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Phonons and superconductivity in YBa2Cu3Q7
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We report the results of a calculation of the electron-phonon interaction in YBa2Cu307 based on the
nonorthogonal tight-binding approach to lattice dynamics. A self-consistent local-density electronic-
structure calculation was combined with a shell-model description of the phonon spectrum. The result-
ing interaction matrix was used to calculate the superconducting transition temperature from a solution
of the Eliashberg equations in which the full k dependence was retained. The transition temperature was
found to be about 90 K, quite close to experiment. The oxygen isotope efFect was investigated. We also
calculated the k-dependent gap function at T=O. The gap shows significant variation between difFerent
sheets of the Fermi surface as well as dependence on k on the individual sheets, but is nodeless. The
quantity 2b, /k& T, varies from 6.0 to 2.5 on the Fermi surface.

I. Bv ncODUCTION

The role of the electron-phonon (e-ph) interaction in
high-temperature cuprate superconductors is not under-
stood; it has been, and still is, a subject of controversy.
Basic observations made quite early in the development
of this subject led many to conclude that phonons could
not be very important, especially in YBa2Cu307 and oth-
er members of the cuprate family with T, 's between 80
and 150 K. Some reasons for this opinion will be dis-
cussed briefly below. As a result, there has been an inten-
sive search for other interactions of electronic origin. Al-
though there are numerous proposals of alternatives,
there is so far no general agreement as to the origin of
high T, . In this paper, we report the results of a calcula-
tion of T, in YBa2Cu307 and of the gap function at T =0
using a realistic band structure and phonon spectrum, as-
suming that it is the electron-phonon interaction which
produces superconductivity in this material. In contrast
to a previous calculation, we find that T, agrees reason-
ably well with experiment. At T=0, we find an aniso-
tropic (but nod eless) energy gap with significantly
difFerent values on difFerent sheets of the Fermi surface.
A brief outline of these findings was reported previously. '

The present paper is intended to give a more complete ac-
count of our calculation.

The belief that phonons could not be responsible for
the high-T, superconductivity of the cuprates is based on
many considerations: all plausible; none really con-
clusive. In the first place, the magnitude of T, itself is
much larger than previous experience with more conven-
tional materials, where the superconductivity is known to
result from the electron-phonon interactions, had sug-
gested might be achievable. However, the Eliashberg
theory, which is the basis of the calculation of T„does
not imply a fundamental limit on T„provided that the
interaction (whose strength is conventionally measured
by a parameter A,) is strong enough.

Could the electron-phonon interaction be strong
enough to yield a T, around 90 K? According to Car-

botte, if electrons can interact strongly with phonons of
an optimum frequency, then T, ——,', to is reasonable. The
phonon spectrum of YBa2Cu&07 extends up to about 80
meV, so that it is quite reasonable to consider supercon-
ductivity based on the electron-phonon interactions.
However, there are important and still unresolved
difficulties with this view. One is associated with nearly
linear temperature dependence of the electrical resistivity
in the normal state, which is asserted to be incompatible
with strong electron coupling to high-energy phonons.
The other is the smallness of the observed oxygen isotope
effect. Although a small isotope effect may be consistent
with an electron-phonon interaction, it has been argued
that the combination of high T, and sinall isotope effect
rules out the electron-phonon interaction as the sole
source of pairing. Here also, the argument is not con-
clusive: a small isotope effect is possible if anharmonic
efFects are important.

In contrast to these arguments, there are observations
which point toward strong electron-phonon coupling.
For example, temperature-dependent studies of the chan-
neling of energetic ions in single crystals of YBa2Cu307
(YBCO) reveal an abrupt change in the displacements in
the a-b plane of Cu(1), Cu(2), and O(4) atoms on passing
through T, . Raman scattering measurements have
shown that some phonons in YBCO soften as the temper-
ature is decreased through T, . Observations of structure
in the tunneling conductance of YBCO can be interpreted
as indicating strong electron-phonon coupling. '

We now turn to a consideration of some previous cal-
culations of the electron-phonon interaction in
YBa2Cu307. Rather early in the development of this sub-
ject, the interaction was studied by Weber and
Mattheiss" based on a tight-binding fit to a previously
calculated band structure and the nonorthogonal tight-
binding (NTB) model of lattice dynamics. ' These au-
thors concluded that the electron-phonon coupling is
small in the pdcr band close to the Fermi energy. They
did not give a specific calculated value of T„but present-
ed a range of possible values ranging from 3 up to 30 K

0163-1829/94/50(13)/9511(11)/$06.00 50 9511 1994 The American Physical Society



9512 G. L. ZHAO AND J. CALLA%'AY

depending on specific procedures and allowances for pos-
sible omissions in their computations.

However, the band structure of YBCO shown in Ref.
12 differs significantly from the results of more recent in-
vestigations. ' Also, the phonon density of states shown
in Ref. 11 seems to have significantly less weight at high
frequencies than is found in other calculations. ' More
recently, two other groups have studied the electron-
phonon interaction in YBCO using the frozen-phonon
method and density-functional theory, ' ' and have
found relatively strong interactions for Raman-active
phonons. However, the frozen-phonon method can be
used only at symmetry points of the zone, and does not
give the complete phonon spectrum.

We have chosen to concentrate on YBa2Cu307 in this
work because optimum superconductivity occurs at or
close to the stoichiometric composition. It is a well
characterized material, and the crystal structure is
manageable from the point of view of electronic-structure
computations. We do not wish to consider the problems
associated with the disordered potentials of randomly
substituted ions, which arise in the case of doped
La2Cu04. Most of the materials with T, 's appreciably
higher than that of YBa2Cu30~ are also quite
significantly more complicated from a computational
point of view. We assume that YBCO is a conventional
but complicated metal. It is conventional in that elec-
trons form a Fermi liquid. It is complicated in that the
complex band structure resulting from local-density band
calculations must be seriously considered.

We have calculated T, in YBazCu307 using the
strong-coupling Eliashberg theory. In contrast to much
previous work, we make full allowance for anisotropy. In
addition, we have calculated the complex gap functions
on difFerent sheets of the Fermi surface at T =0. These
calculations are also performed using the anisotropic
Eliashberg equations (but with real frequencies). We find

a high T, consistent with experiment and a highly aniso-

tropic but nodeless gap function.
Our calculations are based on a self-consistent local-

density electronic-structure calculation which was per-
l

formed using a linear combination of atomic orbitals
(LCAO) method. ' This procedure has been tested by
ourselves and others and found to give results of compa-
rable accuracy to those obtained by other first-principles
methods. ' ' In particular, the YBCO band structure
agrees satisfactorily with the results of other recent calcu-
lations, ' and with measurements of the Fermi surface by
angle-resolved photoemission. We also require both
phonon frequencies and phonon eigenvectors throughout
the Brillouin zone. In order that these should be as close
to experiment as practical, we made a shell-model calcu-
lation employing parameters determined by Humlicek
et al. ' through a fit to the observed Raman spectra.

The remainder of this paper is organized as follows.
The next section (II) lists the basic equations, which we

solve to find T„and also the gap function at T =0. Our
calculational procedures are summarized in Sec. III. The
results for T, are presented in Sec. IV, which also con-

tains some discussion of the oxygen isotope effect. Our
results for the gap function are contained in Sec. V. The
paper ends with concluding remarks in Sec. VI.

II. DESCRIPTION OF SUPERCGNDUCTIVITV

We followed the standard procedures of the strong-
coupling (Eliashberg) theory in calculating T, and the

gap function at T =0. However, we think that our work

may be an improvement over what has been done previ-
ously in that we take full account of anisotropy, which
means that the complete wave-vector dependence of the
coupling is included.

The transition temperature T, was calculated using the
anisotropic Eliashberg equations with imaginary frequen-
cies as given by Allen and Mitrovic. Local-density calcu-
lations show that the Fermi surface has sheets in four
bands. Therefore we consider both the gap function b,

and the renormalization function Z to have components
in these bands, and they are labeled by a band index. The
equations which determine the functions b(k, iso„,},and

the renormalization function Z (k, ice„}are

~~n'~ ~~e $(g )
(k, iso„)Z (k, ice„)=nT g ~

~

tA(mk, m'k', n n') —p—'(co, )Ib (k', i'„),
N 0 )ci)„

and

Z (kiev„)

In these equations, the electron states of energies E z and

E .j; are on the Fermi surface; N (0) is the density of
states per spin at the Fermi energy;

in which

A(mk, m'k', v)=+2&{0)~g „

Xco„(k—k')/[co +co„(k—k')] .

X IA.(mk, m'k';n —n')Js„s„. , (2)

s„=sgn(co„)=(n + ,' )//n+ —,
' —/;

p'= U, N(0) is the parameter of the pseudo-Coulomb in-

teraction; co„=(2n +1)m.T; and co„=2mvT The.
electron-phonon coupling is described by the quantities

Rmt, m't', X.

The quantities are calculated according to the
nonorthogonal tight-binding theory of lattice dynamics. '
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g k .k.z =g [A'/2M„coz(k —k')]'~ g"k,k, sz (k —k'),

glk, l'k' X ~ '(lk IP]m i )[y.(P&m & Pzmz lk')'5p .
p]m], p2m2

(4)

in which H is a matrix element of the Hamiltonian on the
localized basis,

H(Pimps, Pzmz, R )

=Jy' (r —
d& R—)Hy (r —

d& )d r . (7)

(P)m ) Pzm2 lk)cp,.
+ w„(P, m P zm z~k,

k' ) ]A (/'k' ~P zm z) . (5)

The derivative refers to the ath rectangular coordinate of
the relative position vector of the two atoms,

X=R +dp —dp,

—sS(P,m»Pzmz, R }], (6)

I

In these equations, co&(k) and s& (k) are the frequency
and eigenvector components for a phonon of wave vector
(k} and branch A„M„ is the mass of the irth atom, and

A(1k~pm ) is a component of the wave function for an
electron in band l of wave vector k. The notation pm
refers to the mth camponent orbital of the basis (atomic)
wave function on site p[(p& ]. The y's are given by

y (P,m„Pzmz~k)

~ [H(P]m],Pzmz, R )

and d& is the position af atom p relative to the local ori-

gin. The similar quantity S is an element af the overlap
matrix [put H = 1 in (7)] and

s =
—,
' [E((k)+Er(k') ] .

Equation (5) has been written in a form in which the
quantities y of Eq. (6) contain only the change in the
matrix elements of the Hamiltanian due to displacement
of the arbital basis by a phonon. The third term in Eq.
(5), w, contains the change in the atomic potentials pro-
duced by displacements of the iona:

w„.(P,mi Pzmzlk, k')=pe x e "fp' (r—1&
—R )[v, )'(r—d„—R„)]p (r—

1& )d~r .

This term is implied in Ref. 13, but is not explicitly ex-
hibited there.

In principle, there is no reason, other than computa-
tional complexity, why all these quantities should nat be
computed from first principles. This requires, for exam-
ple, explicit differentiation of matrix elements with
respect ta atomic positions. In addition, evaluation of
Eq. (8) would perhaps be even more complex than is ap-
parent at first sight from the formula in that the gradient
of the potential implicitly includes the effects of a self-
consistent change in the electron distribution. In prac-
tice (and this applies to our calculation), Eq. (5) is not
evaluated exactly. We list the approximations employed
in our work below. We believe them ta be reasonably
standard and conventional in that they are included in
NTB calculations of which we are aware.

(1} The potential terms in w„which involve three
centers are ignored.

(2) The quantities y are found numerically in a rather
indirect manner as follows. An orthogonal two-center
tight-binding fit (Slater-Koster type ) is made to the cal-
culated band structure. The lattice parameters are then
changed (specifics are given in the next section); the band
calculation and the tight-binding pararoetrization are re-
peated. The differences of the parameters from the
tight-binding fits are used to determine the derivatives of

I

I

the Hamiltonian matrix elements. This procedure en-
ables one to include the two terms in Eq. (8) that occur in
a two-center approximation. Since orthogonal tight-
binding fits are used, the gradients of the overlap matrix
in Eq. (6) are ignored. In our wark, we have evaluated
Eq. (5} using the wave functions [quantities A(lk~p )]
from the first-principles calculation, since this is what is
required by the argument leading to Eq. (5). Some au-
thors use the wave functions resulting from the Slater-
Koster fit.

In view of the approximations involved in the use of
the tight-binding fits, high accuracy cannot be claimed
for the electron-phonan interactian parameters. Error in
the range of 10-25 Io might be expected. However,
there is considerable evidence that the procedure works
rather well far many transition-metal campounds includ-
ing such superconductors as NbzSn. '

Equations (1) and (2}are not the most general farms of
the Eliashberg equations because the pairing electron-
phonon interaction has been restricted to states on the
Fermi surface. We consider below in Sec. IV, in a very
rough way, some possible consequences of the removal of
this restriction.

The averaged quantities azF(co) and A, which are fre-
quently considered are related to the coupling constants
and frequencies by

0 dSka'F(co)=, g f J g~g .„. ~~'5(co —coz(k' —k)) g f
and
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A, =2f a F(co)dco/co . (10)

In order to determine the gap function 5 at T=0, we use the anisotropic Eliashberg equations for real frequencies as
given by Carbotte

(k, co)Z (k, co)=f 'dco'g f Re.0 dS&. b,~ (k', co')

~ (2n) &i E i' +co' —b. (k', co')

X V gmg~g g V COg k E+ CO, CO, V U~
0

and

[1—Z (k, co)]co=f dco' 3g f Re i

+co' —b,i .(k' co')

X v g g~.~ g v —
cog k' —k E co, a)', v (12)

in which

K+(co,co', v) = 1 1++, + . (13)
CO +CO+ V+ l0 CO N+ V l0

III. COMPUTATIONAL PROCEDURES
AND PARAMETERS

A. Electronic structure

The first step was the calculation of the electronic
structure (energy bands and wave functions) by the self-
consistent LCAO method mentioned in the Introduction.
The lattice parameters and atomic coordinates are those
determined by Beno et al. , and (after conversion to
atomic units) are listed in Table I.

Atomic wave functions are used as basis functions in
the solid-state calculation. The atomic functions were
generated by a separate, self-consistent calculation em-

ploying an even-tempered basis of Gaussian orbitals. The
basis set is specified by listing the number of terms, and
the smallest and largest exponents for each element. This

TABLE I. Lattice parameters (in bohrs} and atomic coordi-
nates. a =7.2446, b =7.3442, c =22.0733.

I

information is presented in Table II.
The procedure we employ for the calculation of the

electron-phonon interaction requires, in one step, a
$1ater-Koster tight-binding fit to the calculated band
structure. In order to keep the number of parameters
manageable, the basis set used in the band calculation
was kept at a minimum size of 47. The atomic wave
functions included were Y(5s,4d), Ba(6s), Cu(4s, 3d), and
O(2p). The atomic states of lower energy were treated as
core states.

A grid of 72 points in the irreducible portion (—,th) of
the Brillouin zone (an odd 6X6X2 mesh with unit
weight for each point) was used in the self-consistent cal-
culation. The total energy changed by only 0.004 Ry/cell
when we increased the total number of k points con-
sidered from 18 to 72. The resulting band structure is
shown in Fig. 1 of Ref. 1, in which the origin of the ener-

gy scale has been shifted to the Fermi energy. This band
structure agrees well with other recent calculations. '

The first-principles band structure was then fitted by
an orthogonal $later-Koster tight-binding procedure.
The fit was based on energies at 18 points in the zone of
relatively high symmetry. The band structure of
YBa2Cu307 does not show degeneracies at any k points,
which removes one of the features usually employed to
determine symmetries of levels. However, the wave func-
tions still have some useful symmetries at some k points

Ba

Cu(1) chain
Cu(2) plane

O(1) chain

0(2) plane

O(3} plane

0(4} apical

0.1843
—0.1843

0
0.3S56

—0.3556
0
0.3773

—0.3773
0.3789

—0.3789
0.1S84

—0.1584

Atom

Y
Ba
Cu
0

N,

17
19
17
18

Np

17
19
17
18

amin

0.318 186
0.173904
0.357 135
0.471 188

amax

0.22497 x 10'
0.36198X 10'
0.140 54x10'
0. 10X 10

TABLE II. Ciaussian basis set atomic functions: N„N~, Nd

are the number of terms of s,p, d type, a;„the smallest orbital
exponent, a the largest orbital exponent. The d functions
have the same smallest exponent and same ratio of successive
exponents as for s and p functions, but the maximum exponent
is smaller.
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of high symmetry. Group theory was used to determine
these symmetries so that irreducible representations
could be fitted separately. In the first stage of the fitting,
all bands were included and an average (rms) error of
about 12 meV was attained. Then the energy bands
around Ef were assigned higher weights since these are
the most important for the electron-phonon interaction.
The average error was reduced to 9 ineV, while the fitting
errors for the bands close to Ef are only about 5 meV.

The distances between the pairs of neighbors that were
included in the tight-binding parametrization are given in
Table III. The parameters as determined from the fit are
given in Tables IV(a), IV(b), IV(c), and IV(d). There are a
total of 114 tight-binding parameters. In Table IV, TB
(Ry) is the tight-binding parameter; DTB=dt(r)ldr is
the radial derivative of the tight-binding parameter t(r)
in Ry/a. u.; CF means the crystal-field parameter. The
gradients of the on-site parameters were chosen as zero.
We believe these parameters give a good description of
the electronic structure of YBCO, but there are still some
residual errors. We used the tight-binding fit only to ex-
tract derivatives of the Hamiltonian with respect to
atomic displacements.

B. Lattice vibrations

Although the theory of lattice dynamics and the
electron-phonon interaction employed in this paper'
yields predictions for the phonon spectrum, we con-
sidered it to be preferable to use phonon frequencies and
eigenvectors that might be closer to experiment. We ob-

tained these quantities from a shell-model calculation us-
ing parameters determined by Humlicek et a/. from a
fit to the observed Raman and infrared spectra. The cal-
cu1ated frequencies for the Raman-active phonons agree
well with experimental measurements as shown in Fig. 10
of Ref. 25. The phonon dispersion curves are shown in
Figs. 1(a), 1(b), and 1(c), where they are compared with
results of neutron scattering measurements reported by
Reichardt et a/. The agreenient seems to be reasonably
good. We have not included any renormalization of the
phonon frequencies due to electron-phonon interactions
not included in the shell model. Since we find strong in-
teractions with phonons of about 65 meV energy, it is
possible that some contribution of this type should be in-
cluded, particularly for large q.

C. Electron-phonon interaction

The electron-phonon interaction was calculated ac-
cording to the procedures described in Ref. 13. Accord-
ing to Eqs. (5) and (6), we require gradients of matrix ele-
ments of the Hamiltonian with respect to atomic dis-
placements. In order to obtain these, the first-principles
band calculation was repeated with the lattice parameters
reduced by 2%. The tight-binding fit was also repeated.
The dependence on separation distance of the tight-
binding parameters involving orbitals on different sites
was assumed to be of the form e, where d is the dis-
tance between sites. The determination of derivatives of
the Hamiltonian is only accurate to about 10-25 %. Ad-
ditional ionic contributions to the electron-phonon in-

TABLE III. The pair distances in orthorhombic YBa2Cu307 (in a.u.).

Atom/Atom Ba
First neighbors

Cu(1) Cu(2) O(1) O(2) O(4}

Y
Ba
Cu(1)
CU(2)

O(1)
O(2)
Oo)
O(4)

6.0574

4.5629
4.4938

6.5637
6.3899
5.4404
5.6244
5.6125
5.1827

6.5637
7.2246

3.6721

3.4964

6.0574
6.3899

6.3748

3.6440
3.7080
4.3529

5.4404
3.6721

7.2246

5.0704

4.5629
5.6244

4.4938
5.6125

5.4168
5.1512
6.0329

5.1512
5.3462
6.0970

3.6440 3.7080

5.1827
3.4964
4.3529
5.0704
6.0329
6.0970
6.9928

Atom/Atom Cu(l) Cu(2)
Second neighbors

O(l) O(2) O(3) O(4)

Cu(1)
Cu(2)
O(1)
O(2)
O(3)
O(4)

7.3442
7.2246

6.9144
6.9159

7.3442
7.2246
7.4494

7.4494
7.2246

6.9144 6.9159

7.2246

Atom/Atom Cu(2) O(2)
Third neighbors

O(3) O(4)

Cu(2)
O(2)
O(3)
O(4)

7.3442
7.3442

7.3442
7.3442
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TABLE IV. The tight-binding parameters for orthorhombic YBa&Cu30& (in Ry). Here CF means
the crystal-field parameter; TB is the tight-binding parameter in Ry; DTB is the radial derivative of TB
in Ry/a. u.

Atom

Y
Ba
CU(1)
Cu(2)
O(1)
O(2)
O(3)
O(4)

Pair

0.7122
0.3948
0.3221
0.4173

TB (Ry)

(a) On-site parameters
E„

0.2233

—0.0595
—0.0470
—0.0626
—0.0771

—0.4183
—0.3921

(b) First neighbors
DTB (Ry/a. u.) Pair

CF {ddo}

0.0320

0.0465
0.0108

TB (Ry)

CF {sdo.}

—0.0337

0.0619
0.0281

DTB (Ry/a. u.)

Y-Cu(2)

Y-O(2)

Y-O(3)

Ba-Cu(1)

Ba-Cu(2)

Ba-O(1)
Ba-O(2)
Ba-O(3)
Ba-O(4)
CU(1)-CQ(1)

Cu(1)-O(1)

Cu(1)-O(4)

SSCT

Sda
dd0
dd 7T

dd5
sp 0'

dp cT

dp 7T

sp 0'

dp0
dp 77

sscr

Sd CT

$$ 0'

Sda
Sp cT

sp 0'

sp 0'

sp0
ssg
sd CT

dd 0'

dd 7T

dd5
Sp cT

dp0
dp 7T

sp 0'

dp 0'

dpi'

0.0852
0.0026
0.0599
0.0101

—0.0161
0.0472
0.1669

—0.0496
0.0433
0.1675

—0.0561
—0.0055
—0.0806

0.0634
—0.0622
—0.0965
—0.0573
—0.0410
—0.1002
—0.0286

0.0132
0.0094

—0.0107
0.0062
0.2620

—0.0894
—0.0073

0.2153
—0.2090

0.0767

0.127
—0.028
—0.209
—0.047

0.053
0.236

—0.045
0.139
0.314

—0.124
0.138
0.034
0.036
0.039
0.083
0.261
0.057
0.085
0.114
0.015
0.102

—0.012
0.089
0.000

—0.167
0.071
0.125

—0.391
0.105
0.386

Cu(2)-Cu(2)

Cu(2)-O(2)

Cu(2)-O(3)

CU(1)-O(4)

O(1)-o(1)

O{1)-O(4)

O(2)-O(2)

O(2)-O(3)

O(2)-O(4)

O(3)-o(3)

O(3)-O(4)

O(4)-O(4)

$$ CT

sd 0'

dd CT

ddt
dd5
sp 0'

dp 0'

dp 7T

spcr

dp0
dp 77

spcr

dp 0'

dp 7T

PP~
pp&
PP&
PP&
PP
ppK
PP&
pp 7T

PP&
pp 'F

pp&

pp 7T

PP&
pp 7T

PP&
pp&

0.0244
—0.0246
—0.0057

0.0059
0.0072
0.2006

—0.1188
0.0616
0.2002

—0.1107
0.0544
0.1329

—0.0796
0.0192

—0.0386
—0.0138
—0.0027

0.0054
0.0135

—0.0047
0.0189

—0.0030
—0.0082
—0.0081
—0.0139

0.0085
—0.0004
—0.0065
—0.0158
—0.0377

0.015
0.089
0.053
0.029
0.064

—0.310
0.113
0.190

—0.188
0.154
0.264

—0.046
—0.222

0.027
0.074

—0.008
0.026

—0.032
0.088

—0.004
0.023

—0.016
—0.018
—0.016

0.061
—0.022
—0.002
—0.001

0.041
0.058

Pair TB (Ry)
(c) Second neighbors

DTB (Ry/a. u.) Pair TB (Ry) DTB (Ry/a. u. )

CU(1)-CU(1)

Cu(2)-Cu(2)

CU(2)-O(2)

$$0
sd c7

dd C7

ddt
dd5
ss cT

sl (7

dd0
dd 7T

ddt
SP CT

dp c7

dp&

—0.0430
—0.0325

0.0061
—0.0031

0.0033
—0.0061
—0.0092

0.0003
0.0046
0.0020

—0.0222
0.0031
0.0150

—0.212
—0.111

0.031
0.029

—0.041
—0.031

0.024
0.002

—0.038
—0.011

0.083
—0.009
—0.018

O(l)-O(1)

O(2)-O{2)

O(2)-O(3)

O(3)-O(3)

O(4)-O(4)

CU(2)-CU(3)

pp&
PP 'lT

PP&
pp s'

PP&
ppK
pp&
pp&
pp
pp 77

SPO

dp cT

dp 7T

0.0009
—0.0039
—0.0203

0.0020
0.0126

—0.0124
—0.0072
—0.0056
—0.0081

0.0011
—0.0066

0.0396
0.0238

0.005
—0.019

0.041
0.010

—0.021
0.021

—0.009
—0.013

0.016
—0.003
—0.032
—0.089

0.043
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TABLE IV. (Continued)

Pair
(d) Third neighbors

TB (Ry) DTB (Ry/a. u.) Pair TS (Ry) DTS (Ry/a. u.)

Cu(2)-Cu(2) sscr
sd cT

dd 0'

ddt
dd6

O(2)-O(2) ppo.

pp 7T

—0.0126
—0.0113

0.0057
—0.0010
—0.0031

0.0043
—0.0032

—0.122
0.003

—0.034
0.009
0.005
0.015

—0.028

O(3)-O(3)

O(4)-O(4)

PP
PP~
PP&
PP~

—0.0053
—0.0011
—0.0099
—0.0004

0.020
0.010
0.013
0.002

teraction were not included. From our calculation,
it is found that the narrow-band structures around the
Fermi energy give the most important contribution to the
e-ph interaction in YBCO.

There is an ambiguity about orthonormality which
arises in the sequence of approximations involved in the
evaluation of Eq. (5). The wave functions A in the first-

principles calculation obey (A ~S~A )=I where I is a
unit matrix and S is the overlap matrix. On the other
hand, in a two-center orthogonal tight-binding approach,
the wave functions (which we denote by U) satisfy
( U~ U ) =I. We have checked that this difference is not a
significant one for the narrow-band electronic states near
the Fermi energy by calculating ( A

~
A ). We found that

the diagonal elements of (A ~A ) were in the range
1.02-1.04 and that the off-diagonal elements were of the
order 10 . However, this does not imply that the same
results for the interaction constants g will be obtained if
U is used in place of A in Eq. (5). Ideally, U and A

would be related by the transformation U=S'~ A. This
is not the case, however, in the actual calculation. Al-
though the energies, particularly for states near Ef, from
the tight-binding fit are matched as closely as possible to
the energies from the first-principles calculation, no de-
tailed attempt is made to relate the wave functions, ex-
cept that symmetry types (irreducible representations} are
required to correspond. The differences between the
wave functions are not simply described by an overall
normalization factor. Since the overall normalization
problem is not serious near Ef, we think that use of A in

Eq. (5}is reasonable, even when the gradients [Eq. (6)] are
obtained from a fit, rather than a full calculation. We
emphasize that we employ the fit only in the evaluation of
Eq. (6).

25

(b) (c)

N

I '0 ~

I ~ i

isotropic gap equations. The electron-phonon interaction
does not break the full crystal symmetry of the gap func-
tion (this point was checked carefully). Hence it is possi-
ble to compute the gap function only within the irreduc-
ible Brillouin zone, while scattering processes over the
entire zone were considered.

T, was determined from Eqs. (1) and (2}by matrix di-

agonalization as discussed by Allen and Mitrovic. ~ The
maximum value of n' in the summations of Eqs. {1)and
(2) was taken as n'=N =20 The .results do not change
appreciably for N ) 15, indicating convergence.

The gap equations for T=0, Eqs. (11) and (12), were
considered in a four-dimensional form and solved by
iteration using the same k-point mesh as in the calcula-
tion of T, . A cutoff frequency co, of 800 meV was used.
The frequency integrations were performed on a grid of
1500 evenly spaced points (step size 0.53 meV). The
small positive number 0+ in the expression {11)for E+
was chosen to be —,'th of the step size (0.106 meV). As a
convergence criterion, we required that the average
difFerence of two consecutive solutions should be less
than 0.13 meV. The solutions difFered by about 0.2 meV
when the number of integration steps was increased from
1000 to 1500. We believe this indicates satisfactory con-

D. Solution of the Eliashberg equations

The evaluation of the k-dependent quantities employed
twin grids: 845 k points on an even mesh and 576 k
points on an odd mesh. Both numbers refer to the entire
Brillouin zone. Each k point on the odd mesh is the
center of a little cube, and is surrounded by eight k points
of the even mesh on the corners. The matrix elements
were calculated for the k points of the odd mesh, while
the contribution to the density of states from the little
cube was found based-on the even-mesh k points by the
tetrahedral method.

Symmetry was used to simplify the solution of the an-

10c0
C0

cL 5 0~ r
I ~~ ~

r [(oo] x r [o(o] v r [oot] z

FIG. 1. Calculated phonon dispersion curves using a shell
model for orthorhombic YBa2Cu307 along I -X (a), I - Y (b), and
I -Z (c) directions. The dots are experimental results of Ref. 29.



951S G. L. ZHAO AND J. CALLAWAY 50

vergence and stability in regard to the energy grid.
It was possible to test portions of the computer pro-

gram for Nb. A separate band calculation was made to
generate wave functions, but the tight-binding parame-
ters were obtained from the hterature. ' A force-constant
model was used for the phonons. Good agreement was
found in comparison with published results. '

IV. RESULTS: T,

The calculated value of A, was about 1.95 and the densi-
ty of states was 2.45 states/eV cell spin. Reference 17 re-
ports a calculated A, of 1.7 based on a much smaller sam-
ple of the phonon spectrum. We think the agreement is
reasonable. Our calculated T, is about 90.5 K for
p'=0. 1 and 94 K for p'=0. The excellent agreement
between the calculation and observation is both surpris-
ing and pleasing, but must be regarded as somewhat for-
tuitous since the calculation of derivatives of the Hamil-
tonian matrix probably is accurate only within 10-25 %.
However, it is evident that the electron-phonon interac-
tion can lead to a high T, in this material, contrary to the
conclusion of Ref. 11. We note that the authors of Ref.
29 interpreted some features of their measurements of the
phonon dispersion curves in YBCO as indicating the
presence of a strong electron interaction with high-
frequency phonons. It remains, however, to be deter-
mined whether a A, of the size we find here is consistent
with the transport properties in the normal state.

We believe our results indicate the importance of per-
forming a complete calculation treating the electronic
structure and the phonon spectrum in detail. If one uses
instead of the k-dependent equations, Eqs. (1) and (2), the
averaged, energy-dependent isotropic Eliashberg equa-
tions, then T, is found to be about 83 K for p' =0.0 and
63 K for p'=0. 1. The values are significantly inferior.
We have discussed above, in Sec. III C, the possible use of
wave functions from the tight-binding fit (U) rather than
those from the first-principles calculation in the calcula-
tion electron-phonon interaction according to Eq. (5). If
this substitution is made, we find T, =67 K for p' =0. If,
in addition, the energy bands from the fit are used in the
solution of the Eliashberg equations (1) and (2), T, is fur-

ther reduced to about 40 K, much closer to the results of
Ref. 11. Residual inaccuracies in the tight-binding fit are
probably responsible for the additional difference. The
density of states at E& calculated from the fit is only 0.64
of that obtained from the first-principles calculation.

The phonon density of states and the isotropic cou-
pling function aiF(co) are shown in Fig. 2 of Ref. 1. It
wi11 be seen that we have strong coupling with optical
phonons in the energy range 60—73 meV. In this respect,
our result contrasts strongly with that of Ref. 11. This
energy range strongly involves oxygen motions, in partic-
ular, the apical and planar oxygens [O(2),O(3),O(4)]. Our
value of T, is roughly consistent with the observation of
Carbotte, mentioned in the Introduction, that under
conditions of strong coupling to phonons in a narrow
range, T, could be as much as —,', of a typical phonon fre-

quency mo. The mo corresponding in this way to T, =90
K is 58 meV.

We have made several calculations to determine how
sensitive is the calculated T, to the position of the Fermi
energy, and therefore to the detailed band structure of
the electronic states. If E& is lowered by 0.03 eV, T,
changes only by a relatively small amount (T, —85 K).
However, substantial further lowering puts E& in the Hat-

band complex. Both the density of states and T, rise
markedly. (We do not imply that the density of states
determines T, directly. ) Reducing E/ by 0.09 eV in-
creases the density of states to 8.0 states/eV cell spin, and
T, rises to about 165 K. A similar increase from T, =67
K to T, =110 K occurs if the tight-binding wave func-
tions U are used and E& is lowered. On the other hand, if
E& is raised, the fiatbands are occupied, and the density
of states and T, both decrease. For example, if E& is
raised by 0.02 eV, the density of states is reduced to 1.6
states/eVcellspin, and T, is about 50 K. It should be
noted that this reduction of T, as E& increases is con-
sistent with the observed behavior of T, in YBCO as the
oxygen content is reduced. These results suggest that the
narrow bands around the Fermi energy make a very im-

portant contribution to the e-ph interaction. The super-
conductivity of YBCO cannot be understood if the nar-
row bands near E& are neglected.

A major objection to the acceptance of the electron-
phonon interaction as the source of the observed high T,s
in YBCO is the smallness of the isotope effect, mentioned
above in the Introduction. This is a serious problem for
us because this calculation requires a rather strong in-
teraction between the electrons and the high-frequency
oxygen phonons. We investigated the isotope effect by
repeating the calculation of T, keeping all parameters the
same except for a change in the mass of some (or all) oxy-
gen from 16 to 18. When the masses of the chain [O(1)]
and plane oxygens [O(2) and O(3)] were changed from ' 0
to 'sO, T, remained the same. However, changing the
mass of the apical oxygens [O(4}] produced a shift in T,
by about —3 K.

A small isotope shift in T„—0.18+0.02 K, is ob-

served experimentally when all oxygen sites are changed
from ' 0 to ' O. A recent experiment measured the oxy-
gen isotope shift when specific types of sites are changed
from '60 to ' O. It was found that, if the plane oxygens
are changed from ' 0 to ' 0, a small increase in T, (nega-
tive isotope effect) results, in contrast to the small de-
crease observed when all sites are equally substituted.
Our results for plane substitution are at least partly con-
sistent with this experiment, but the change resulting
from substituting the apical oxygen is clearly too large.
The e8'ect of the inclusion of other possible interactions
on T, and on the isotope effect remains to be investigat-
ed.

Also, we specu1ate that another effect may need to be
considered. The electronic states at k and k' in Eqs. (1)
and (2}are restricted to the Fermi surface. This is a good
approximation for simple metals since the conduction
band is much wider than any phonon energy. In YBCO,
however, the optical phonon energies (up to 80 meV) are
not small, compared to the energy scale on which the
band structure varies significantly. The narrow bands
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close to Ef can make a very significant contribution to
the interaction. Transitions are possible between states
which are within a phonon energy of the Fermi energy.
We can simulate this roughly by replacing the 5 function
in Eqs. (1) and (2) by

1/2d for Is I &d,
0 otherwise . (14)

Here we used d =co Q(16/Mo); ro =0.08 eV; Mo is
the mass of the oxygen atom in atomic units. Then we
evaluated the shift of T, due to the isotope efFect of the
oxygen atoms. We repeated the calculations using the
mass of all oxygen atoms as 16 and 18, respectively, and
calculated the T, value from Eqs. (1) and (2) and using
Eq. (14). It is found that, when the Fermi energy is such
that T, is in the range from 85 to 93 K, the T, shift is al-
most zero when the oxygen mass is changed from 16 to
18. When the Fermi energy is raised to well above the
narrow bands, then T, is found to be at about 50—60 K
and the oxygen isotope efFect becomes large as in the con-
ventional superconductors. This is because the density of
states is flat and the smearing has little eff'ect.

V. RESULTS: THE GAP FUNCTION

The calculated energy gaps at T =0 K and the Fermi
surface are shown in Fig. 2. In Fig. 2, the energy gapa in
the dark shaded regions have values in the range
18&6,0&25 meV; the light shaded regions have the
energy-gap values of 12.2 & 60& 14 meV; all other re-
gions have smaller energy gaps in the range
10 & 50 & 12.2 meV. We divided the Brillouin zone into

18.0 & ho& 25.0 rneV
«~ ~«~ 12.2 c lpga 14.0 meV

10.0 c doc 12.2 rneV

FIG. 2. Superconducting energy gap on the Fermi surface of
orthorhombic YBa2Cu307 at T=0 K. The dark shaded region:
18&6,0&25 meV; lightly hatched region: 12.2&6&&14 meV;
dark hatched: 10&60& 12.2 meV.

little cubes and the energy gap in each little cube is treat-
ed as constant in our calculation. This leads to a discon-
tinuity of the marked values on the boundary of two re-
gions. The Fermi energy Ef is very near the top of some
bands as seen from Fig. 1 of Ref. 1. The energy gaps do
not change much along the k, direction, a property
which we associate with the approximate two-
dimensional nature of this system. The only significant
exception to this is that the gap in the region marked 1 in
Fig. 2 varies from about 24 meV for k, =0 to 18 meV for
k, =~/c.

The gap function has a strong variation with k, and
also a strong variation between different sheets of the
Fermi surface. A k-dependent gap function has previous-

ly been derived by Mahan under the assumption of
dominant electron-phonon coupling. However, he con-
sidered only a two-dimensional, one-band model. As was
mentioned above, in Sec. II, the gap function should be
considered as a vector with components in the difFerent
bands which cross the Fermi surface, b,„(k), rather than
as a single function. Here we find a substantial variation
between the difFerent components. From inspection of
Fig. 2, it can be seen that the energy gap is quite large on
the small piece of Fermi surface around the Spoint, rang-
ing from about 18 to 24 meV (2h/k&T, varies from 4.4
to 6.0). The gap value tends to be significantly smaller on
the large sheets of the Fermi surface, although there are
small portions where it is quite large. Proceeding out-
ward from the small piece of the Fermi surface at the S
point, the gap on most of the next two large sheets of the
Fermi surface is in the range of 11-14meV, but there are
small regions near the I'-S line where the gap value is
much larger. The two portions of the Fermi surface
which have the largest gap values are marked 1 and 2.
The gap on the outermost sheet (from a chain pdcr band)
has the value in the range 10-12 meV. In terms of
2b /kz T„ the total range over the Fermi surface is from
2.5 to 6.0. Many experimental results, based on Raman
spectroscopy, tunneling, and nuclear magnetic reso-
nance, are in this range. A few examples are contained
in the references cited above. However, it may be neces-
sary to reconsider the interpretation of some experiments
if the strong k and band dependence of the gap we pre-
dict here is correct.

Both the calculation of T, and that of the gap function
involve the narrow bands near Ef in an important way.
At the zone edge (point S), one of these bands is just
above Ef, giving rise to a small piece of Fermi surface
with a large gap, shown in Fig. 2. The other band is
slightly below Ef there. If Ef is raised to be above both
bands, T, decreases substantially; if it is lowered so that
the lower band participates, T, increases. Examination
of the wave function show that, in both cases, the largest
components are associated with functions of p„and p
symmetry on the apex oxygens [O(4)] which hybridize
with d, and d functions on the chain copper [Cu(1)].
Consideration of the shapes of these orbitals suggests that
the orbital overlap and interaction would be sensitive to
the c axis motion of the O(4). This is consistent with the
importance of O(4) vibrations in our calculation, men-
tioned above.
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FIG. 3. Average isotropic energy gap function h(co).
@*=0.1. Solid line: the real part of h(m); dashed line: the
imaginary part of 4(u).

FIG. 4. Average isotropic renormalization function Z(co).
Solid line: the real part of Z(co); dashed line: the imaginary
part of Z(co).

In Fig. 3, we have shown the real and imaginary parts
of the k-space average of the gap function b, (co) at T =0.
The similarly averaged renormalization function Z(co) is
shown in Fig. 4. The general shapes of these curves are
similar to what has been obtained in low-temperature su-
perconductors, except that both the magnitudes of
these functions and the range of frequency variation are
much larger in the present case. Unfortunately, it may
not be possible to use these k-averaged frequency-
dependent quantities directly. For example, it will be
necessary to consider the k and band dependence explic-
itly in the calculation of the density of quasiparticle
states.

VI. CONCLUDING DISCUSSION

We believe these calculations make a strong case that
consideration of the electron-phonon interaction is essen-
tial to understanding superconductivity in YBCO. Our
very detailed calculations lead to a T, close to the experi-
mental value. It is possible that phonon interactions
along are sufBcient, but it is also possible that other in-
teractions extensively discussed in the literature may play
some role. It remains also to be investigated whether the
strong electron interaction with optical phonons that we
find here is consistent with transport properties in the
normal state. A full theory still appears to be rather dis-
tant.

All local-density band calculations predict that the
Fermi surface of YBCO has four sheets. We find that
there is a substantial variation of the gap function be-
tween the di8'erent sheets as well as a positional variation
on a given sheet. We think it possible that such behavior
will occur whatever interactions are important. If this is
correct, there are profound consequences for the inter-
pretation of measurements of many aspects of the super-
conducting state; tunneling being only the most obvious.
One-band models are probably quite inadequate in
YBCO, although of course there may be other cuprates
(Ndz „Cd CuO„ is an example) where a single-band
description may be satisfactory. But in YBCO even some

of the narrow bands near Ef appear to be important.
The smallness of the isotope efFect in YBCO has gen-

erally been interpreted as implying that phonons are not
importantly involved in its superconductivity. If YBCO
were a metal with simple crystallographic and electronic
structures, this conclusion would probably be correct.
But the study of the isotope effect in YBCO involves
much more than just the phonon energies. The details of
the electron-phonon interaction have to be considered.
There are other questions, such as the possible role of lat-
tice anharmonicity. We believe that it is reasonable at
this time to search for a possible solution to the isotope
effect problem within the framework of a dominant
electron-phonon interaction. One way in which a solu-

tion might be found, involving consideration of transi-
tions between states close to, but not precisely on, the
Fermi surface, was sketched roughly in the text.

Some readers may object to our reliance on the elec-
tronic structure calculated in the local-density approxi-
mation for the study of the electron-phonon interaction,
from the view that if short-range repulsive electron-
electron interactions (a Hubbard U) were more adequate-
ly included, the strength of the electron-phonon coupling
would be reduced. However, we do not believe that a
simple one- or even three-band model in which short-
range contributions to the electron interaction alone are
included is adequate for such considerations. We specu-
late that, if a more realistic model of the band structure
of YBazCu307 is considered, the presence of low-energy
resonant structure in the dielectric function may con-
tribute to the pairing interaction either directly, or by
enhancement of the electron-phonon interaction.
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