H, for realistic values (from the experimental
point of view) of the magnetic field H. In this figure we
show T, calculated using Eq. (10) and T, calculated us-

ing the technique described in Fig. 1. As we can see, the
transition temperature approaches zero very slowly as the

field approaches zero. In addition, the fact that the out-
of-plane fluctuations have an important effect on the cal-
culation of the transition temperature should be stressed.
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