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Charge excitation and the normal-state transport properties in the flux-binding phase
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Elementary excitations are discussed in the ffux-binding phase [Weng, Sheng, and Ting, Phys.
Rev. B 49, 607 (1994)j of the t Jm-odel. It is shown that the density snd current constraints in the
gauge-theory description will dramatically modify the charge excitations. An efFective Lagrangian
for the normal state of the Bux-binding phase is derived, and based on it the transport properties
are studied. We find that the resistivity is linearly temperature dependent with a relaxation rate
5/r 2kjsT, and the Hall coefficient involves s second relaxation rate with the cotangent Hall

angle following a T law. Furthermore, the thermopower exhibits a strong doping dependence. All

these features are in good agreement with the transport measurements of the high-T, copper-oxide
compounds.

I. INTRODUCTION

After several years efforts since the discovery of the
high-T, copper oxide superconductors, the experiments
now have achieved a great deal of consensus about the
anomalous normal-state transport properties in these
materials. For example, it is well known that the re-
sistivity in the Cu02 layers increases linearly in temper-
ature for all the hole-doped compounds in the optixnal T,
regime. Combined with the optical measurements, ~ such
a temperature dependence of resistivity has been related
to a linear-T dependence of the scattering rate h/r
2k&T. A linear-frequency dependence of h/r(u) at u )
T has also been implied in the infrared spectroscopy up
to 0.15 eV. The Hall measurements show the hole charac-
teristic with a strong temperature anomaly. 2 The recent
Hall angle concept proposed by the Princeton group, '

with the involvement of a second scattering rate, has
given an excellent account for the temperature depen-
dence as well as the impurity effects. The thermopower
in these compounds exhibits a monotonic decrease with
increasing doping, and its sign could even change in the
overdoped regime.

These transport properties impose a strong constraint
on the possible theories of the high-T, superconduc-
tivity. Several strong-correlation-based theories have
been developed under the inspiration of the experixnents.
Among them the gauge-field theory for the uniform
resonant-valence-bond (RVB) state and Anderson's two-
dimensional (2D) Tomonaga-Luttinger liquid theorys's
have attracted much attention. Nevertheless a full and
systexnatic understanding of the aforexnentioned trans-
port properties has not yet been attained within the
framework of these approaches.

Recently a so-called Qux-binding phase in the 2D
t-J model has been investigated. This phase is ob-
tained based on a generalization of the phase-shift phe-

nomenon originally identified in one-dimensional (1D)
case. i2 Superconductivity exhibits in the ground state
of the Qux-binding phase, and the physical origin of
such a phase shares some similarities with the gauge
theories of the commensurate Bux phase. In the
latter case, the tendency of Hux binding (and thus the
statistics transmutation) is reflected in the Chem-Simons
termsis i4 appearing in the gauge fluctuations.

The Qux-binding phase~ is composed of three subsys-
tems connected together by the gauge fields. It can be
described in terms of a decomposition scheme of elec-

tron operator asi c; = h+(f; e' ')(e 's' e;) Such a.

decoxnposition is different from the usual slave-particle
scheme~9 by the presence of a third species e, as well

as the nonlocal phases gf" =
z g&&, 1m in(z; —zt)ntf'

(where n&" are the number operators of ft and e~

species and z, = z; + iy;.) The bosonic operator h,+.

and the fermionic operator f; are similar to those in
the slave-boson formalism. They may be called holon
and spinon operators, respectively, just for convenience.
Later in this paper we will identify the real charge and
spin excitations in the system. The introduction of a
bosonic operator e;, called an eon, in the decomposition
is based on the following consideration. It is a well-known

fact that the hopping and superexchange processes in

the t-J model, both comparable in energy, cannot be si-

multaneously optixnized in the 2D case. In other words,
the hopping of holes in a well-correlated spin background
will get frustrated, or conversely, the spin correlation has
to be suppressed in favor of the hopping of holes. This
represents a strong-correlation characteristics of the t-J
model. Nevertheless, we still may optimize the saddle-
point energies for both h,+ and f; at the same time,
and then let e; take care of the frustration efFect as a
"backfIow" of the holon h;. It turns out that, with

the presence of the nonlocal phases 8,..", three subsys-
tems can simultaneously becoxne the local energy minima
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in such a way that the gauge Huctuations around these
saddle-points are suppressed. Such a suppression of the
gauge fields will lead to a significant simplification in the
treatment of the Bux-binding phase.

The structure of the Bux-binding phase is schemati-
cally illustrated by Fig. 1. Three subsystems in Fig. 1
are connected together by the temporal gauge fields, A

and P, which enforce the on-site density constraints

n,"+n~ = ].,

and the spatial gauge fields a~ and a', which give rise
to the current constraints

(1.2)

among the holon, spinon, and eon subsystems. The
electronic quantities such as number operator n,', cur-
rent operator J, and spin operator S, are related to
these species through n,' = 1 —n,", J, = J~, and
S; = g, f;+(cr) ~f;, etc. , where 0' is the conven
tional Pauli matrix.

In the ground state, the holons as a boson gas are in
the Bose condensation. The spinon and eon subsystems,
as the results of Hux binding, are two semionic systems
which also show the Meissner effect. io The total response
of the whole system to an external electromagnetic field
is given by a Ioffe-Larkin combination rule of three sub-
systems as follows

(1.3)

where IIg, IIy, and II, are the response matrices for
the corresponding subsystems. As a result of (1.3), the
K matrix exhibits a real superconducting response to
an external field. On the other hand, the time-reversal

(T) and parity (P) symmetries, which are violated in the
spinon and eon subsystems, are restored in the electronic
response function K due to the cancellation of the T
and P violations between these two degrees of &eedom.
And such a cancellation has been argued to be gener-
ically true as the result of the exactness of the current
constraint (1.2) and the topological Hux-binding condi-
tion. The pairing characteristics in such a superconduct-
ing state will be discussed elsewhere.

In the present paper, we will first focus on the elemen-
tary excitations in the Hux-binding phase. We stress the
fact that the decomposition of an electron operator in the
present form, or in the usual slave-particle formalism,
is more of a mathematical convenience for implementa-
tion of the no-double-occupancy constraint than of a real
physical one. In fact, Eg. (1.2) implies that neither the
spinon f; only describes the spin degree of freedoin nor
the holon h; solely keeps the track of the charge. The real
excitations can be dramatically different &om the under-
lying holon, spinon, and eon species, which are confined
by the constraints (1.1) and (1.2) in the decomposition
formulation. As it will be shown later, the topological
characteristics of the spinon and eon subsystems make

II. ELEMENTARY EXCITATIONS IN THE
FLUX-BINDING PHASE

The efFective gauge-theory description of the flux-
binding phase, as depicted in Fig. 1, is given by the
following Lagrangianio

(2.1)

where

= ) h+ 8 +a(')" h;+) f,+8 f; +) e~+8 e;

+) A; ) f,+f; +h+h; —1

+) P;(e+e;+ h+h; —1), (2 2)

and 8 = Hg+ Hy+ Heo with

Hg ———tg e' '~ + *~+ '~ h+h~ + H.c.2 )

&ij)

(2.3a)

Hy = —J' ) e'~v~ '~+ '~&f+f~ +H.c. ,

(ij)cr

(2.3b)

X„a'
Spinon (f )

holon (h;)

P aoo
eon (e;)

FIG. 1. Three subsystems in the Bux-binding phase are
connected together by the gauge fields A, P, n~, and u' .

the construction of the elementary excitations simple and
accurate, independent of the detailed approximations. In
Sec. II, the independent charge and spin excitations are
identified, which indicates the existence of a real charge-
spin separation in the fIux-binding phase.

Then we discuss the finite temperature properties and
find an exotic normal state where the elementary exci-
tations will resume rather simple forms. There the Bose
condensation of holons is gone, while the spinons and
cons still remain condensed in the semionic states. Sub-

sequently, a systematic study of the transport proper-
ties for such a normal state are presented. The results
can systematically explain the main anomalies found in
the high-T, materials in a very consistent way. This cal-
culation will lend a strong experimental support to the
present flux-binding phase. The effective Lagrangian for
the charge Quid in such a normal state is derived in Sec.
III A. Then the transport properties is studied in Sec.
III B. Finally a summary will be presented at the end of
the paper.
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H..= t—. ) e*~'."::+"'e,+e, + H.c.
(ij)

(2.3c)

In Eq. (2.2), the Lagrangian multipliers A; and P; are in-
troduced to enforce the on-site density constraints (1.1).
ao";t and a,'"t in Eqs. (2.2) and (2.3a) represent the tem-
poral and spatial components of the external electromag-
netic 6elds, respectively.

The "charges" qy = —1 and q, o
——+1 in Eqs. (2.3b)

and (2.3c) and the nonlocal gauge fields A~" are defined
by

(2.4)

which satisfy the topological relations

(2.5)

where C refers to an arbitrary closed loop on the lat-
tice without crossing and 6 depends on the direction on
the loop. Equation (2.5) states the facti that the ficti-

tious fluxes represented by Af" are all quantized as x
flux tubes (in the unit that the flux-quantum $0 = hc/e
is equal to 2m) and bound to the spinons and cons,
respectively, which is the basic reason for the present
state being called as the flux-binding phase. ~ One im-

mediately sees that A~" play the roles of statistics
transmutation ' in the spinon and eon subsystems. Hf
can be regarded as describing a semion system with spin
index and H, describing a single species semion gas in
the boson representation.

a~ and a,' in Eqs. (2.3b) and (2.3c) represent the
spatial gauge Huctuations around the saddle points char-
acterized by the flux binding gauge 6elds Af" . If the

present flux-binding state is stable, the gauge 6elds af.

and a,'. should get suppressed in favor of Af" in Eqs.
(2.3b) and (2.3c). That is what has been shown in
Ref. 10, where gaps are found in the transverse channel
of the gauge fluctuations. Furthermore, the quadratic
Buctuations of af. and a,'. will lead to the local current
constraints (1.2). Equation (1.2) manifests the following
facts: A forward hopping of a holon h is balanced by a
backward hopping of a spinon f and, at the same time,
is always accompanied by a backflow of eon e. The con-
straints (1.1) and (1.2) are the generic consequences of a
gauge theory description, which is independent of the de-
tailed approximations in the treatment of the Lagrangian
(2.1). Note that the density constraint (1.1) and the lon-
gitudinal part of (1.2) are connected with each other by
the conservation law t9qp+ 'I7 J = 0. This connection is
reflected in the local gauge invariance of the Lagrangian
(2.1) (Ref. 10). In general, the longitudinal components
of a;. and a;- can be absorbed into the temporal gauge
fields A; and P; through the local gauge transformation.
Thus in the present paper, we will always regard the spa-
tial components ai. and a, - only as the transverse ones
without loss of generality.

The dynamics of the gauge 6elds are generated by cou-
pling to the holons, spinons, and, cons, and, in principle,
can be determined by integrating out the degrees of &ee-
dom of the latter in the Lagrangian (2.1). The dynam-
ics of each subsystem should be in turn affected by the
gauge-6eld fluctuations. In the gauge theory of the
uniform RVB state, for example, the gauge interaction
turns out to be so strong in the transverse channel that
a self-consistent treatment of the whole problem may be
crucial. Fortunately, in the flux-binding phase the trans-
verse gauge Huctuations are suppressed, like an external
electromagnetic field in a superconductor. So each sub-
system will behave independently in the long-wavelength,
low-energy regime. However this does not simply mean
that the whole system becomes really decoupled. Re-
member that each subsystem in the ground state is a
superfluid condensate which, as a whole, can respond
to the gauge Huctuations rather sensitively even if the
latter is suppressed. Thus one will 6nd a very peculiar
situation later. On the one hand each subsystem can
be mathematically treated as independent one, due to
the "rigidity" of a superfluid system with regard to an
"external" 6eld; on the other hand, the whole system as
composed of these subsystems can show totally new be-
haviors after the constraints (1.1) and (1.2) are imposed
via the gauge fields. In the following, we will first discuss
the elementary excitations in each individual subsystems
and then turn to discuss the real excitations for the whole
system.

A. Charge excitations and flux-quantization
in a semion gas

The spinon and eon systems described by Hy [Eq.
(2.3b)] and H, [Eq. (2.3c)] are basically the sernionic
systems, with each particle carrying a half-quantized
Bohm-Aharonov flux tube through Af" de6ned by Eq.
(2.4). Their long-wavelength behaviors have been dis-

cussed in Ref. 10 and each of them exhibits the "Meissner
effect" as response to the gauge 6elds a, ",similar to a
usual spinless semion gas. The latter has been ex-
tensively studied in the literature, 2i'2s 2@ and besides the
Meissner effect, the charge excitation as a charge-vortex
compound has been discussed. The flux-quantization
has been also argued, ' 7' and the demonstration has
been given in the exact diagonalizations ' for a lat-
tice semion gas. These general characteristic properties
for a semion system are very essential in order to un-
derstand the elementary excitations in the present Qux-

binding phase.
The response functions, IIf and II, , of the spinon and

eon subsystems show the following properties at small
and 4J

IIf (q, cu) oc const. , II, (q, u) oc const. (2.6)

Equation (2.6) will lead to the following London
equation

J= — —a,
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where J denotes the spinon or eon current and a, in the
f,eo ~

gauge V' - a = 0, is a corresponding gauge 6eld of a, ' m

the continuum limit. A current operator can be written
in the following form:

J = J"—qy, —vP+Q,
m

(2.8)

where Jj' is the so-called paramagnetic current and the
second term on the right is a diamagnetic current with Q
as a spinon or eon field. Comparing (2.8) with (2.7) and
noticing p = (g+g) one finds

(2.9)

I

I

l

FIG. 2. A charge-Buxoid excitation as a combination of
an external flux-quantum (solid arrow) and a charge-vortex
excitation with a Sctitious lux (dashed arrow).

which implies the rigidity of a semion system and thus
the perfect diamagnetism. 22 24 It is noted that Eq. (2.6)
has been derived in Ref. 10 by using the continw~m ap-
proximation. A technique for a lattice semion can be
found in Ref. 17, which could give the similar results as
Eq. (2.6). A discussion of the lattice efFect can also be
found in Ref. 33.

The charged vortices has been first discussed in
Refs. 21 and 26 as the elementary excitations in a semion
gas. Such a charge excitation can be created by adding
(particle-like) or extracting (hole-like) a semion. Since
a semion is always attached by a fictitious Hux tube, a
charge excitation as such will then be accompanied by
an excess or deficit of a quantized Hux Ps/2. This extra
Huxoid will then induce a vortexlike screening current in
the semion background according to Eq. (2.7):

p t'Ps/2) z x r
m g2z) r2 (2.10)

The total energy will then be enhanced by

2

b,E = d2r u2 = ln(R/a, ),2m 16+m (2.11)

where a, is a cutofF scale of the Huxoid and R is the size
of the whole system. Thus such a charged vortex has
a logarithmic-divergent energy, which was first discussed
in Refs. 21 and 26. In a semion system, the charged
vortices as the elementary charge excitations will dorni-
nate the finite-temperature behaviors and could lead to a
Kosterlitz-Thouless-like transition as argued in Ref. 27.

Nonetheless, a 6nite-energy charge excitation can a,lso
exist in a semion system, which is closely related to the
fIux-quantization effect. Suppose a charge vortex de-
scribed above is created at the origin. We may let a quan-
tized Bux of an external 6eld penetrate through at the
same location in order to compensate the excess or de6cit
Hux tube associated to the charged vortex as shown in
Fig. 2. For a hole-type excitation, such an external Bux-
oid has to be parallel to the internal 6ctitious Bux tubes
carried by the semions, while for a particle-type exci-
tation, the external Huxoid goes to opposite direction.
Then no net diamagnetic current such as (2.10) should
be produced to circulate this charge excitation anymore,
due to the exact compensation in a scale larger than the

sizes of the Huxes. With the absence of this long-range
effect, only a finite energy would be needed to create such
a charye fluzoi-d excitation. 2r I

An estimation of the energy for the charge-Huxoid ex-
citation can be carried out similar to the calculation of
the energy for a charged vortex by Hanna, Laughlin, and
Fetter. zs With the extra external Hux shown in Fig. 2,
the logarithmic-divergent energy will be found being can-
celled out. 4 For a variationally constructed excitation,
one expects that the excitation energy can be further
lowered by adjusting both the size of the external Huxoid
and the shape of the local wave function of the charge
excitation.

The stability of the charge-Huxoid excitation requires
that a net flux or charge could not be added to or moved
away from such an excitation. In other words, the sta-
bility of a charge-fluxoid, excitation is connected to the
conditions (a) Hux quantization at $0/2 of the external
Huxoid and (b) a particle or hole (for particle-type or
hole-type excitation), which is always bound to the quan-
tized external Huxoid at a local scale. A violation of ei-
ther condition will lead to a net Hux (external or internal)
emerging at the location of the excitation. Such an un-
compensated Hux will then induce a long-range diamag-
netic screening current in terms of Eq. (2.7) and would
cost a logarithmic energy similar to (2.11). Therefore,
in a semion system, the existence of the Meissner effect
will sufficiently lead to the Hux-quantization of an exter-
nal field at $0/2. And such a Hux-quantization is always
related to the so-called charge-Huxoid excitation where a
charge (either particle or hole) is attached to the exter-
nal Huxoid. This is consistent with both the mean-fields
and Chem-Simons 6eld theory2~ considerations.

B. E1ementary excitations
in the flux-binding phase

For a decoupled system, the excitations could be de-
cided by the individual subsystems. But as already
pointed out before, the Bux-binding phase is not simply
decoupled and the existence of the constraints between
the subsystems will modify the elementary excitations in
a nontrivial way. In the following we will discuss both
the charge and spin excitations in such a system.

CA,ange excitation. Suppose a hole-type cha~e-vortex
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excitation is created, say, in the spinon subsystem by re-
moving a spinon at the origin. Because of the density
constraint (1.1), a similar hole-type excitation should be
simultaneously produced in the eon subsystem as shown
by Fig. 3 (i.e., removing an eon at the same location).
According to Eq. (2.10), the vortex-like diamagnetic cur-
rents surrounding these excitations will behave as

Qpzxr
f{«) ~ qf{eo) 4x r (2.12)

Spinon

in the spinon and eon subsystems, respectively. Since
qf

———q, = —1, one finds that the diamagnetic currents
of spinons and cons are in opposite directions, i.e., Jy
—J, (cf. Fig. 3), which obviously violates the current
constraint (1.2). A similar particle-type excitation has
the same problem. Thus the charge-vortex excitations
as the elementary charge excitations in a semion gas will
not be allowed to appear in the Hux-binding phase after
the constraints (1.1) and (1.2) are imposed. This is an
important result for the Hux-binding phase. It implies
that the finite temperature behaviors of the spinon and
eon subsystems will be quite different &om an isolated
semionic system, in which the charge-vortex composites
as the elementary excitations could lead to a Kosterlitz-
Thouless transition at a finite temperature.

Recall that the current constraint (1.2) is enforced
through the gauge fields af and a' . In the case of the
charge-vortices discussed above, in order to restore the
current restriction (1.2), the Huctuations of a~ and a'
will have to produce two extra fluxoids in opposite di-
rections at the same location of the excitations in the
spinon and eon subsystems. These quantized Quxoids
will play a role in compensating the deficit Quxes at-
tached to the hole-type charge-vortices shown in Fig. 3

(dashed arrows) so that the vortex-like diamagnetic cur-
rents (2.12) are exactly cancelled out as in Fig. 2. Then
the current constraint (1.2) will be recovered in a form
of Jf = J' = 0 at a distance away kom the excitation.
Obviously the resulting composite is nothing but a com-
pound of the charge fIux-oid excitations (cf. Fig. 2) in
the spinon and eon subsystems, respectively. Here af
and a' can be regarded as the "external" fields for the
subsystems (cf. Fig. 1), and in each subsystem a charge
(hole) is bound to a quantized external Hux produced by
the transverse gauge field to form a charge-Quxoid exci-
tation. Thus only the charge-Quxoid excitations in the
spinon and eon subsystems survive the constraints (1.1)
and (1.2) in the flux-binding phase.

Thus, even though the gauge fields a~ and a' are usu-
ally suppressed in the long-wavelength regime due to
the Meissner effect, their short-wavelength Quctuations
can still produce quantized Quxes to penetrate the corre-
sponding subsystems, resembling a type-II superconduc-
tor. These Hux lines are connected to the charge exci-
tations in these semionic subsystems as discussed above.
On the other hand, since the Huxoids produced by af
and a' are in the opposite direction, their sum af +a',
which appears in the holon subsystem [Eq. (2.3a)], will
not be changed and thus the holon part is not affected
by the excited Huxoids. Nonetheless, when a pair of hole-
type charge-Quxoid entities are excited in the spinon and
eon subsystems, a holon has to be simultaneously added
to the same location in terms of the density constraint
(1.1). Then a real hole is created in the present flux-
binding phase as a composite excitation schematically
shown in Fig. 4, where p, q, and h specify the hole-type
components in the spinon, eon, and holon subsystems, re-
spectively, and are bound together in real space through
some Lagrangian multipliers A and P which will be intro-
duced in Sec. III.

Effective Hamiltonians of p and q species can be de-
termined as follows. I.et us consider a p species first.
According to the definition, the p species is a hole-type
charge-Huxoid excitation in the spinon subsystem de-
scribed by the Hamiltonian (2.3b). If we move a p species
slowly to go through a closed path C in real space, the
corresponding Berry phase 4~ is found equal to the total
Huxes enclosed in the loop as seen by the charge attached
to such a p species. That is

"eo
Spinon

holon

eon
eon

FIG. 3. A pair of the charge-vortex excitations in the
spinon and eon subsystems.

FIG. 4. A real charge excitation is schematically shovrn as
a composite particle of the exciations h, p, q in the three
subsystems.
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dr (qyA + a )—: dr A.",
C C

{2.1S)

where a continuum limit is taken because p is an entity
with a size comparable to the lattice spacing and thus
the phase counting becomes meaningless when a loop is
as small as, say, a plaquette. Af in Eq. (2.13) as a
continuum version of A,. [cf. Eq. (2.4)] is given by

(2.14)

where p~(r) is the spinon density. a~ as a continuum
version of a]~, can be rewritten in the following form:

a~ = af + qua~„, (2.i5)

where a~ describes the usual long-wavelength Suctu-
ation, which is gapped and thus suppressed as long
as the background spinons remain condensed. io a~„in
Eq. (2.15) describes the short-wavelength Suctuations-
quantized Suxes bound to the charge excitations (of both
hole and particle types):

(2.16)

in which pi'(r) = p+(r)p(r), and pi'(r) represents the
density for the particle-type excitations. Therefore a p
species will always see a fictitious vector potential Ai' in
real space and the efFective Harm&tonian can be written

(2.i7)

with

(2.is)

The efFective mass mp for the p species is of the same
order of magnitude as the spinon's, which is equal to
(2J'a2)

Similarly the efFective Hamiltonian for the q species is
given by

iV —Aq 2—
Hq= d Fg F QF

27Dq
(2.19)

with mq (2t ~a ) and Aq = —A —a —u „,where
A, a', and a are the counterparts of A~, a, and
af in the eon subsystem.

One can similarly construct the particle-type charge
excitations. In contrast to a fractional quantum Hall
problem, a semion gas is a compressible system. In such
a system, the hole-type and particle-type excitations can
be excited separately. However, the density constraint

(1.1) will put strong restriction on the particle-type ex-
citations. When a particle-type charge-Suxoid excitation
is created in the spinon or eon subsystem, the size of the
extra particle has to be large in order to satisfy the on-
site constraint (1.1), which requires that the total on-site
particle ni~mber does not exceed one. As the background
particle occupation is already close to each site-one parti-
cle at small doping, the wave packet of the particle exci-
tation has to expand to a much larger space on the lattice
than a hole-type excitation, which means that the higher
Landau levels will be involved in the former, and thus
there will be a higher excitation energy. One can imag-
ine that with the increase of temperature more hole-type
excitations are thermally produced, and thus in the p-
or q-absent regions the background particle occupation
should be closer to half filling as a result of particle num-
ber conservation. As a consequence, the particle-type
excitations become harder to achieve in these regions.

Spin excitation. In the above discussions, the spin de-
gree of freedom in the spinon subsystem has not been
touched yet. A quantized Suxoid produced by the gauge
field a~ will expel (hole type) or give rise to an accumula-
tion (particle type) of the background spinons to form a
spinless charge-Suxoid excitation. These spinless charac-
teristics are a result of the fact that each spinon always
carries the same fictitious Sux-tube defined in (2.4) no
matter what its spin state is.

On the other hand, a spin excitation in the spinon sub-
system will not involve a change in the density of parti-
cles. Thus there will not be any change in the distribu-
tion of the fictitious Suxes, which are bound to the parti-
cles and whose long-range effects determine the semionic
characteristics Hence . the spin degree of freedom will
not involve the topological long-range correlation in con-
trast to the charge part. Furthermore, a spin process
always corresponds to Jy = 0. Without changing both
the density and current, a spin excitation will thus not
directly afFect the eon and holon subsystems through the
constraints (1.1) and (1.2). So one expects a relatively
simple behavior for the spin degree of freedom in the Sux-
binding phase, which is solely determined by the spinon
subsystem.

If the ground state of the spinon subsystem is described
by a mean-field version where the lowest Landau level
(with spin degree) is filled, io then a spin flip process is
represented by a particle-hole excitation across the Lan-
dau levels, which does not change the density and local
Suxes, and thus does not lead to a diamagnetic current in
the background. The spin excitation spectrum will open
a gap, which is equal to the Landau gap, in such a contin-
uum limit. But this gap can be reduced after the lattice
efFect is included in the lattice model (2.3b). Beyond the
mean-field approximation, the statistics vector potential
A, . in (2.4) will Suctuate with the superfiuid density and
G j wi 11 fIuct uate with the density of the charge excita-
tions. These Quctuations of the fictitious magnetic fields
can lead to a broadening of the spin spectrum and a
renormalized spin gap. Such a spin gap will be closed
in the normal state. The details of the spin dynamics
beyond the mean-field approximation will be discussed
elsewhere.
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III. NORMAL STATE OF THE FLUX-BINDING
PHASE

discussed in Sec. II B. In the normal state with all the
holons excited, such a binding condition corresponds to

In Sec. II, we have identified the elementary charge
and spin excitations in the fiux-binding phase. We have
seen how dramatically the constraints have modified the
charge excitations. As shown in Sec. II, the holon,
eon, and spinon subsystems defined in the decomposi-
tion scheme are not directly connected to the physical
charge and spin degrees of &eedom. A real charge ex-
citation is found to be a composite object composed of
the spinless elementary excitations in these subsystems.
On the other hand, the spin excitation, without involving
charge and current effects, is solely related to the spinon
subsystem as one would have expected. In the present
section, we will proceed to go to a higher temperature
regime where a rather simple structure manifests at the
normal state of the fiux-binding phase.

With increase of temperature the hole-type charge ex-
citations will get more and more excited. At a criti-
cal temperature where the number of those excitations
becomes comparable to the total holon number in the
system, the residual holons staying at k = 0 state will
no longer be sufficient to sustain the Bose-condensation
in the holon subsystem. (Here we have assumed that
the original superfiuidity temperature for the holon sub-
system is much higher7 than such a critical tempera-
ture. ) Then the holon subsystem will experience a nor-
mal state transition, which can simultaneously lead to
the superfiuid-normal state transition of the fiux-binding
phase even though the spinon and eon subsystems still re-
main condensed. This point can be clearly seen in terms
of Eq. (1.3), where Ilq m 0 at small ~ when the holon
subsystem becomes a normal Quid, and thus K oc IIg ~ 0
in this limit, which means the disappearance of the Meiss-
ner effect for the whole system.

When the temperature is raised further beyond such
a critical temperature, all holons will get excited, as a
component of the hole-type charge excitation described
in Fig. 4. Then no more charge excitations will be possi-
ble beyond the total number of the doped holes. In such
a normal state, the particle-type charge excitation can
not be excited due to the density constraint. Thus the
hole-type charge excitations with a fixed number equal
to that of the doped holes will decide the charge degree
of &eedom in the normal state. These charge excitations
can be properly called the renormalized holons and will
solely determine the transport phenomena. Since the to-
tal numbers of p and q excitations in the spinon and eon
subsystems are also fixed at such a hole number, and
no other charge excitations are allowed in these subsys-
tems, one expects that the super8uid condensations in
the spinon and eon subsystems will be sustained up to
quite a wide temperature regime, which are crucial for
the present discussion of the normal state being valid.

A. Effective Lagrangian
for the charge degree of freedom

~'(~)I (~) = p'( )p(~) = q'( )q(~) (3.1)

which states the fact that the local densities of Ii, p, and

q are always equal. Obviously Eq. (3.1) must hold at a
length scale larger than the sizes of p and q excitations.
Inside the p and q species, the situation will become more
complicated, which we shall not discuss. Here p and q are
interpreted as the "holes" in the spinon and eon subsys-
tems, respectively, and Eq. (3.1) is a natural manifesta-
tion of Eq.(l.l) at such a scale. Correspondingly, in the
spinon and eon subsystems, one also has the following
local-density relations:

1
p"(r)+ p'(r) = —, (3.2a)

1
p'(r) + p-(r) = —, (3.2b)

which can be obtained by combining the continuum ver-
sion of Eq. (1.1) with Eq. (3.1).

In terms of Eq. (3.2a), the vector potential A" [Eq.
(2.18)] seen by the p species is reduced to

A"=A —a~, (3 3)

with

H„A= —ixr,
2

(3.4)

which corresponds to a uniform fictitious magnetic field

H=
2a2

(3.5)

Similarly A~ seen by the q species becomes

A~= —A —a'. (3.6)

with

(3.7a)

d rh+0 +a~ —A+ h+p+8 +apo+Ap

+q'[&-+ ~o+ &lq} (3.7b)

t ~(—iV —a'"')2 +(—iV —A)2

2m+ 2mp

Therefore, in the present normal state where Eqs. (3.2a)
and (3.2b) hold, the total background fictitious fiuxes
become uniformly distributed as described by Eq. (3.5).

By incorporating Eqs. (3.1), (2.17), (2.19), and (2.3a),
an effective Lagrangian for the charge degree of freedom
in the normal state of the fiux-binding phase can be then
written down as follows:

For the composite hole-type excitation shown in Fig. 4,
the constituent species 6, p, and q are bound together as

+(—iV+ A)2
+q

2
q )

fag
(3.7c)
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where the effective mass approximation has been applied
to the holon part in (3.7c) with mh = (2tr, a )

In Eq. (3.7b), the Lagrangian multipliers A and P are
introduced to implement the density constraint (3.1). As
a minimum length scale for Eq. (3.1) to hold is the size
of the p and q species, which may be approximated by
the magnetic length ao ——0 ~, an ultraviolet cutofF

q, 1/ae in the momentum space of the A and P fields in
(3.7b) should be kept in mind. The temporal component
of the external electromagnetic Beld ae"~ = ao + a" + ae
is distributed in the three subsystems through ae, a~0,

and a&~in (3.7b) in such a way to make the longitudinal
part of the current constraint (1.2) satisfied. Note that
J = —J„andJi = —Ji in the normal state as a re-f
suit of the charge conservation law Bt,p+ V J' = 0 for
each subsystem, where the subscript I represents the lon-
gitudinal component. In fact, one can easily show that
due to the presence of the temporal gauge fields A and P
(which can be transformed into the longitudinal spatial
gauge fields after a gauge transformation), the following
current constraint always holds (at a scale larger than

q, '):
(3.8)

On the other hand, since both the spinon and eon back-
grounds are still condensed, the long-wavelength trans-
verse gauge Huctuations a~ and a' are gappedio and
thus their effects on the dynamics of h, p, and q species
are neglected in (3.7). As a consequence, the transverse
external electromagnetic field u'"' is only applied to the
h species in (3.7c). Physically one may attribute this to
the fact that the transverse electromagnetic field is ex-
cluded &om the spinon and eon subsystems due to the
Messner effect in the latter subsystems. Neglecting the
contributions of a~ and a' to (3.7c) also means a decou-
pling of the charge degrees of freedom from the spinon
and eon background. The latter from now on will become
invisible except for the spin excitations in the spinon sub-
system. Thus one has a real charge-spin separation here.

With the absence of the transverse spatial gauge fields
in (3.7c), there will be no constraint like (3.8) holding
for the transverse currents of p, q, and h. In fact, this
is generally true even if one retains the transverse spa-
tial gauge fields a~ and a' in (3.7), which should be
also coupled to the superfiuid backgrounds. Notice that
the total transverse currents for spinon and eon subsys-

composed of two terms as Jt~ —J~~ J~& and
J" = J ' —J ', respectively, where Jf' and J'" are the
super6uid components from the condensed spinon and
eon backgrounds. This is in contrast with the longitu-
dinal components where Jf ——J, = 0 as noted be-

fore. The transverse gauge 6elds a and a' will then
lead to the constraint (1.2) for the transverse compo-
nent: J&' ———Jf' ———J '. In order to balance a 6nite
transverse current Jg, a 6ctitious transverse electric 6eld
with an infinitesimal strength will be sufficient to pro-
duce the backQow in the superQuid part of the spinon or
eon subsystem to satisfy such a current constraint. On
the other hand, such a 6eld has negligible efFect on the
normal Quid —p and q species.

Finally, we remark on the statistics of the h, p, and

q species in the Lagrangian (3.7). From the construc-
tion, one easily sees that Ii and q should be the hard-core
bosons, while y is a fermion as inherited from their par-
ent subsystems. Nevertheless, these three species always
have to be bound together locally to form a real hole-type
excitation, and there is no real physical meaning for each
individual of them. When two hole-type excitations are
well separated in space, interchanging one component,
say, the h species, between them is physically meaningless
uiiless the whole objects are interchanged, which exhibits
the fermionic statistics. On the other hand, when two
hole-type objects are snRiciently close, the interchange
of each species becomes possible where their hard co-re

characteristics will show up. This suggests that all the
h, p, and q species may be equivalently treated as the
spinless fermions to avoid the difiiculty associated with
the hard-core condition in the boson representation. We
note that all the qualitative behaviors of transport dis-
cussed in the following will not be affected by this statis-
tics transmutation.

B. The normal-state transport properties

A physical interpretation of the effective Lagrangian
(3.7) is given below. The original strong charge-spin cou-
pling in the t Jrnodel is -now described by a simple model
in which a holon h has always to drag the p and q species
to move together. In other words, Jr and q species, which
are confined in the lowest Landau level (LLL), represent
the spin frustration effect on the doped holes. (For ex-
ample, a q species is an excitation in the eon subsystem.
As already explained in the Introduction, the eon degree
of freedom introduced in Ref. 10 describes an additional
frustration to the hole's hopping due to the Hux-binding
effect, which enhances the spin correlation. ) The individ-
ual y or q has no independent physical meaning, since it
always has to be bound to Ii through the temporal gauge
fields A or P in (3.7). On the other hand, the holon h can
be regarded as carrying the real charge, which couples
to the external electromagnetic field in the Lagrangian
(3.7) and its current is equal to the measurable electron
current

Jh ——J„ (3 9)

which connects the Lagrangian (3.7) to the observable
electronic properties.

The temporal gauge fields A and P in the Lagrangian
(3.7) will play two essential roles: the binding forces
among h, p, and q species at a length scale larger than
q, and the scattering forces among them in the long-
wavelength, low-energy regime. The dynamics of the
long-wavelength gauge Quctuations can be determined in
the standard way6 ~ by integrating out the quadratic 6,
p, and q fields in the Lagrangian (3.7). The propagators
D" = —(bAbA) and D~ = (bPbP), with bA =—A —pp
and bP = P —pq where p~ and pz, respectively, are the
chemical potentials for p and q species, are given by
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D"l)'l(q, ) = —[(II + 11-l'i)-'+ ll„„,]-'. (3.10) P"(q, (P ) = ™[E((,P~(), [q])]
A q

(3.15)

Il~l~ ~l is the density-density correlation function for Ii (p,
q) species. II), for a 2D gas is typically of order of I/t)„
whereas II& and Ilq (k~T) i as will be demonstrated
below. Since we are interested in the temperature range
of k~T = P && tg, we shall then approximate n(() = Pr—,((P ') (3.16)

in which P is a function of the dimensionless variables (
and Pwz as well as a functional of the function

D"'~ = —1/II (3.11)
That is,

in the rest of the paper.
To decide the polarization function II& q, we 6rst note

that the p and q species stay in the LLL. Define p, ,~ =
P&(s'Ik + q)(k]s), where Ik) is an eigenstate for a free-
particle, and Is) refers to the degenerate states in the
LLL with the quantum number s specifying the center of
the cyclotron orbital. Then the "bubble" diagram con-
tribution II~ = P P IgI G"G" Rom the p species can
be written down in real frequency as follows:

f(~') f(~"—)

x p"(s, u)') p" (s', (u"), (3.12)

d(l d(il
((& o [~])

(2 )2 (+(i
1

e&'+~ o + 1 e~"+~ o + 1

4&((')~((")
[)72((/) + ()2][r12 ((ii) + (i)2]

(3.17)

By assuming I'z is independent of the quantum number
s of the LLL (see discussion below), the momentum de-

pendence of P" is solely decided by A(q) in (3.15) as
(Appendix A):

where f(()i) = 1/(e~ + 1) and pP is the spectral weight
function of the p-particle Green's function G&

A(q) =) I~. ..l'=
S)B

1 2 2

2%GO
(3.18)

d(u' pi'(s, ur')

2Ã
(3.13)

If there is no broadening in the Landau level, i.e.,
p)'(s, (u) = 2vrh(u) —u)e"), where ufo

—— 2~," —pp with
())r,

' = H/m~ as the cyclotron frequency, then (3.12) would
show II (q, u) = 0 for u g 0. The same also happens

to II+. According to (3.10) or (3.11), however, D"')
would thus become divergent at IuI ) 0. Coupling to
such strong fiuctuations of D"'~ in (3.7) would force the
Landau levels of p and q broadened. This procedure,
of course, has to be treated in a self-consistent way by
inserting a broadening F„(s,u) for p„:

2F„(s,u —urz~)

r„(., —,) + ( —,")' (3.14)

Substituting (3.14) into (3.12) and rescaling all the inter-
nal frequencies in the integrations by cu' —urz~

——('P
etc. , and u = (P, one may determine II„and thus the

spectral function P"(q, ~) = —2ImD" (q, ur) in terms of
(3.11). It can be easily shown

whose q dependence become negligible in the long-
wavelength regime q (( q, .

Next we need to calculate the self-energy of the p par-
ticle due to scattering with D" and determine the broad-
ening r„(u)= —ImE" (u) self consistently. Without in-

cluding the vortex correction, ImZ~& in the spectral rep-
resentation of G& and D" can be expressed by

1 . 2 dO
1m~~(s ~) = —2).l~ .I'

2
[n(f1)+f(~+f1)]

8

x p„(~+ 0)P"(q, 0), (3.19)

) = y~ ) f 2 ~,(0 ~)i(~)
8

Again we may rescale the frequency u by (u —~o = ()9
and 0 = ('P i in Eqs. (3.19) and (3.20). Equation (3.19)
can be rewritten in terms of (3.15) and (3.16) as

in which n(A) = (e) n —1) i. The chemical potential in
~0" is decided by equation

1 1 2q((+ (')
&(() o

2 )i 1
+ g+t +P 2(( (i) (( (i)2

™(( / o [ l])'

Equations (3.17) and (3.21) show that i1(() depends only
on Pug, which is, according to Eq. (3.20) (after the
rescaling), a temperature-independent quantity decided
only by doping concentration. Do in (3.21) is defined by

) - I~. ..l'

A(q)
(3.22)

Dq could have a weak s dependence, which would lead
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4.0 , e.o ( = 0, one immediately Bnds

3.0
30 I'„(0)= g(0)k~T, (3.23)

2.0—

1.0—

0.0
0.0 0.1 0.2 0.3

to a similar s dependence in I'„.But since the quantum
number s represents the center of the cyclotron orbital
here, the dependence of s in Do and thus in I' should not
be important as required by the translational invariance.
Then one may write

FIG. 5. The coefficient g(0) in Eq. (3.23) (square) as a
function of the doping concentration b. The inset shows a
curve of g(f) (circle) vs ( at Pup) = 0.

from (3.16). Namely, I'~(0) is always linear in temper-
ature dependence. A solution of )7(() for Eqs. (3.17),
(3.20), and (3.21) can be obtained numerically. The co-
efficient g(0) has a weak-doping dependence as shown in
Fig. 5. A typical curve of )7(() as a function of $ (= P(d)
is also presented in the inset of Fig. 5, which is approxi-
mately linear in ( for ~(~ ) 1, or equivalently, I'~((d) oc ~~(
at ~(d~ ) k~T according to (3.16). A similar result holds
for the q species. One may easily check that II& z oc P,
which has been used to justify (3.11). Only in the limit
h' ~ 0, would the coefficients become so small that the
condition requiring that Il„sdominates over Ilg is no
longer valid. In this case, one needs to retain all of the
contributions from 11„~h, in (3.10). Then I'„s(0)could
deviate from the linear-T dependence.

The relaxation rates h/r„s for p and q species due
to scatterings with the gauge fluctuations should be ob-
tained by inserting the vertex correction in the self-
energies such as (3.19), which can be reduced to the well-

known 1—cos 8 factor in the quasielastic case. But since
D"'~(q, 0) have very weak q dependence, cos 8 essentially
has no important effect and 5/r„s 21'„~.As 7v
one can use a single relaxation time r, (= 7~ 7s) to
represent them later:

Do —2/&) .f['7~'~sI /A(q) = (q~ao) /2.
s'eq

2)7(0)kaT, ~(d~ &P '
~, (~)

(3.24)

Therefore in the self-consistent scheme described
above, )7 is a dimensionless function independent of both
temperature as well as the coupling strength. Then at

The transport relaxation rate 5/vg for the h species
can be also calculated from scattering with D" and D~.
One can easily write down

I Z" (k 4.) =--).( (&."-4)+f(&.+,)1 P"(q (.+, &.)+P'(q (-.+, (.)- (3.25)

where $s ——k2/(2m~) —pa. At (s = 0, the dominant contribution will come from I/I, +v~ & P on the right-hand side

of (3.25), which implies q « q, . Since one can neglect the q dependence of P and P in the long-wavelength regime,
one gets

ImE"„(k,o) = D„JdO[n(O) + f—(A)][P"(0) + Pl'(0)], (3.26)

where the density of states Dq ——ml, a2/(2n ). A rescaling
of the frequency 0 on the right-hand side of the above
equation leads to ImZ" (0) = —(7'(k~T) /ta. The numer-
ical value of r/ is found 4 with a weak doping depen-

dence. Due to the weak q dependence of P" and P~, the
1 —cos 8 factor will not play a role and one simply has

—= —21mZ~(0) = 2(7'
(k~T)'

7h
R (3.27)

Resistivity. Apply the external electric 6eld e
—Vaz", with the transverse component a'" = 0. As
explained below (3.7), e will not only act on the holon

part but also on the p and q species through a redistri-
bution of the 6eld

e = —V'a" —V'a" —Vas0 0 0

=—h+ +p+ &q) (3.28)

+h —Ph~h. (3.29)

such that the longitudinal current constraint (3.&) holds.
For the 6 species, the Drude formula of the resistivity

is given by ph —— , ",where n is the density of hole,
and then
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By the usual procedure, one would also treat the trans-
ports of p and q species separately and then combine all
of them together by a Larkin-Ioffe-like rule to satisfy the
current constraint (3.8) at a macroscopic level. How-
ever, as the p and q species are subjected to the fictitious
magnetic fields, their wave packet sizes are comparable to
the magnetic cyclotron length ao, which is much smaller
than the average distance between the composite holes
at small doping. Then during the relaxation time before
they encounter other composite holes, two wave packets
of p and q will have to be bound together microscopi
cally in terms of the density constraint (3.1). Since the
p and q species see their fictitious magnetic fields in dif-
ferent directions in (3.7), the transverse effects, which
would otherwise lead to the Hall effect for each of them,
will thus be cancelled out at a length scale larger than

q, ao through the binding force enforced by A and P.
Thus the A and P fields can be effectively divided into

two parts,

& = &scatt + &by /3 = Ps«tt + Ps& (3.30)

~8 p8 J8& (3.31)

where J', = J' = J . According to the current con-
straint (3.8), we find that the electron resistivity, defined

by e = pJ„has a simple form p = ph + p, . Since

pI, /p, ( —, ) "ts « 1, one therefore obtains the linear-T
resistivity

p oc k~T. (3.32)

The corresponding relaxation rate is lt/r, 2kIsT,
in which the coeScient is independent of the coupling
strength but with a weak doping dependence (cf. Fig.
5). When ]ld~ )) kIIT, oile also has l'I/T, oc ]47~. All of
them agree well with the optical measurements of the
high-T, copper oxide materials. Generally one expects to
see a small T2 upturn in (3.32) from pg at a sufficiently
high temperature.

IIal/ egect. Now apply the external magnetic field a'"'.
a " will solely act on the h species, since there is no in-
ternal transverse gauge field in (3.7) to transfer the effect
to p and q species. One may use the kinetic equation to
write down the o8-'diagonal coeKcient p" for h species
in the form p" = ph, and p"„=—ph, uH7. h, , where the
cyclotron frequency ~H could dier &om the bare one

by an. enhanced cyclotron mass m~. This

where A,«tt and P,«tt describe the long-distance and
long-time fiuctuations serving as the scattering sources
as discussed throughout the first part of the present sec-
tion, while As and Ps represent the microscopic binding
force discussed above. In the Appendix B, including Ag

and Ps, it is shown that the center coordinate of a pair
of p and q wave packets will simply be accelerated by
the external electric field e, = e~ + e~ added onto them,
with an efFective mass m, = m„+m~ [Eq. (B.7)]. As the
relaxation time for p and q are characterized by a single
r, in (3.24), the corresponding Drude formula will then

p, = pi, + p, /(1+cot 't&j), (3.33)

where pI, is negligible in comparison to p, as discussed
before and the cotangent Hall angle 0 defined by cot 8 =
p~~/pv~ is found as

1
cot8 =

(d07h
=aT +C, (3.34)

with n = 2''kis/(RuIIti, ) and the constant C originating
from the scattering of h species with impurities. The Tz
law for the cotangent Hall angle in (3.34) fit wells to the
experimental measurements of high-T, copper oxide ma-
terials. Andersons has proposed that a second scattering
rate is needed to interpret the experimental data. 4 It was
supported by the Zn impurity effect, which causes an ex-
tra T-independent contribution in cot 8.4 The scattering
rate fi/ri, found in the present work appears naturally in
(3.34) to serve as such a second scattering rate. The Hall
coeKcient RH can be written as

t'm„+m, & ri,
&H —- OC

nec ( mII ) r. T'

In order to fit the Hall angle data in YBa2Cu307
(YBCO), it has been found that the cyclotron mass mH
has to be very large, e.g. , mH = 45m if th, sx 830 K.
A mechanism for such an enhancement of m~ comes nat-
urally in the present approach.

The longitudinal resistivity p in (3.33) shows a mag-
netoresistance eEect

Ap = —cot Ocx —B T
p

(3.36)

which, however, is usually small, e.g. , cot 20 = 4 x 10
for YBCO at T = 100 K (Ref. 4). Nevertheless, the
prediction of the magnetoresistance (3.36) should be ob-
servable under a careful experimental arrangement with

is due to the fact that in the presence of the external
magnetic field a wave packet of holon h has to drag the
wave packets of the p and q together to go through the
cyclotron motion. This drag force cannot cause the p
and q species to perform a coherent cyclotron motion
but will enhance the effective cyclotron mass of the h
species, since p and q are confined in the LLL and thus
their effective masses could be very large. Such a big
cyclotron mass is in contrast to the longitudinal trans-
port masses discussed before. Note that the electric field
can be directly applied to both the p and q species inside
their orbitals, which changes the latter into the current-
carrying states and, as a consequence, the total longi-
tudinal effects are simply added up in p, as well as in

p
The total transport coefficients can be determined as

follows. The current J~ are decomposed into the lon-
gitudinal and transverse components as Ji, ——Jz + J'h,
with Ji', ——o"eh, ,

. Ji, ——a"„(eqx z). The longitudinal

component JI„hasto satisfy the current constraint (3.8),
i.e., J& ——J'„which determines the strengths of eg and
e, through e = eh + e, . Then simple algebra will lead to
the longitudinal resistivity
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a stronger magnetic field or at a lower temperature. In
obtaining (3.33) and (3.36), we have neglected the reduc-
tion of the longitudinal conductivity of p and q under the
magnetic field: Even though the external magnetic field
cannot be directly applied to the p and q species, the
longitudinal conductivity of them still can be reduced
(as 0" for h) due to the local transverse drag effect
&om h, which is now having a cyclotron motion under
the magnetic field. Such a correction would provide a
positive contribution to 6p/p in (3.36) without change
the Hall angle in (3.34). A further discussion of all the
contributions in the magnetoresistance will be presented
elsewhere.

Thermopotuer. Finally we briefly discuss the ther-
mopower 8 = 8p, + 8, . 8~ for the h species gives a
small temperature-dependent contribution, but 8, will be
dominant. When the temperature is extrapolated down
to zero where the broadening of the Landau level van-
ishes, 8, will be simply related to the entropym of p and

q species and one finds a Heikes-like formula for 8, :

be linear in temperature and is related to a relaxation
rate 5/7 = qkJBT, with q 2 independent of the cou-
pling ~t~~ngth. Furth~rm~r~, 5/~ ~ I~I at
is shown. The Hall coefficient behaves like 1/T and the
cotangent Hall angle follows a T law, as a consequence
that a second scattering rate is involved. When extrapo-
lated to zero temperature, the thermopower has a finite
intercept, which exhibits a strong doping dependence as
—"a ln (~2&2~). All of these properties are in good agree-
ment with the transport measurements of the high-T,
copper oxide materials. ~ 4 s Therefore, the experimental
measurements on the transport properties of the high-

T, materials lend a strong support to the present flux-
binding phase in its normal state. Furthermore, a mag-
neto resistance oc 8 T 4 has been predicted for such a
system. It would be interesting to measure the tempera-
ture dependence of the magnetoresistance in the copper
oxide materials so that the relevance of the present the-
ory can be further verified.

kg t' I —261
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which agrees very well with the overall doping depen-
dence in (Laq Sr )2Cu04, (taking 6 = 2z), and
other materials. 5 The absence of the spin effect in the
thermopower measurementssr also lends support to the
present charge-spin separation picture. The broadening
eff'ect is expected to become important with increase of
temperature and the corresponding temperature depen-
dence of 8, needs to be further explored.
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APPENDIX A.: EVALUATION OF A(q} IN EQ.
(3.18}

IV. CONCLUSIONS According to the definition

Based on the framework developed in Ref. 10, the ele-
mentary excitations in the flux-binding phase of the tJ-
model have been constructed in the present paper. An
important lesson we learned from this approach is that
the real charge and spin excitations can be quite differ-
ent &om the underlying decomposition scheme, which
is implemented to account for the no-double-occupancy
constraint in the t-J model.

The charge excitation in the normal state has been
shown to be rather simple in structure: A charge-carrying
holon always has to drag two auxiliary particles to move
together. Each of the auxiliary particles is confined in
the lowest Landau level under a fictitious magnetic field
in the opposite direction. These auxiliary particles rep-
resent the spin &ustration effect on the doped holes and
provide a scattering mechanism for the transport prop-
erties.

Thus, to establish the relevance of the theory with the
high-T, copper oxide materials, the transport properties
become a key. In this paper, the normal-state trans-
port decided by Eqs. (3.7a)—(3.7c) has been shown to
have the following properties. The resistivity is found to

A(~) = E..l~""I'
= E..E~ ~&s'Ik+ ~) &kls) &slk') &k'+ &ls') (A1)
E„,„&k'+~11101k+~) &klll0

in which we introduce the definition

where the summation runs over the states in the LLL.
According to Ref. 26, one has

110(rl r2) = &&y~llo~r2)

= (2~@0) exp
~ 2 ~

(r] + "2)
&4oo J

1+ 2 (Xg —iyg)(2:2 + iy2)
2GO

Then it is straightforward to show
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A(q) = f rierqor'dorodor'o amee (k' q- q~rI (r'~q + q)(qlro)(rolq')Ilo(r r')qqo(ro, ro)

1 - 2= (2xao) f rProi r'exp[iq Ir —r )]exp — o~i —r

2 2
= (2vrao)

' exp
2

(A4)

APPENDIX B:THE ROLES OF As AND Ps
For a particle in a uniform magnetic field H (perpen-

dicular to the plane) with the presence of a potential field
U, its motion is described by the following equations:s

1 BUx= —(dy ——
m Bz'

I BU
y=Q) x ——

m By'

which is similar to the classical equation with the cy-
clotron frequency ~, = —', .

For a p species, one has U = Up
——a~o + As, while for

a q species, U = Uv = aoz+ Ps with H ~ H in —(Bl).
Now suppose an external electric Geld is applied to the p
and q species along y direction such that ao ———e„yand
u~o ———szy. Without As and Ps, p and q species would go
through a transverse motion in the opposite directions
of z axis according to (81). However, As and Ps will
force p and q bound together at a length scale q, uo,
which essentially will cancel out such a transverse effect
as shown below.

One may write

x = x,y+X,
(82)

y=ycy+Y)
where x,y and y,„describe the cyclotron motions of p
or q species within a length scale ao while X and Y
represent the motions in a larger scale. In the y direction,
the electric forces are given by

BU~ BU„
By " BY'

I

Here the condition that As and Ps have a short-distance
cutoff at q,

i ao has been used. Then z,„,y,„andX,
Y can be decoupled as

~ ~

xcy = cycy )
~ ~

ycy —cxcy ~

(85)

and

1 t9UX = —(d,Y ——
m BX'

1 U
Y =(d,X ——

mBY

(86)

From (86), one can easily find

~ ~

m, Y=a, ——'Y,
Ta (88)

where m, = mz + mq and a dissipation term has been
added to the right-hand side of (87) with the relaxation
time 7; defined in (3.24). The binding fields As and Ps
are determined by the following equations:

Equation (84) describes the unperturbed motions of the

p and q species. And X and Y may be interpreted as the
center coordinates of the wavepackets of p and q species,
which should be bound together, i.e., X„=Xq = X,
Y„=Y~ = Y. Note that As and Ps will force X„=Xv =
0, Equation {85)will then reduce to

1 BUp q
(dc Y )

mp q

(87)
1 BU„s

my~ BY

BUv BUs

By
' BY

In the x direction, the binding forces have to be imple-
mented through As and Pi, to cancel out the opposite
transverse motions of the p and q particles:

OU„BAq BU„
Bz BX BX '

{84)
BU~ BPs BU,
Ox OX BX

B'As 1 BAs t'mph

BXBt 7; BX (m, ) '

B'Ps 1 BPb fmqb
BKBt r BX ' (m)

(89)

Equation (87) means that beyond a length scale q, i,
p and q particles are bound together and behave simply
like a single particle with a mass m, under a longitudinal
electric 6eld.
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