PHYSICAL REVIEW B

VOLUME 50, NUMBER 13

1 OCTOBER 199%94-1

Nonadiabatic and nonlocal electron-phonon interaction and phonon-plasmon mixing
in the high-temperature superconductors

Claus Falter and Michael Klenner
Institut fiir Theoretische Physik II-Festkorperphysik, Universitdt Miinster, Wilhelm-Klemm-Straf3e 10, 48149 Miinster, Germany
(Received 2 May 1994)

Within the framework of an electronic density response approach, recently worked out to describe
screening, lattice dynamics, and the electron-phonon interaction in the high-temperature superconduc-
tors, it is shown, using La,CuQ, as an example, that the already large (nonlocal) electron-phonon cou-
pling as calculated in the adiabatic approximation is further strongly enhanced for certain phonons in
the high-temperature superconductors (HTSC’s) in the nonadiabatic regime where dynamical screening
comes into play. At the same time, a low-lying plasma mode of the electronic system appears for wave
vectors in the (0,0,1) direction which mixes strongly with the phonons of appropriate symmetry and
leads in addition to the phonons to very large changes of the crystal potential. Such a coexistence of
phononlike and plasmonlike modes in the same frequency range is argued to be a specific feature of the
HTSC’s related to their layered structure and weak screening of the strong ionic forces in the c direction.
It leads to a significant increase of the retarded attractive interaction and provides, at least in part, an
understanding of the reduction of the oxygen isotope effect in these materials, which is difficult to ex-
plain for a pure (harmonic) electron-phonon superconductor.

I. INTRODUCTION

The most important step in order to understand the
high T, values of the cuprate superconductors means to
unravel the physical mechanism leading to an increased
pair binding. In view of the great success of the electron-
phonon interaction (EPI) in explaining superconductivity
in the conventional materials it is quite natural to investi-
gate first the EPI in the high-temperature superconduc-
tors (HTSC’s) and to separate features which are normal
(like local EPI effects being the source for superconduc-
tivity in the conventional metals) from those which are
specific and really important for the HTSC’s, and if possi-
ble to relate these to the characteristic structural and
electronic properties of these compounds. Such attempts
have been undertaken, e.g., in Refs. 1-8.

In particular, the calculations in Refs. 2-5, performed
within a suitable microscopic model for the electronic
density response, indicate that unusual strong nonlocal
(long-range) EPI effects appear for certain phonon modes
as a consequence of an interplay of the layered crystal
structure, the quasi-two-dimensional electronic band
structure, and strong ionic forces which are only weakly
screened through a mechanism dominated by ionic
charge fluctuations. So far these calculations [and of
course also all frozen-phonon calculations within
density-functional theory (DFT)] have been carried out
using the adiabatic approximation, which relies on static
screening of the interactions, resulting in short-range
forces between quasiparticles (an exception is the calcula-
tion leading to the results displayed in Fig. 5 of Ref. 5).
As a consequence of this approximation, the important
long-range Coulomb correlations which give rise to the
(low-lying) plasma modes via dynamical screening and
the coupling to the phonons as discussed in this paper are
excluded from the beginning.
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In Refs. 5 and 8 a nonadiabatic view of electron-
phonon coupling has been suggested for high-frequency
phonon modes propagating along the A~(0,0,1) direc-
tion. In order to simulate qualitatively the reduced
screening, as is to be expected in the nonadiabatic regime
(see Ref. 5), in Ref. 8 frozen-phonon calculations have
been performed in the local-density approximation
(LDA) in which electron transfer was locally restricted,
leading to a very large electron-phonon coupling.

Static screening, i.e., using the adiabatic approximation
for the phonons and ignoring plasmons as further collec-
tive excitations of the system within the range of the en-
ergy spectrum of the phonons, is in general not a
sufficient approximation for certain high-frequency pho-
non modes along the A direction, because there will be
mode mixing between these phonons and the low-lying
plasmons in the nonadiabatic regime, as our preliminary
calculations in Ref. 5 have shown whenever the disper-
sion of the electronic bands in the ¢ direction is
sufficiently small at the Fermi level (and this is likely to
be the case; see Refs. 1 and 9). Of course, here it is as-
sumed implicitly that a band picture can be applied in the
HTSC’s for the ¢ direction. Consequently, an experimen-
tal search for the possible existence of the low-lying
mixed c-axis phonon-plasmon modes as predicted by our
calculations would be helpful in the context of the ques-
tion concerning the type of electron motion in the ¢ direc-
tion, and, in particular, if the above assumption holds or
must be supplemented or replaced by some other hopping
mechanism in the ¢ direction to lower the kinetic energy
in the layered structure of the HTSC’s.

Often quoted facts in the literature which are thought
not to speak in favor of an EPI-mediated interaction in
the HTSC’s are the very high T, values possible in some
materials, and the reduced and varying oxygen isotope
effect. At least people who can be identified with the EP
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community think that the EPI as calculated within the
DFT LDA can explain superconductivity for the lower-
T, members of the HTSC’s while this may be question-
able for the higher-T, members. On the other hand, the
observed isotope effect is hard to explain in a pure (har-
monic) EPI picture. Concerning both topics, a nonadia-
batic enhancement of the already strong nonlocal, long-
ranged EPI effects of ionic origin, as calculated in the
adiabatic approximation, together with phonon-plasmon
mixing of the special type calculated below may give an
answer and may help to solve the HTSC puzzle.

The remainder of the paper is organized in the follow-
ing way. In Sec. II the theoretical description of the den-
sity response and the approximations made are reviewed
in a compact form. Section III gives the numerical re-
sults and the discussion of the calculated electron-phonon
coupling and the coupled phonon-plasmon dispersion.
Further, consequences for the oxygen isotope effect are
outlined. In Sec. IV the main results are summarized.

II. THEORETICAL METHOD AND MODELING

In this section we review our theoretical method which
underlies the treatment of the screening, the lattice dy-
namics, and the EPI in the HTSC’s. More detailed infor-
mation can be found in our earlier work.>-

We base our calculations concerning the local part of
the electronic density response and the EPI, respectively,
on a proper ionic model as a reference system. In this
model, the crystal energy E, being a function of the
configuration {R} of the ions, is given by a sum of pair
potentials:

E({R}))=E;+1 3 '"$o4(IRF—RI) . (1)
b,a,B

The constant energy E, comprises the self-energies of the
rigid ions. In Eq. (1), b denotes the unit cells in the crys-
tal, @ and B are sublattice indices, and R}§=R"+RB.
The pair potentials ¢, (that depend on the distance of
the ions only) are calculated by the method of Gordon
and Kim.!® Using in this method spherical ionic densi-
ties, as we do, leads to central forces between the ions.
Concerning the ionic charges we take the nominal
charges (La3*,Cu?>*,0?”) which appears to be reason-
able, though it is by no means necessary. Actually, the
(partly) covalent character of Cu-O bonding suggests to
apply somewhat decreased charges.’ The unstable 0>~
ion is treated with the help of the Watson-sphere
method!! and the ionic densities are calculated with a
modified version of the Herman-Skillman program!? in-
cludm§ in particular averaged self-interaction correc-
tions.!

The long-range Coulomb part is split off from the pair
potentials and is treated exactly using the Ewald method.
The remaining short-range part, ¢, is calculated numeri-
cally on a mesh of ion distances R, and is fitted by the
generalized Born-Mayer-type form

#(R)=a_e PR _g e PR (2)

The crystal energy from Eq. (1) is then minimized with
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respect to the structural parameters, yielding the equilib-
rium structure for the subsequent phonon calculations.
The dynamical matrix is set up using the Ewald method
for the long-range Coulomb contribution to the pair po-
tentials and employing Eq. (2) for the short-range interac-
tions.

So far the local part of the electronic density response
has been accounted for by the ionic model. Beyond this
approximation we additionally include long-range, nonlo-
cal contributions to the density response in the form of
electronic charge fluctuations (CF’s) on the ions. In a
physical picture, one can imagine that electrons are add-
ed to or are taken away from the copper d and oxygen p
shells of the overlapping ions making up the crystal.
Thus, density changes having the shape of the corre-
sponding orbital densities will result. Formally we can
account for this change in density by parametrizing the
electron density as follows:

p=p(R,{) . (3)

Here R is a shorthand notation for the locations of the
nuclei {R%} and denotes an explicit dependence of p on
the coordinates of the nuclei. In the present case this
comprises the density change corresponding to the rigid
displacement of the ionic densities with the nuclei, which
just constitutes the rigid-ion model (RIM). The second
argument {={{%} denotes a set of “generalized coordi-
nates” corresponding to some appropriate degrees of
freedom of the density, as, for example, here CF’s, the
changes of which are not explicitly prescribed with
respect to the motion of the nuclei, but are to be deter-
mined implicitly from the variational principle of the en-
ergy. b denotes the unit cell the effective electronic de-
gree of freedom (EDF) £ is associated with, and x num-
bers the different EDF’s within the unit cell. According
to Eq. (3), the displacement-induced change in density,
P2(r),' is given by

dp(r)

Pi(r)=
N P

tot

dp(r)
ace

—_ | 9p(r)
dR}

alv

ex

=[PyD]rn— T plr—ROXE . @)
bk

[P%(r)]rm gives the explicit change in density associated
with the RIM. The densities p,(r) describe the shape of
the change in density associated with the EDF’s and are
denoted as form factors. As mentioned above, we identi-
fy the form factors with the copper d and oxygen p orbit-
al density in our model. The quantity X that expresses
the reaction of the EDF in response to an ion displace-
ment is given, in compact notation, by

X=C™B. (5)

The coefficients C2% describe the mutual interaction be-
tween the EDF’s. They are defined by
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d’E(L,R) 2 S[o(K)—f(k+q)
ca = P (6) M (q=—=3 q
G latc T Nn,, E,(k)—E,(k+q)
k

where E(§,R) is the function which results if Eq. (3) is in-
serted into the Hohenberg-Kohn energy functional. The
quantities B®4( A=aa) express the interaction between
the EDF and the ions, according to their definition

B A= —Eb(g—x— : (7)
gKaRl

A parametrization of the electron density as in Eq. (3) is
obtained in our model by making the ionic charges vari-
able, i.e., {={Z%}, where Z3 is the ionic charge of the
aa ion. Likewise as in the ionic model it is supposed that
the total electron density of the crystal is given by the su-
perposition of the individual ionic electron densities,
where the charge of the latter may now vary in response
to the displacements of the ions in a lattice vibration. In
this way the rigid-ion Coulomb energy as calculated in
the RIM can relax in accordance with the kinetic-energy
contribution to C. The energy of the system in the pair-
potential approximation, Eq. (1), then depends on the
ionic charges, and we may, in principle, calculate the
quantities C and B according to Egs. (6) and (7), respec-
tively, from Eq. (1). Note that also the ionic self-energies
have to be considered because they also depend on the
ionic charges. In practice, the kinetic-energy contribu-
tion is excluded from the pair potentials and the ionic
self-energies in calculating the interaction C and is treat-
ed in a different manner (see below and Refs. 3 and 5). In
varying the ionic charges we ignore relaxation effects, i.e.,
we do not recalculate self-consistently the ionic wave
functions for each value of Z, but do simply put electrons
in or out from the fixed outmost shell. The form factors
representing the shape of the density variation are then
given by the orbital densities of the corresponding shells
at the copper and the oxygen ions.

It is convenient to write Eq. (5) in a form known from
usual density response theory:*°

X=Me"'B (8)
with
e=1+VII . 9)

In Eq. (8) and (9) we have introduced the dielectric func-
tion € and the polarizability II of the electronic system,
describing the kinetic-energy contribution to C. The
Coulomb and exchange-correlation (XC) contributions,
on the other hand, are contained in the effective
electron-electron interaction ¥, which is defined analo-
gously to C in Eq. (6), but with E replaced by its Hartree
and XC part only. This separation is useful if we want to
discriminate between the screening properties of a metal
and those of an insulator, the differences being contained
in I1,>3 or if we want to extend our model approximative-
ly to the nonadiabatic regime, including dynamical
screening.

In the adiabatic approximation within DFT I~ (r,r’)
is given by the second functional derivative with respect
to the density p of the kinetic single-particle energy, and
can be represented in a tight-binding approach®> as

X[Ct,(k)C,, (k+q)]

X[Cr. (k)C,, (k+q)]* . (10)
The fs, E’s, and C’s represent occupation numbers, the
electronic band structure, and the expansion coefficients
of the Bloch functions in terms of tight-binding func-
tions. N is the number of unit cells in the crystal and «,k’
are orbital indices. k and q denote wave vectors from the
first Brillouin zone. The generalization to the nonadia-
batic regime (dynamical screening) needed can be
achieved by calculating the electronic density response at
the frequency w of the perturbation, i.e., in our case at
the phonon frequency. Neglecting in Il the renormaliza-
tion effects on the quasiparticles introduced by the EPI
and also by the low-energy plasmons themselves, dynami-
cal screening can be accounted for by adding —(#w+i6)
to the differences of the single-particle energies in the
denominator of the expression for II in Eq. (10) (note that
both scattering channels can lead to a temperature-
dependent quasiparticle damping in general, which might
have influence on the phonons and plasmons themselves
and also on the transport and optical properties in the
HTSC’s). 8 is an infinitesimal small positive real number.
In this way the electronic polarizability and thus the elec-
tronic density response represented by Egs. (8) and (9) be-
comes frequency ¢ dependent

The quantity V . in Eq. (9) describes the Coulomb and
XC interaction energy of a pair of CF’s excited at ax and
bk’. Its intersite contribution is dominated by the long-
range Coulomb interaction. The on-site contribution
V2 =y, is repulsive and counteracts the occurrence of
CF’s. It is mainly due to the Coulomb energy associated
with the CF form factor densities. In particular, the on-
site repulsion for Cu is very large, affecting (besides II) to
a great extent the magnitude of the CF’s. Finally, the
quantity B4 describes the change in potential at the bk
CF site when an ion A is displaced in the i direction.
More precisely, it is the change in the potential averaged
over the bk CF form factor. Thus, BP** gives the driving
force for the bx CF due to a unit displacement of the ion
A. £ !B then is the screened change of the site poten-
tials in response to a unit displacement. The dominant
contribution to B comes from the long-range Coulomb
interaction. Note that the potential changes described by
B include, in addition to the usual Kohn-Sham potential,
a kinetic-energy contribution as well.

For the calculation of I1,,.(q,®) for La,CuO, we use an
eleven-band tight-binding model for the CuO plane, in-
cluding all the Cu d and O, , p orbitals.>> In the subse-
quent steps for the calculation of the density response
[Egs. (8) and (9)] we do not discriminate between the
different polarizations (partner functions) of the d or p or-
bitals, respectively. In particular, we use the same on-site
(Coulomb and exchange-correlation) interaction parame-
ters for all pairs of orbitals of an atom, irrespective of po-
larization. Similarly, also the intersite interaction param-
eters and the charge-fluctuation—ion interaction parame-
ters (B) are used polarization independent. In this case it
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can be shown that working with the full 11 X11 polariza-
bility matrix is equivalent to using a “contracted” matrix
of size 3X 3 that is obtained from the 11X 11 matrix by
summing over the different polarizations of the Cu d and
O,,, p orbitals, respectively. This procedure is different
from our previous work>? (an exception is the calculation
leading to the results displayed in Fig. 5 of Ref. 5), where
we kept only the Cu dxz_yz and the O, ,0, p-o orbitals in

the polarizability matrix, neglecting all the other ele-
ments.

In order to introduce interlayer coupling into our cal-
culations, we extend the original two-dimensional tight-
binding model by coupling the Cu d orbitals in one layer
to the nearest O, , p orbitals in the two adjacent layers.
In this way a (slight) dispersion in the ¢ direction is intro-
duced into the model. The corresponding tight-binding
parameters then can be varied in order to study different
situations for mixing of the phonon and plasmon degrees
of freedom by changing the dispersion of the electronic
band structure in the ¢ direction via the interlayer param-
eters. Altogether, the model seems realistic enough to ex-
hibit the main phenomena introduced by dynamical
screening and interlayer coupling.

The coupled-mode frequencies of the phonons and
plasmons then must be determined self-consistently from
the secular equation for the dynamical matrix which con-
tains o implicitly via the density response [quantity X in
Eq. (8)]. As a further quantity, calculated numerically in
Sec. III, which measures directly the strength of the EPI
in a certain mode we introduce the self-consistent change
of the crystal potential 8V 4(qo,w,(q),r) induced by the
phonon mode qo (o is the polarization index) at the fre-
quency w,(q) and weighted with the density form factor
p.{r—R¥) of the electronic charge fluctuation of the ion
localized at R* in the crystal, i.e.,

8V, (qo,0,(q))
= [V p(r—R"8V 4(q0,0,(q),1), (1)

which can also be expressed in the form (leaving aside a
contribution from the kinetic-energy part to B)
4 172

5¢K(qa,wa(q))= 2 m—w(q) e,-a(q,a)

ai

Xe"(q,0,(q))BF*qle R . (12)

The kinetic-energy contribution to B in our model has
the same value in the adiabatic and nonadiabatic cases,
respectively, and plays no role in the context of the dis-
cussion of the strong increase of 8%, in the nonadiabatic
regime as compared to the adiabatic calculation. M, is
the mass of the ion of type a, e%(q,0) is the eigenvector
of the mode (qo ), €., is the inverse dielectric matrix, im-
plicitly defined by Egs. (8) and (9), and Bf%(q) is the
Fourier transform of the quantities B} 4.

ITII. NUMERICAL RESULTS AND DISCUSSION

In this section we present the numerical results for the
strong increase of the electron-phonon coupling strength

9429

in the nonadiabatic regime. Then we discuss phonon-
plasmon mixing along the A direction and its dependence
on the magnitude of the dispersion of the electronic band
structure in the ¢ direction. We also study the conditions
for the occurrence of an acoustic plasmon at the Z point
and its mixing with the phonons and how this situation
changes when interlayer coupling is admitted. Finally,
consequences for the oxygen isotope effect in the HTSC’s
introduced by phonon-plasmon coupling are outlined.

In the context of the nonlocal EPI, we have discussed
the very important role of the symmetrical apical oxygen
breathing mode at the Z point (O?) in La,Cu0,,>>> and
also certain oxygen modes at I" and Z in YBa,Cu,0,,*
polarized along the c¢ direction and inducing favorable
charge fluctuation patterns and corresponding changes of
the crystal potential in the CuO planes which are impor-
tant for pairing. Furthermore, an interplay of nonlocal
EPI, retardation, and strong Coulomb correlation has
provided an interpretation of a universal relationship be-
tween T, and the hole content in the HTSC’s.> Concern-
ing the O mode it should be further remarked that it is
the highest A; phonon branch in the RIM (uncoupled
phonon mode, dash-dotted curve in Fig. 1) with OZ at Z
and the LO ferroelectric mode 43O (ferro) at I' which
couples strongly to the low-lying plasma mode along the
A direction (dashed curve in Fig. 1) if the latter is in the
region of the OZ frequency.

From Table I we can extract the strong increase of the
phonon-induced change in the crystal potential 6¢, in the
case of O? when passing over from the adiabatic to the
nonadiabatic description, taking dynamical screening
into account. Besides the results for 8¢, according to Eq.
(12), we also have listed in the table the quantity (8¢, )?
normalized with respect to (#i/2M ), M being the total
mass in the unit cell, in order to facilitate a comparison
with other estimates of the coupling, if available. Con-
cerning the absolute values given in Table I, they are
probably too large because screening might be underes-
timated in the present model, in particulate because CF’s
at O, and (presumedly less important) at La are neglect-
ed. However, the strong increase of the coupling in the
nonadiabatic case is a real and very important effect.
Looking, for example, at the results for the phononlike
mode (Ph) of the nonadiabatic calculation, we realize,
based on the large changes of the crystal potential, that
screening is drastically reduced in the nonadiabatic treat-
ment of the phonons. In this case the change of the
Coulomb interaction which arises in moving the O, ion
remains practically unscreened and leads to the strong in-
crease of 84,, especially at the Cu site (being shorter in
distance), while in the adiabatic calculation these changes
of the potential are screened more effectively (but are still
large, at least at the oxygen site; see the entries “Ad” and
“Adc” in Table I).

Thus the already large coupling strengths which are
found in the adiabatic approximation, as in our model or
in a density-functional calculation,® because of the strong
ionic forces, are further enhanced significantly by the
nonadiabatic effects, pointing a way for an understanding
of high T, values. Concerning these results and also the
appearance of phonon-plasmon mixing considered below,
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FIG. 1. Calculated phonon (plasmon) dispersion of La,CuO,
along the A~(0,0,1) direction for model 1. A,-symmetry
modes of the coupled system; —.—.—. uncoupled phonon;
— — — uncoupled plasmon; - - - borderline for damping.

we do not expect that the numerical values are yet accu-
rate enough for quantitative agreement with experiments;
however, the basic physical effects exhibited by our calcu-
lations should be qualitatively described in a correct way
at the level of the present model. In more detail this
means a strong increase of 8V, in the nonadiabatic re-
gime as compared with the adiabatic regime, the ex-
istence of a low-lying plasmon mode in the A direction
strongly coupling with certain phonons of the same sym-

TABLE I. Magnitude of the phonon-induced potential 8¢, in
meV (first line of each entry Ad, Ph, Pl, respectively) for
La,CuO, at Cu and O, , in the CuO plane, according to Eq.
(12), for the O mode. The second line of each entry gives for
O (8¢,)* normalized by (#/2M®) in units of [(€V/a.u.)?]. The
values indicated by Ad correspond to (metallic) La,CuQ, in the
adiabatic approximation. The data in the next two entries cor-
respond to the coupled modes of the nonadiabatic calculation
for model 1; see also Fig. 1. The phononlike mode is indicated
by Ph and the plasmonlike mode by Pl. The last entry (Adc) in
the table gives the results for the complete calculation (8¥,) in
the adiabatic approximation. In contrast to the first three en-
tries Ad, Ph, Pl the results given in this last entry have been
corrected for the contribution from the kinetic-energy part of B
in order to estimate the influence of the latter.

0: Cu 0, o,

Ad 8.02 103.00 103.00
032 51.99 51.99

Ph 595.14 376.41 376.41
1309.45 523.81 523.81

Pl 1135.65 1004.72 1004.72
9220.30 7216.82 7216.82

Adc 25.91 93.20 93.20
3.29 42.57 42.57
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metry, and a 8V, for the plasmonlike mode which is even
larger than for the phononlike mode. In future work we
intend to address these topics more quantitatively by im-
plementing for the electronic band structure a complete
tight-binding representation of the corresponding linear-
ized augmented plane wave LDA calculation.

Next we present our results for the phonon-plasmon
mixing in the HTSCs, taking La,CuO, as an example. In
Ref. 5 some preliminary remarks on the phonon-plasmon
coupling in the HTSC’s have been presented as a note
added in proof. The main statements can now be sub-
stantiated by the numerical data displayed in Figs. 1 and
2 and Table I. The free plasma mode, which has been
calculated from the condition dete=0 is given by the
dashed line in Figs. 1 and 2. As mentioned above it will
couple along the A direction (mainly) to 4%° (ferro) at T
and, depending on its frequency, to OZ or/and LaZ at the
Z point. Note that O and La’ are end points of A,-
symmetry branches.

In Figs. 1 and 2 we have shown the branches of A,
symmetry (full lines). In the adiabatic approximation
there are six A, branches»® while in the nonadiabatic
coupled-mode treatment as given here an additional
plasmonlike branch appears. Note, however, that we
have displayed in Figs. 1 and 2 only the undamped solu-
tions where the damping region lies below the dotted
curves. In the model corresponding to Fig. 1, model 1
(M1) the lowest (acoustic) A, branch falls completely into
the damping region and so it was omitted. Also the two
lowest optical branches in Fig. 1 and the lowest branch in
Fig. 2 (model 2) are incomplete because in our calcula-
tions we intend to avoid the damping region.

For M1 we assumed a larger dispersion of the electron-
ic band structure in the ¢ direction than for M2. Howeyv-
er, the electronic structure is still nearly two dimensional
in M1, which should be appropriate to the situation in

40
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FIG. 2. Same as Fig. 1 (except for the uncoupled phonon
which is not shown) but for model 2 as explained in the text.
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the HTSC’s. The maximal bandwidth in the c direction is
about 50 meV at the Fermi level, in accordance with typi-
cal results given in Ref. 9. For M1 the plasmonlike extra
branch is higher than the phononlike branch. The form-
er is the highest branch in the spectrum shown in Fig. 1.
The shape of the phononlike branch is a bit more compli-
cated because mode mixing occurs with another A; pho-
non branch lying partly in the damping region. The pho-
nonlike branch starts at T’ with 410 (ferro) (lower dot)
and terminates at Z with O? dot at the Z point).

In M2, which was chosen in order to study the
behavior when approaching the two-dimensional limit,
the width of the dispersion in the c direction is assumed
about a factor of 3 smaller than in M1. Now the situa-
tion has changed; the plasmonlike mode is lower than the
phononlike mode because the phonons contribute in this
case substantially to the screening of the plasma oscilla-
tions. At I' the phononlike branch terminates at 430
(ferro) the highest frequency in the spectrum in Fig. 2,
while at Z it terminates at LaZ (upper dot). The plasmon-
like branch is modified by mode mixing with another A,
phonon branch. The branch starts at the plasmonlike
AX0 (ferro) mode at T (lower dot) and terminates at the
plasmonlike LaZ mode (lower dot at the Z point).

On the other hand, if we increase the dispersion in the
¢ direction in our model sufficiently, we approach the adi-
abatic regime and the phononlike mode in Fig. 1 turns
into its adiabatic shape [branch with the steep dispersion
in Fig. 5(b) of Ref. 5]. At the same time the ferroelectric
split between AL (ferro) and ATO (ferro) (upper dot in
Figs. 1 and 2 at I) is closed from below. Note in this con-
text that within a certain tube along the A direction
whose radius depends on » and increases with decreasing
dispersion of the electronic band structure in the (k,,k,)
plane, the charge response at a given frequency is nonadi-
abatic (insulatorlike) when the k, dispersion is sufficiently
small. It is only outside this tube that we have a conven-
tional metallic (adiabatic) charge response; compare with
the discussion in Ref. 5. Within the tube the plasmon
frequencies and the phonon frequencies are of the same
order if g, >>q, ,, i.e., for a conelike region around the A
direction. In this volume of q space we have phonon-
plasmon mixing and the strong nonadiabatic increase of
8V, considered in this work, which are favorable for su-
perconductivity. Remember that we have contributions
8V, from both the phononlike and the plasmonlike
modes. Simultaneously there is a strong enhancement of
the phase space for scattering for q vectors around the A
direction because of the quasi-two-dimensionality of the
band structure,’ amplifying the importance for pairing
via phonon-plasmon scattering. For such a reasoning to
apply the usual assumption in context with superconduc-
tivity is made that scattering processes within a small en-
ergy shell around the Fermi energy are most important.

In the opposite limit, approaching a strictly two-
dimensional electronic band structure, i.e., if departures
of the Fermi surface from two-dimensionality are neglect-
ed, the plasmonlike branch has zero frequency along the
A direction and the phononlike branch turns into a
branch that is characteristic for a two-dimensional insu-
lator; see Fig. 5(a) in Ref. 5. In this limit, when proceed-
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ing from the Z point to the (g,,q,) plane an acoustic
plasmon mode arises [see Fig. 3(a)], where we have cal-
culated the acoustic plasmon along the q=(g,,0,q,)
directions for different g, values. We recognize that the
lowest branch belongs to g, =2 /c (Z point) correspond-
ing to an out-of-phase motion of the electrons in different
planes. Qualitatively the same CF picture arises in con-
nection with the O? phonon in the metallic phase.>> Fig-
ure 3(b) contains besides the uncoupled acoustic plasmon
(broken curve) the results for the coupled LaZ-O?
phonon—(acoustic)-plasmon modes near the Z point at
q=(q,,0,2m/c). We observe that mixing occurs in a rel-
ative small g-space region around the A direction which
increases with decreasing dispersion of the electronic
band structure in the plane. In context with the acoustic
plasmon the work in Ref. 15 should be mentioned. In
this paper the possibility of an enhanced plasmon-
induced electron pairing is discussed as a possible source
for high-T, superconductivity.

On the other hand, from our discussion above we con-
clude that in case interlayer hopping is taken into ac-
count the plasmon mode at Z is not acoustic but starts at
a finite frequency (compare with Fig. 1), and this mode
[broken curve in Fig. 3(c)] then replaces the acoustic
plasmon [broken curve in Fig. 3(b)] of the strictly two-
dimensional situation. Figure 3(c) also contains the
mixed phonon-plasmon modes (full curves).

A remark concerning the position of the massive
plasmon in other HTSC’s which can have additional
Fermi-surface (FS) pieces might be appropriate. This po-
sition is in general not determined primarily by the larg-
est dispersion of the electronic band structure in the ¢
direction at the Fermi level, but essentially by a weighted
average of the dispersion on the Fermi surface. Thus, as
long as (possibly) more three-dimensional parts of the FS
do not have too much weight, we expect again low-lying
plasmon modes in this more complex situation.

In case there is a quasi-two-dimensional van Hove-like
peak in the density of states (DOS) Z(g) as found in
band-structure calculations near the Fermi energy, e.g.,
caused by a saddle point at a certain k vector, we have a
large contribution to II(q) in the A direction in Eq. (10)
from this k-space region. Thus the corresponding k,
dispersion of the electronic band structure around this
point is very crucial in determining II(A) in case g is
shifted to the peak in the DOS with doping. In this way
states around a van Hove-like DOS peak, besides dom-
inating in pairing, additionally have considerable
influence on the position of the plasma mode in the A
direction and consequently on a possible phonon-plasmon
resonance. So a correlation between the variation in
Z (g5) with doping and the position of the plasma mode
can be established. Ultimately, because of the large an-
isotropy due to the layered structure of the HTSC’s con-
sisting of carrier-rich CuO planes alternating with ionic
planes with fewer carriers, we have both a relatively high
DOS (depending on doping) and simultaneously a strong
electron-phonon-plasmon coupling in the same frequency
range resulting from nonadiabatic and nonlocal effects,
which generates a favorable situation for high-T, super-
conductivity.
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Considering the aspect of the strong coupling of the
electrons to optical phonons like the ferroelectric mode at
the T point, this situation is similar to the case of polar
semiconductors or doped (pseudo)ferroelectrics like
SrTiO;. Here at long wavelengths we also obtain mixing
of the optical phonon modes and the plasma modes and
the electrons then interact via the coupled phonon-
plasmon modes. As shown in Refs. 16 and 17, this pro-
vides an effective mechanism for pair binding and super-
conductivity in these materials. By changing the carrier
density the resonance frequency of the plasmon can be
varied; the same effect can be achieved in the HTSC’s by
differences in the dispersion of the electronic band struc-
ture in the c direction considering different materials or,
as discussed above, with doping [possibly leading to vari-
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50
ations between the two-dimensional limit and more (an-
isotropic) three-dimensional behavior] in order to obtain
eventually an optimal situation for pair binding, e.g., by
shifting the resonance frequencies of the phononlike and
plasmonlike branches closer together, thereby optimizing
the attractive interaction between the electrons (holes) in
the corresponding frequency range. Compare also with
the discussion in Ref. 16 where it is argued that the tran-
sition temperature is greatly enhanced in case the reso-
nances occur near each other.

A final remark is concerned with applying our findings
to the oxygen isotope effect. The strong mode coupling
of the plasmon in particular with the axial symmetric
apex oxygen breathing mode O leads to a reduction of
this effect in proportion to the plasmon character of this
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FIG. 3. (a) Acoustic plasmon dispersion for the two-dimensional band structure in the eleven-band tight-binding model along the

q=(g,,0,q,) directions. The different line types indicate different values for g,:

g,=1.0. g, is in units of [(27/c)]. a and c are lattice constants. (b) Phonon-plasmon mixing for the acoustic plasmon of (a)
for q=(q,,0,27/c). The different line types have the following meaning:

coupled LaZ-O? phonon-plasmon modes near the Z point. (c) Phonon-plasmon mixing for the massive plasmon of model M1
-+ - borderline for damping; — — — uncoupled plasmon;

taking interlayer coupling into account. q=(q,,0,27/c).

© q,=0.25 — — — ¢,=0.5; — —. —- g:=0.75;

- - - borderline for damping; — — — uncoupled plasmon;

coupled

O, phonon-plasmon modes near the Z point. Lower mode, phononlike; upper mode, plasmonlike.
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mode. Finally, in a purely plasmon-dominated mecha-
nism the isotope effect vanishes completely. Note in this
context that the isotope effect is smallest for materials
with the highest 7,.’s and becomes normal for very low
T, values.

In addition to the plasmon-induced variation of the
isotope effect just discussed, the nonlocal character of the
EPI found in our calculations means that there is a con-
tinuous distribution of “optimal lengths” for pairing in
the neighborhood of the optimal length for pairing corre-
sponding to the O? frequency.’ This implies a certain in-
sensibility of pairing to the phonon frequency and thus a
further reduction of the isotope effect can be expected.

IV. SUMMARY

Within a suitable microscopic model for the descrip-
tion of the electronic density response in the HTSC’s,
which has been extended to include dynamical screening,
we find a strong increase of the already large nonlocal
electron-phonon coupling strength as found in the adia-
batic approximation when passing over to the nonadia-
batic regime. The small dispersion of the electronic band
structure in the c direction leads to strong mixing of low-
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lying plasmons and phonons of the same symmetry in the
A direction and to an insulatorlike charge response
within a certain tube (depending on the frequency) along
this direction, while outside this tube and in particular in
the (g,,q,) plane we have a metallic charge response. In
particular for the plasmonlike mode very large changes of
the crystal potential have been calculated Further, the
possibility of an acoustic plasmon is investigated, which
disappears if interlayer hopping is taken into account.
Finally, a plasmon-induced variation of the oxygen iso-
tope effect is outlined. Altogether, our calculations point
to the coexistence of coupled phonons and plasmons of
special type, around the A direction, with large coupling
strength to the electrons. A possible resonance coupling
between phonons and plasmons may well be triggered by
a van Hove-like DOS peak. These findings could be use-
ful on the route to understand the underlying mechanism
for pairing in the HTSC’s and their high T, values.
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