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A Hartree approximation is used to study the interplay of two kinds of scaling which arise in high-

temperature superconductors, namely critical-point scaling and that due to the confinement of electron
pairs to their lowest Landau level in the presence of an applied magnetic field. In the neighborhood of
the zero-field critical point, thermodynamic functions scale with the scaling variable [T—T,2(B)]/B '~~",

which differs from the variable [T—T,(0)]/B'~ " suggested by the Gaussian approximation. Lowest-
Landau-level {LLL) scaling occurs in a region of high field surrounding the upper critical-field line but
not in the vicinity of the zero-field transition. For YBa2Cu30& z in particular, a field of at least 10 T is

needed to observe LLL sealing. These results are consistent with a range of recent experimental mea-

surements of the magnetization, transport properties, and, especially, the specific heat of high-T, materi-

als.

I. INTRODUCTION

The superconducting transition in conventional low-T,
materials is well described by the Ginzburg-Landau
mean-field theory. Principally because of the large corre-
lation volume in these materials, the region in which crit-
ical fluctuations might be important is too small to be ac-
cessible experimentally. In high-temperature supercon-
ductors, by contrast, the critical region may be much
larger. Widely varying theoretical estimates of the size of
this region are obtained according to details of the cri-
terion employed, ' but marked deviations from mean-field
behavior have been observed over a temperature range
of the order of 10 K above and below T, .

Theoretical expectations of the kind of critical
behavior which might be observed are somewhat con-
fused. If fluctuations in the magnetic vector potential
can be ignored, then the zero-field transition ought to be
a critical point in the universality class of the three-
dimensional XF model, as is the superfluid transition in
He. When magnetic fluctuations are included, a

renormalization-group analysis by Halperin, Lubensky,
and Ma for a (4—e)-dimensional system reveals a run-
away of renormalization-group trajectories, which these
authors interpreted as a signal of a weakly first-order
transition. This interpretation is confirmed by an explicit
construction of the free energy. On the other hand, a
renormalization-group analysis in (2+@)dimensions in-
dicates a second-order transition in the universality class
of the CI' ' model in the limit %~1, while a lattice
simulation of Dasgupta and Halperin' is consistent with
inverted XF critical behavior. In high-T, cuprates, the
region in which a first-order transition or inverted XF
behavior might be detected is probably extremely small.
These are strongly type-II materials with penetration
depths in excess of 1000 A. In this situation,
renormalization-group trajectories pass very close to the
ordinary XF fixed point, suggesting that magnetic Quc-
tuations can indeed be ignored except in a very narrow
range of temperatures near T, .

Experience of critical phenomena in, for example,
fluids and magnets suggests that, in the presence of an ap-
plied magnetic field 8, there should be a critical region in
which thermodynamic quantities assume the scaling form

2 (t,8)=8 "A(x), where u„is a critical exponent asso-
ciated with the quantity A and the scaling variable is an
appropriate ratio of scaling fields. In principle, the
correct scaling fields would emerge from a
renormalization-group analysis, but this analysis is very
diScult in the presence of an applied field. An early cal-
culation of Prange" using the Gaussian approximation
suggests that 8 occurs in the combination 8g, where g is
the zero-field coherence length, so that the scaling vari-
able should be x =( T —T, )/8 '/ ", where v is the
coherence-length exponent. We shall argue that this is
not quite correct, however, and that the scaling variable
should be x = [ T —T,2(B)]/8 '/ ", where the line

T = T,2(B) is a renormalized version of the line usually

denoted by H, 2(T), the upper critical field in mean-field

theory. In the Gaussian approximation, with v= —,', these

two scaling variables differ only by an additive constant.
A diferent scaling form for thermodynamic functions

(which is not directly associated with a phase transition)
arises in the lowest-Landau-level (LLL) approxima-
tion, ' ' which is usually thought to be valid in the
neighborhood of the H, z(T) line. Here, the appropriate
scaling variable is y=[T T,z(8)]/8&, w—here the ex-

ponent P has the value P= —,
' in three dimensions or P =

—,
'

in two dimensions. This scaling behavior is well verified
experimentally for conventional superconductors, '

but the type of scaling which applies to high-T, materials
is at present a matter of some controversy. It has been
claimed by Welp et al. ' that magnetization, conductivi-

ty, and specific heat data for YBa2Cu307 & are consistent
with LLL scaling. On the other hand, Inderhees et al.
and Salamon et al. claim that experimental data is more
nearly consistent with critical-point scaling. In fact, the
predicted scaling forms for the magnetization and con-
ductivity are probably too similar to be distinguished ex-
perimentally. For the specific heat, the LLL scaling fit
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exhibited by Welp et al. is rather poor, and is achieved
only by the introduction of a prefactor which has no
theoretical basis.

In this work, we use a Hartree approximation to study
the interplay of critical-point and LLL scaling in an iso-
tropic, d-dimensional system. Although materials such
as YBa2Cu307 & are anisotropic, layered systems, we ex-

pect that the results of this study should provide a
reasonable qualitative guide to the scaling behavior in the
vicinity of the critical point, where the coherence length
is much larger than the interlayer spacing. The Hartree
approximation is in any case too crude to give accurate
numerical estimates either of critical exponents or of scal-
ing functions. We find that critical scaling may be ex-
pected in a region of small fields and temperatures near
T, (0), while LLL scaling occurs in a region which sur-
rounds the H, 2(T) line, but stops short of the zero-field
critical point at a field value which we estimate at be-
tween 10 and 100 T. The Hartree approximation is de-
scribed in Sec. II below, and a criterion for the vahdity of
the LLL approximation is obtained in Sec. III. Sections
IV—VI discuss scaling behavior of the field-dependent
coherence length, the specific heat, and the electrical con-
ductivity. A comparison with recent experimental mea-
surements is made in Sec. VII and our conclusions are
summarized in Sec. VIII.

On defining

t =to+eB+p, (2.6)

t =t +eB+A(2eB)"/ 'f(t/2eB), (2.g)

where A, =A, /(4m ), the renormalized temperature vari-
able is t =to+2 f0"dx x and

f(z)= f dxx "/ „—1
0 X

(2.9)

For 2(d (4, this integral is finite. We are not able to
evaluate it analytically, but its limiting behavior for small
and large values of z = t /2eB can be obtained straightfor-
wardly. When z is small, we have

we obtain the constraint equation (2.4) in the form

d" 'k 1t=to+eB+ 2eB g f d 2 . (2.7)4~ „(2n.) k 2+2eBn +t

The sum and integral in this expression is divergent,
unless the integration is restricted by an upper cuto8; of
the order of an inverse lattice spacing. However, this
divergence can be eliminated by an additive renormaliza-
tion of the temperature. On carrying out the sum and an-
gular integrations, we find

II. HARTREE APPROXIMATION
f (z) f zd/2 —2 (2.10)

The Ginzburg-Landau-Wilson reduced Hamiltonian
may be written in a standard form as

= fddx[l(V ie A)pl'+—r, I&I'+,'~Ill'],

where, in the critical region, to can be taken as linear in
temperature and A, as a constant. We assume throughout
that the magnetic flux density B=VX A is uniform, and
equal to the applied field. Thus the vector potential A is
not a fluctuating variable, and the expectation value of a
quantity f (P) is

(f(P)) =fSff(P)exp( —JV) f2)/exp( gf) . (2.2)—
For a d-dimensional system, a convenient gauge choice is
A= —,'B ( —y, x,0), where 0 denotes the components in the
(d —2) dimensions "parallel" to the magnetic field. We
implement an approximation of the Hartree type by in-
troducing an approximate Hamiltonian

%,=f ddx[)(V ie A)P(2—+(t, +p)]/[2], (2.3)

where p is determined self-consistently by requiring that
& and JVO have the same expectation value in the ensem-
ble of&o..

where f0= Jo"dxx' " e " (=~i for d =3). In this
limit, the constraint equation reads

t =t+eB+A fo(2eB)t, d/2 (2.11)

This limit corresponds to the lowest-Landau-level ap-
proximation, where the sum in (2.7) is approximated by
the term n =0. In this approximation, t can be expressed
in a scaling form, which is inherited by various thermo-
dynamic functions, ' namely,

i =(~foeB) &i.i.L(y) (2.12)

where P =2/(6 —d ) (so P =
—,
' in three dimensions),

y=(t+eB)/(kfoeB), and the scaling function xiii is
the solution of

~i.LL(» =y +2~i.i.i.(»' (2.13)

III. VALIDITY OF THE LOWEST-LANDAU-LEVEL
APPROXIMATION

In the opposite limit, z~ ~, corresponding to very low
fields, we have

(2.14)

where f =f0 dx x " (1—e ") (=2&m. for d =3).

&~—~,&,=—
& lyl'&, —~& ly('&, =0. (2.4)

The expectation values are easily expressed in terms of a
sum over Landau levels as ( )P( )0=I and ( (P) )o=2I,
where

2eB ~ dd 2k 1
(2.5)4~ „(2m.)» k +2eBn +to+p+eB

One can, of course make the approximation of neglect-
ing all Landau levels except the lowest without also in-
voking the Hartree approximation, and perturbative cal-
culations based on such an approximation have been pur-
sued by several authors. ' ' ' One finds that the scaling
form (2.12) persists, though the scaling function is no
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longer that given by solving (2.13}. It is clearly essential
to know where in the phase diagram the LLL approxima-
tion is likely to be valid, and we address this question
within the Hartree approximation in the following way.
We suppose that the function f (z) is well approximated
by (2.10) whenever z is smaller than some fiducial value,
say e. For z = t /2eB =e, the constraint (2.11) reads

IV. SCALING OF THE COHERENCE LENGTH

From the appearance of t in the propagator in (2.7), we
can identify this quantity in terms of a temperature- and
field-dependent coherence length g(t, B) as t =((t,B)
We find from the constraint equation (2.8) that it can be
expressed in a two-parameter scaling form as

t = eB—[ I —2m+2K fo(2eBe) i"],
t =(2eB)~s(8,5),

(3.1)
wnere the scaling variables are

(4.1)

where P=P ' —1=2—tI/2 (f=—,
' in three dimensions)

and defines a locus in the (t,B) plane, which is shown
schematically in Fig. 1. Points for which z & e lie below
this line and this, therefore, is the region in which we
might expect the LLL approximation to be valid. How-
ever, our analysis is based on the assumption that the or-
der parameter (P) is negligibly small. This assumption
presumably becomes invalid at some distance below the
mean-field H, z(T) line t = eB, bu—t we are unable to
determine whether some form of the LLL approximation
survives with ( P )%0. Supposing that the order parame-
ter is indeed negligible above the line labeled (P) -0 in

Fig. 1 (whose location we cannot determine precisely}, we
are led to the conservative conclusion that the LLL ap-
proximation should be valid in the roughly wedge-shaped
region labeled LLL in the figure. This region encloses a
high-field, low-temperature portion of the line t = eB, —
but stops short of the critical point t =B =0. As the
condition for the accuracy of the LLL approximation is
made more stringent, by reducing the value of e, the
wedge recedes to higher fields and lower temperatures.

8=2 '(t +eB)(2eB)

5=A, '(2eB) ~

(4.2}

(4.3)

with exponents v= I/(d —2) and oi=4 —d, and the scal-
ing function ~z is the solution of

5rs=8+f(~s) . (4.4)

It is straightforward to show that ~~ has a double-
power-series expansion in 8 and 5. For small fields and
temperatures close to T„wecan take the limit 5~0 with
8 fixed, to obtain the one-parameter scaling form

t=(2eB)vs(8, 0)=(2eB)f '( —8) . (4.5)

(4.6)

This should be valid in a region near the critical point
t =B =0, indicated schematically by the shaded "criti-
cal" region in Fig. 1. According to (2.10) and (2.14}, the
critical-point scaling function ~s(8, 0)=f (

—8) has the
limiting forms

~s(8,0)= ' . ' —2/(4 —d)
8

g —+ —oo .

In general, the regions where the LLL scaling form
(2.12) and the critical scaling form (4.5) hold must be dis-
tinct. There may, however, be a crossover region in
which both forms are approximately valid. This requires

gs(8, 0)-8 (4.8)

and

(4.9)

FIG. 1. Schematic phase diagram of a high-temperature su-

perconductor in the neighborhood of its critical point. Shaded

regions are those in which critical point or lowest-Landau-level

scaling should be observed. The line t = —eB corresponds to
the upper critical field, while the line (P)-0 is a notional one,
below which the approximation (P) =0 might be expected to
fail. The curve t/2eB =e represents a criterion for the validity

of the lowest-Landau-level approximation explained in the text.

where 0 =2v(1 —p)/(2vp —1). In the Hartree approxi-
mation, we have a. =2/(4 —d) and we find from (2.13)
and (4.7) that there is such a crossover region, namely,
the region of very low field below T„where 0 and y are
both large and negative. It is, however, in this region
that the approximation (P) =0 is likely to fail, so (4.8)
and (4.9) are not necessarily meaningful in this region.
Moreover, we do not know whether these limiting forms
of the scaling functions are valid beyond the Hartree ap-
proximation, so it is not clear whether the crossover re-
gion would be accessible in real materials.

In the usual way, the scaling relation (4.1}can be refor-
mulated as
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t = lt+eBI'"r( {P,rt), (4.10)

where P=2eBl t +eBl ', rl= l t +eBl ", and the + and
—branches of the scaling function refer to t & —eB and
t (—eB. It is straightforward to show that ~*, has a
double-power-series expansion in P and g. The form (4.1)

is, however, generally the more convenient.

V. SCALING OF THE SPECIFIC HEAT

1

2 Bt
(5.1)

These two definitions are not equivalent. The latter
definition was adopted, for example, by Bray' and is the
one we use here. It is slightly simpler, and agrees with
the natural definition of the specific heat in the many-
component limit, ' which is largely equivalent to the
Hartree approximation. Up to a nonuniversal constant
prefactor, the singular part of the specific heat is then
given by

dtC=1——. (5.2)

Scaling behavior of the specific heat now follows
directly from that of t. In the lowest-Landau-level ap-
proximation, we have

C=l— (5.3)

with the scaling variable y and scaling function iztL
defined as in (2.12) and (2.13), and this naturally repro-
duces Bray's result. ' Corresponding to the two-
parameter scaling form (4.1) for t, we find

C =1—R '(2eB) "8(8 5) (5.4)

where

a =2—d v= —(4—d)/(d —2)

and

8(8,5)= ~~(8,5) . (5.5)

This relation between the scaling functions for the
specific heat and the coherence length is a special feature
of the Hartree approximation, as are the associated rela-
tions

(5.6)

Identification of the specific heat within the Hartree
approximation is somewhat ambiguous. On the one
hand, we can define a Hartree approximation to the free-
energy density,

Eo =—V 'ln[ f2)P exp{ —%0)],
where %f0 is the approximate Hamiltonian introduced in
(2.3), and identify C=B Fo/Bt . On the other hand, we
can identify the entropy density of the original
Ginzburg-Landau-Wilson model (2.1) as S=—

—,'( lPl )
and the specific heat as C=dS/dt, and evaluate this
quantity in the Hartree approximation

between the specific-heat exponent a, the coherence-
length exponent v, and the correction-to-scaling exponent
to. It seems plausible, however, that the scaling fortn (5.4)
should be more generally valid. That is, we expect that a
region should exist in which both the asymptotic critical
behavior of the specific heat and the leading corrections
are described by a function of the form

C=C —CB- /2"e ' uB"/2
1 2 (5.7)

In this expression, C1 and Cz are nonuniversal ampli-
tudes and u is the scaling field associated with the leading
corrections. With t and 8 appropriately scaled [so that,
in particular, the line H, 2(T) becomes t+8 =0], the
scaling function C would be universal.

This scaling form has some familiar consequences. In
the limit 8~0 with t & 0, we can use (4.6) to find

C=c, —c2t (5.8)

with appropriate (nonuniversal) constants c, and c2.
Since a is negative, the specific heat rises to a cusp at the
critical point t =0. Below T, in zero field, a real super-
conductor is presumably in its Meissner phase, with
($)%0, where our approximations are not valid. The
field dependence at T = T, or t =0 is given by

C 8 —a/2v(9(81 —1/2v uBu/2) (5.9)

p(8 5) 5a/a&vp (85
—(2'—1}/cov) (5.10)

where the argument 85 ' "~ """coincides, up to a con-
stant, with the argument y=(t+eB)/(kfoeB)~ appear-
ing in (5.3}. We do, of course, find such behavior in the
Hartree approximation.

For small fields, we have the asymptotic power-law
behavior C=c, —c2B ". Corrections to this asymp-
totic behavior now involve both B' ' " and B . In
the Hartree approximation, it happens that
1 —1/2v=co/2=(4 —d)/2 ( =—,

' in three dimensions). A
real superconductor, however, is probably characterized
by the exponents of the three-dimensional XY model, for
which co/2=0. 4 and 1 —1/2v=0. 25, and the leading
correction would be that involving B '

Of rather greater interest is the behavior near the line
t+eB =0, corresponding to the mean-field H, 2(T) line.
According to our earlier discussion, one should eventual-
ly pass from the critical region into a region where the
lowest-Landau-level approximation becomes good.
Within the Hartree approximation, the two-parameter
scaling form (5.4) is exact, and reduces to the LLL scaling
form (5.3} in the limit that 5-8"/2 is large. In general,
corrections to the asymptotic, one-parameter critical
scaling may have many contributions beyond those asso-
ciated with the scaling field tt indicated in (5.7},and all of
these might be important in the region between the criti-
cal and LLL regimes. It is interesting to speculate, on
the other hand, that this may not be so, and that a cross-
over to LLL behavior can be described by the two-
parameter scaling function 8(8,5). This requires that,
when 5 is large,
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as 8~0. If such an anomaly exists, it is too weak to be
resolved by any experiment known to us.

VI. SCALING OF THE CONDUCTIVITY

Electrical transport properties of a superconductor can
be investigated by using a time-dependent Ginzburg-
Landau equation to describe the dynamics. A method of
calculation is described in detail by Ullah and Dorsey
who use a Hartree approximation to study scaling
behavior in the LLL regime. Using essentially the same
method, we have calculated the conductivities e~~ and o ~

corresponding to a current parallel or transverse to the
applied magnetic field. We find that both conductivities
can be written in the two-parameter scaling form

B —(2+z —d)/2g (e g) (6.1)

with a dynamical exponent z =2, but with difFerent scal-
ing functions S)) and SI. In the limit of large 5, the LLL
scaling properties of the two conductivities are different,
however, and we find

(6.2)

Unfortunately, mapping out a two-parameter scaling
function experimentally to test the behavior suggested in
(5.10) would be extremely difficult. Theoretically, it is
important to note that the crossover mechanism
exemplified by (5.10) is quite different from that expected
at a multicritical point. In the mean-field theory of type-
II superconductors, the amplitude of the order parameter
in the Abrikosov vortex lattice vanishes continuously at
the line H, 2(T), and this is sometimes described as a
second-order phase transition. It is possible to speculate
that the specific heat, for example, should exhibit an
anomaly along this line, perhaps governed by a critical
exponent a'. In that case, the transition at
(T,B)=(T„O)would be a multicritical point, and one
would expect the one-parameter scaling function to in-
corporate the anomaly:

(5.11)

obtain a two-dimensional limit by taking a large inter-
layer spacing.

VII. COMPARISON WITH EXPERIMENT

r =gp —1 +2Ir
C 0

K @ok&T, g t40
+4m. f (7.1)

where 40=2.07 X 10 ' Wb is the Aux quantum, po is the
magnetic permeability, which we take to be that of free
sPace (Pp=4IrX10 Hm '), and K is the Ginzburg-
Landau parameter. The quantity gp is a characteristic
length, of the order of the zero-temperature coherence
length.

From the first two terms on the right-hand side of (7.1),
we find the slope of the H, 2( T) line as

While the Hartree approximation may well provide a
useful guide to the scaling behavior to be expected in real
high-T, materials, it is numerically rather inaccurate,
having critical exponents a= —1 and v=1 in three di-
mensions, compared with a= —0.01 and v=0. 67 for the
three-dimensional XYmodel, which might be expected to
characterize real materials. Similarly, we do not expect
the scaling functions to be numerically accurate, and do
not present detailed computations.

Estimates of some gross features of the phase diagram
from the Hartree approximation may, however, have
some significance. To obtain such estimates, we need to
identify the parameters of the model in terms of measur-
able quantities. We use the customary means of identify-
ing the parameters in (2.1), which is explained, for exam-
ple, by Tinkham. ' These must be treated with caution,
however, since they are based on the assumption that the
entire phase diagram of the superconductor is described
by mean-field theory, which is not actually the case. In
SI units, we find that the constraint equation (2.8) in
three dimensions takes the form

where

SI.LL ))

=const X I LLI.(y)
—1/P

40 = —3.29 X 10 ( g()T, )
2Irf'2;

(7.2)

while

B—(z+2 —d)p/2g ( )0'y LLL, l ~

with

eVLI L I=coilst X 1 Li L(y)

(6.3)

where gp is measured in angstroms and T, in kelvin. We
can also obtain an estimate for the field strength, denoted
by BL„„in Fig. 1, at which the line H, 2(T) enters the re-

gion of LLL scaling. At this point, the first two terms of
(7.1) cancel, and the argument of f is equal to a value e,
for which f (e)=V'I)e'/ We thus .find

The results (6.2) and (6.3) agree with those quoted by Ul-
lah and Dorsey for d =3 and d =2, except that their
two-dimensional result for (T)~ is quite different from (6.2),
having the form (r~)

B' --SLL ~)(y). We are unable to
account for this discrepancy in detail. No doubt, howev-
er, it has to do with the fact that, whereas we have con-
sidered an isotropic d-dimensional material, Ullah and
Dorsey deal with a layered three-dimensional system, and

IT(K P,pks T~ ) )3 Tq K

(@pe) e
(7.3)

where BLzL is measured in tesla. There is no clearly
defined value of e which wil1 guarantee that the LLL ap-
proximation is good. Certainly, e must be smaller than
the value of approximately 0.3027 for which f(e)=0
Numerically, we find that f (z) can be reasonably well ap-
proximated by a function of the form f (z) =fp(z)z
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C=C —C B i "C
1 2

T —T, (0)

B 1/2v (7.4)

using the exponents of the three-dimensional XY model,
and find excellent agreement for fields up to 8 T, apart
from some rounding in very low fields, which is attribut-
able to finite-size efFects. They find, however, that equally
good agreement can be obtained using the scaling vari-
able [T—T,2(B)]/B'~ which appears in (5.7), provided
that the slope of the upper critical field line dB,2/dt is-
greater than about 5 TK '. This is consistent with the

for 0 &z ~0.1, where fo(z) is an amplitude which varies
from f(0)=~i to f(0.1)=1, so we surmise that LLL
scaling might be good for z (a=0. 1.

Detailed measureinents of the fluctuation specific heat
of YBazCu307 & have recently been reported by
Overend, Howson, and Lawrie. For this material,
T, =92 K, and we may reasonably take $0=10 A and
~= 100. We then estimate the slope of the H, z(T) line as
dB/dT =4 T K ' and, using values of e between 0.1 and
0.2, expect that LLL scaling might set in with an applied
field Buzz between 10 and 100 T. In fact, the measure-
ments of Overend, Howson, and Lawrie indicate that
LLL scaling fails at all fields up to 8 T. Junod et al.
have recently reported measurements on the specific heat
of YBazCu307 s up to 20 T. For fields greater than 2.5
T, they find that the LLL scaling form collapses their
data onto a common curve, but only in a narrow range of
temperature near T,2(B). In the neighborhood of the
peak a little below this temperature, their data do not
scale at all, in marked contrast to conventional supercon-
ductors, where the LLL scaling region extends well below
this peak. ' ' For this reason, we do not think that their
data are really consistent with LLL scaling. There is,
however, some indication that the scaling improves at
fields of the order of 20 T. Similarly, earlier specific-heat
measurements by Welp et al. ' and by Inderhees et al.
are at best consistent with LLL scaling only in a very
narrow range of temperature.

For a conventional material with, say, T, =10 K, and
a = 10 our estimate of Bi i i would be of the order of 10
T. Thus the schematic phase diagram of Fig. 1, together
with the estimate (7.3) of Bit L is in reasonable accord
with the observation that LLL scaling appears to work
well for conventional superconductors over a wide range
of fields, but seems not to work for high-T, materials ex-
cept, perhaps, in very large fields.

Following earlier authors, Overend, Howson, and
Lawrie attempt to fit their specific-heat data to a critical-
point scaling expression of the form

crude estimate of 4 TK ' obtained above, and with the
estimate of about 7 T K ' obtained by Palstra et al. by
extrapolating the transport entropy of vortex motion to
zero. However, it would not be consistent with the slope
of about 1.8 TK ' required by Junod et al. to optimize
their fits to LLL scaling.

The appearance of the scaling field T —T,2(B), or of
t +eB in (4.2), does not seem to be an artifact of the Har-
tree approximation used here. It arises simply from the
fact that the Landau eigenvalues are k +(2n +1)eB+t,
so that t always appears in the combination t +eB, and
this would appear to be true quite generally. Within the
Hartree approximation, we see from (4.5) that the scaling
variable 8- [T—T,z(B)]/B '~ "is itself a function of B/t
or of Bgs, where gs is the field-dependent coherence
length, rather than the zero-field coherence length which
appears in the Gaussian approximation. The difFerence
between the two variables [T —T, (0)]/B '~ " and

[T—T,z(B)]/B'~ ' is proportional to B" '~ "'=B if
v is taken to be the exponent of the three-dimensional XY
model. Since this correction varies rather slowly with B,
the distinction between the two scaling variables is prob-
ably difficult to discern by optimizing the collapse of data
onto a common curve.

VIII. CONCLUSIONS

We have used a simple Hartree approximation to in-
vestigate the critical-point and lowest-Landau-level scal-
ing properties of high-temperature superconductors. Our
principal conclusions are summarized in Fig. 1, which in-
dicates that critical-point scaling is to be expected in the
neighborhood of the zero-field transition, while lowest-
Landau-level scaling is restricted to a high-field region
near the upper critical field line H,z(T). In the criti-
cal region, the appropriate scaling variable is
[T T,z(B)]B' '—rather than the variable [T

T( )0]/ B'~ "which arises in the Gaussian approxima-
tion. While the Hartree approximation does not yield ac-
curate values for critical exponents or scaling functions,
it suggests that a minimum applied field of between 10
and 100 T is required to observe lowest-Landau-level
scaling in materials such as YBa2Cu307 s. These con-
clusions appear to be consistent with current experimen-
tal observations.
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