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Ferromagnetic transition of the Kondo lattice with Coulomb repulsion: Exact results
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The Coulomb interaction among conduction electrons is introduced in the Kondo-lattice Hamiltoni-
an. According to the Perron-Frobenius theorem, we exactly show that the ground state of the Kondo
lattice in one dimension with the open boundary condition is ferromagnetic and has the total spin

S=(E—N, )/2 in the limit U~ ~, where N is the number of sites and E, is the number of conduction
electrons. Exact-diagonalization calculations clearly indicate that the ferromagnetic state appears for a
wide range of Coulomb strength. Our theory predicts that antiferromagnetic correlations of localized
spins change into ferromagnetic ones with the increase of Coulomb interactions.

Strongly correlated electron systems have been studied
for many years with considerable efforts. The Nagaoka
theorem' and the Lieb's theorem are examples of the few
known exact results for these systems. Recently exact re-
sults were obtained in heavy fermions in the strong-
coupling limit and with low carrier densities. ' These
models indicate an example of the itinerant ferromagne-
tism of two-carrier systems. The purpose of this paper is
to show some rigorous results on the Kondo-lattice sys-
tems. The Hamiltonian is the Kondo-lattice model with
Coulomb interactions:

H = —t g c;t c. + U g n; tn, .~+Jg cr, S;,

where (ij ) indicates a nearest-neighbor pair of sites and
we denote n; =c; c; 0; and .S; are spin operators of
conduction electrons and localized spins, respectively.
The third term of the exchange interaction may be either
ferromagnetic or antiferromagnetic. The second term
represents the on-site Coulomb interaction among con-
duction electrons. In this paper we assume that the lat-
tice is one dimensional and we denote the number of lat-
tice sites as N and the number of conduction electrons as
N, .

In recent works, a ferromagnetic ground state of the
one-dimensional Kondo lattice has been investigated
where two limits are shown to exhibit the ferromagne-
tism. One is the low-carrier limit n, ~0 (Ref. 4) and the
other is the strong-coupling case J~~. We show the
third candidate to show a ferromagnetic ground state.
We believe that the Coulomb repulsions between d elec-
trons in heavy fermions cannot be easily neglected al-
though this issue has never been investigated we11 until
now. First we show the following proposition.

Let us assume that U is very large and N, &N The.n
the ground state of the one-dimensional Kondo-lattice
model in Eq. (I) has the total spin S =(N —N, }/2 for
J)0 (antiferromagnetic case) and S =(N+N, )I2 for
J&0 (ferromagnetic case), where we set the open bound-
ary condition.

As is well known, the lower-order perturbation
theories predict the oscillating effective interaction be-
tween two localized spins. According to numerical
studies, there are strong antiferromagnetic correlations
between nearest-neighbor spins in the one-dimensional
model with the half-filled conduction band. ' '" When
we take account of the Coulomb interaction U among
conduction electrons, we should change our picture be-
cause exchange process of conduction electrons are much
reduced by U. A proof of the proposition is the follow-
mg.

Let us denote the operators of localized electrons as f,
and f, . Our basis states are written as

N

f
j=1 j=1

(2)

where Ix; I represent positions of conduction electrons:
x& &x2 « . xz, . to';I and ts;I denote spin
configurations of the conduction and localized electrons,
respectively. We can show that every off-diagonal matrix
element is negative with appropriate choice of the phase
factors of basis states. We start from states P(„}(

with fixed fear, I and Is; ], and then applying the Hamil-
tonian to g(, } ( }.(, }. We obtain new basis states where

one pair of conduction and localized spins with opposite
spina are exchanged. For example, if x, =k and

n, = —sk, Hg( } ( }.(, }
contains the following state:

=c ".c~i ~i+i ~+~} (~( . . ~s —) &k»k+) . &~I &(n( x, , —~. cx~, —e f ]g
' ' fk ~ f~g (0&

C C

(3)

This basis state should have a factor ( —) so that the off-
diagonal matrix element J/2 is negative for J&0. Third
vectors obtained by applying the Hamiltonian twice have
the same factors (+}as starting vectors. In this way we

I

can consistently assign phase factors to basis states with
the assumption that U is in6nitely large. In real-space
representation, any con5gurations can be obtained start-
ing from an aribitrary state by applying H successively as
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similar to the strong coupling Kondo lattice. Then ac-
cording to the Perron-Frobenius theorem, ' ' the ground
state is unique and every element of the eigenvector is
positive. It is easy to show that the ground state has the
total spin S =(N —N, )/2 for J)0 (antiferromagnetic).
A trial state of the type

g„= g(, ,f, , , —f, )(S )" P f; l0&,
j=1 i=N +1

Uc
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has nonzero inner product with the ground state. There-
fore, S=(N N, )—I2. Similarly the total spin of the
ground state is S =(N +N, )/2 for J& 0 (ferromagnetic
s-d interaction).

Our theorem indicates an example of the ferromagne-
tism induced by the Coulomb repulsion. In particular,
the complete ferromagnetic state is realized for J(0.
When the Hund coupling works between conduction and

f electrons, the complete ferromagnetic state of itinerant
electrons can be the ground state if U is large.

The mechanism of the ferromagnetism for large U
resembles the situations of other two limits n, ~0 and
J~ 00. The double-exchange processes'3 give rise to fer-
romagnetic interactions between two localized spins.
However, the large-U model is never reduced to a "r-J
model, "which is different from the strong-coupling mod-
el where the Hamiltonian is efFectively approximated by
the t Jmode-l.

Now let us turn to investigate the phase diagram. We
calculate the critical values U, of U; for U& U, the
ground state is ferromagnetic with the total spin
S =(N N, )/2 or S—=(N+N, )/2. It is not an easy way

to estimate U, even in the one-dimensional space. We
have done it by exact numerical diagonalizations for
small clusters. In our calculations the number of lattice
sites N is 4, 5, 6, 7, and 8. In Table I, we show ground-
state energies for N=6 and U=O and ao. The ferromag-
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FIG. 1. U, vs n, for the antiferromagnetic J (J=0.5) with

the open boundary condition. Numbers in the Sgure indicate

N, /N. The cross indicates the extrapolated value at n, =
2

in

the limit N~ 00.

netic ground states are really observed for large U. Criti-
cal values of U for the antiferromagnetic J are shown in
Fig. 1 for J=0.5 (i=1) where we impose the open bound-
ary condition. Apparently U, is an increasing function of
n, (=N, /N) and U, becomes 0 for n, «1 because the
ground state is rigorously shown to be ferromagnetic for
N, = l.4' Our evaluations indicate that U, ~ 00 near
half-filling for J)0 and that the paramagnetic state is
very much stable against magnetic orderings at half-
filling N, = l. At very low densities of the carriers it is
expected that the ground state has the finite total spin

TABLE I. Lowest energies of the Kondo lattice for N=6 and J=0.5 as a function of the electron

number N, and the total spin S. The ground-state energy for Gxed N, is underlined. Top: U=O; bot-

tom: U=00.

—1.995 56

—2.007 26

—2.014 51

—1.676 94

—3.735 42

—3.728 20

—3.708 55

—3.634 32

—5. 11137

—5.105 10

—5.088 31

—4.742 80

—6.22402

—6.213 59

—6.185 55

—6.13845

—6.81 65

—6.806 35

—6.792 00

—6.441 95
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—1.995 56

—2.007 26

—2.014 51

—1.676 94

—3.50091

—3.509 16

—3.519 16

—3.16400

—4.263 78

—4.272 79

—3.903 26

—3.514 80

—4.219 65

—4.226 85

—3.838 13

—3.428 72

—3.452 95

—3.045 24

—2.602 36

—2.146 66
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S)0 even for the noninteracting band according to the
discussions in Refs. 4 and 5. In Fig. 2, we show the fer-
romagnetic region in the U n-, plane for the ferromagnet-
ic interaction J&0. When we have one conduction elec-
tron N, = 1, we can rigorously show that the ground state
is ferromagneticalIy ordered and has the total spin
5 =(N+ I)/2 even for U =0. We expect that the fer-
romagnetic region exists for finite n, )0 for the nonin-
teracting conduction band due to a simi1ar discussion for
the antiferromagnetic case. Since large ~J~ favors a for-
mation of local triplet, the ordered state is the most
favorable to gain the kinetic energy and exchange energy.
Our picture is that local triplets are moving around with
forming a high-spin state. U, is an increasing function of
n, and may be infinite at half-filling n, =1. At the half-

filling case, the paramagnetic state is also the ground
state for the ferromagnetic J& 0 because this phase is
connected with the Haldane state' ' and it may be
scaled to the Haldane state for the half-filled band even

for large U. However, for less than half-filling, the
ground state is quite a difi'erent state with gapless excita-
tions. This issue may have some close relation with the
one-dimensional spin-1 chain with hole doping. In Fig. 3

we show the phase diagrams which we expect from nu-

merical exact diagonalizations. U, is dependent on the
magnitude of J. For large ~J~ the paramagnetic state is
unstable for small perturbations of Coulomb interactions
as shown in Fig. 4.

Now we investigate the spin correlations of localized
spina. In Fig. 5, the typical behavior of the nearest-
neighbor spin correlation is shown as a function of U,
where X=6 and J=0.5. This figure indicates that the an-
tiferromagnetic correlations really change into the fer-
romagnetic ones with the increase of U. We observe a
sharp increase due to the level crossing at U„which indi-

cates that the ferromagnetic transition is a first-order
transition. At moderate values of U localized spins

Fe
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FIG. 3. Schematic phase diagram in the U-n, plane. The
boundary curve meets the line U=O at finite n, .

behave as though they are independent spins with very
small correlations. This may be what we call the dense
Kondo state. For large U the spins of localized electrons
are set in the almost same direction.

In the following we consider a theoretical design of fer-
romagnets in the conduction-rich case which means the
model that the number of localized spins is less than the
number of lattice sites. In fact we can show the following
statement.

I.et us consider the one-dimensional s-d model with
two localized spins. We set the open boundary condition
for N, & N and we assume that the Coulomb repulsion be-
tween the conduction electrons is very large. Then
among the ground states there is one where localized
spins show a parallel correlation 0 & ( Si S2) &

—,'.
This conclusion is independent of the distance of two

spins and is also valid for the antiperiodic boundary con-
dition if N, and N are even numbers. A proof is due to
the generalized Perron-Frobenius theorem. ' We can
show that among the ground states there is one state with
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FIG. 2. U, vs n, for the ferromagnetic J (J=—O.S) eath the
open boundary condition. Numbers in the figure indicate
N, /X. The cross indicates the extrapolated value at n, =

~ in

the limit X~~.
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FIG. 4. U as a function of i Ji for N=4 and N, =2 with the

open boundary condition. Solid circles axe for the antifexro-
magnetic interactions and open circles are for the ferromagnetic
ones.
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0.2 TABLE II. (S, S2) for the two-impurity Kondo model. R
denotes the distance between two spins and bc denotes the
boundary condition of the conduction electron chain.
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FIG. 5. Nearest-neighbor spin correlation (S; S;+,) vs U for

N=6 and N, =4 with the antiperiodic boundary condition.

a non-negative eigenvector which shows ferromagnetism.
Since in this case the Hamiltonian is not necessarily con-
nected, the uniqueness is not proved. This proposition
indicates a possibility of the ferromagnetic interaction of
spina induced by Coulomb interactions in the diluted
Kondo lattice. Let us point out that an interaction be-
tween the spins separated by a distance R =2na can be
ferromagnetic even for the noninteracting case U=o,
where a is the lattice constant and n is an integer. A nu-

merical evidence is shown in Table II where the spin
correlation functions are evaluated for the two-impurity
Kondo model. For the half-filled conduction band, spin
correlations are oscillating functions of the distance R be-
tween two spins. For less than half-filling exact diagonal-

ization calculations clearly indicate the appearance of the
high-spin state for the Kondo systems with dilutions of
localized spins.

In this paper we have shown rigorously that the
ground state of the one-dimensional Kondo lattice with
large Coulomb repulsion is ferromagnetic and has the to-
tal spin S =(N N, )/2—for J)0 (antiferromagnetic) and
or S =(N+N, )/2 for J&0 (ferromagnetic exchange in-

teraction) where N, &N. Exact diagonalization calcula-
tions predict the appearance of the ferromagnetic phase
for a wide range of Coulomb strength in the U —n,
plane. Our results indicate a singlet ground state for the
half-filled case (N, =N) for all the values of U. We have
also shown the possibility of ferromagnets for diluted
Kondo-lattice systems. In particular, the spins of local-
ized electrons separated by a distance of 2na are easily set
in the same direction for the half-filled conduction band
(where n is an integer). Our results should be kept in
mind as rules of the theoretical or experimental design of
ferromagnets.
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