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Decrease in critical temperature due to disorder and magnetic correlations
in two-dimensional superconductors

I. Grosu, T. Veres, and M. Crisan
Department of Physics, Uniuersity of Cluj, 3400 Cluj, Romania

(Received 18 February 1994; revised manuscript received 31 May 1994)

We calculated the critical temperature of a two-dimensional superconductor taking into consideration
the effect of disorder on the Coulomb pseudopotential and on the magnetic correlations. The results are
in agreement with the experimental data for high-temperature superconductors.

I. INTRODUCTION

The discovery of high-critical-temperature supercon-
ductivity (HTS) has brought about many interesting
problems to solve. One of the most important effects
which makes the HTS's very different from the standard
BCS superconductors is the reduction of the critical tem-
perature T, due to nonmagnetic impurity atoms. It is
well known that in an isotropic BCS superconductor, a
dilute concentration of nonmagnetic impurities does not
change the superconducting properties. On the other
hand, it is well known that the normal state of HTS's is
very different from the normal state of BCS superconduc-
tors, and the doping of HTS's with magnetic or nonmag-
netic impurities' "has an important effect on the trans-
port properties, suggesting the occurrence of localization
effects. The importance of magnetic correlations has
been generally accepted due to the successful explanation
of nuclear magnetic resonance experiments in the Millis,
Monien, and Pines' model. The connection between the
magnetic correlations and disorder has been analyzed re-
cently by Moshchalkov' in order to explain the quasilin-
ear temperature dependence of resistivity, taking the
magnetic correlation length to be of order of the inelastic
scattering length. The same experimental data have been
explained by Levine' by departure from marginal-
Fermi-liquid (MFL} behavior. ' The MFL behavior may
cause a pair-breaking effect. At the present time, there is
not a clear explanation of the decrease in T, due to the
doping of HTS's with nonmagnetic impurities. In this
paper we consider a simple two-dimensional (2D} model
for HTS's with disorder and magnetic correlations. Us-

ing the Eliashberg equations we can, in the McMillan
limit, give an analytical expression for T, which contains
the influence of disorder. In Sec. II we consider a model
in which the pairing is given by a bosonic attraction, and

only the Coulomb interaction is affected by the disorder.
The influence of the magnetic correlations, which can ap-
pear in a 20 disordered Fermi liquid, on T, is treated in

Sec. III using the t-matrix approximation. In Sec. IV we
calculate T, as a function of the inverse scattering time
1/r and the ratio 2b, (0)/T, for a 2D disordered HTS
with magnetic correlations. The scattering time is taken
from the resistivity measurements' ' and we obtain a
good agreement between the theoretical result and the ex-
perimental data using realistic parameters in the calculat-

ed expression of T, . In Sec. V we discuss the results ob-
tained.

II. COULOMB INTERACTION

The Coulomb interaction is very strongly affected by
the disorder in the case of 2D superconductors. In order
to evaluate the Coulomb pseudopotential, we will follow
the method given by Belitz' and Entin-Wohlman, Gut-
freund, and Weger' and used by the present authors to
describe the disorder and the magnetic correlation effects
in 2D HTS's. In this section we will consider this effect
but using a diffusion coeScient which is frequency depen-
dent, obtained by Gor'kov, Larkin, and Khmel'nitskii, '

D(co) =Do 1 —
A, ln

where Dp vga /2, A, =l/2mEFr, EF is the Fermi energy,
and r is the scattering time. The Coulomb pseudopoten-
tial is modified by the disorder as

p+~ p

1+@I (dco/co)P(co)
ND

coD being the bosonic characteristic energy, and

P(co) = QPq(co)
1

(2)

(3)

with

Pz(co) = — ImI II(q, co)),1
(4)

where X(0)=m /2m. . The polarization function II(q, co)

has the diffusive form

11(q,co) = —N(0) D(co)q
D(co)q ico— (5)

1 1 4
P(co) =—I, ln 1+

2 (1+)I,in~cor~ } CO'7
(6)

which gives for the Coulomb pseudoptential p' the ex-

pression

and using the cutoff wave vector 2q, =2/&Dr we obtain
from Eqs. (3) and (4)

2

0163-1829/94/50(13)/9404(5)/$06. 00 50 1994 The American Physical Society



50 DECREASE IN CRITICAL TEMPERATURE DUE TO DISORDER. . . 9405

~ dtop'=p &++af (&+a&nii~ril) '
2 g co

2 ' —1

Xln 1+ 4
C07

N, 0&z(z
Xo(z,q)=.

D 2

z&zDq

Dq —iZ

From Eqs. (10)—(13},we get

(13)

This generalizes the results obtained in Ref. 17 where
the co dependence of D was neglected. For p=1.5,
Ez=2 eV, ma=5X10 eV, and SF~=4, we obtain
p' = 1. In the absence of disorder, p0 ——0.23.

Imt t(q, z)] =
T

0, 0(z&z
UNDq z

[(1—UN)Dq ] +z

(14)

III. INFLUENCE OF THE DISORDERED
MAGNETIC CORRELATIONS

Magnetic correlations have a destructive effect on stan-
dard superconductors and the decrease in T, due to mag-
netic correlations is known as the Berk-Schrieffer effect. '

The effect of the disordered magnetic correlations can be
expressed, as was shown in Ref. 20, by the parameter

where D =D(z) and is given by Eq. (1). We introduced
the approxitnation (13) for the diffusive susceptibility of
the disordered Fermi liquid to avoid divergences from
Eq. (8). Using (14) we calculate A, from (8) as

2
&1—UN UN

8Ir +2 1 —UN Ep&

=2f g (z),

where g (z) is given by the t matrix as

(8)

where

"dzf( )
2zr

z z ]+A, ln(zr )

' 1/2

(15)

dq 1
g (z) =N(0) —Im —t(q, z)

0 27TPp 7P

Here

t(q, z)= U yRPA(q~z) i (10) +2 arctan
Z7

zr+4(1 —UN ) +8ZI (1——UN )f(z)=ln
zr+4(1 —UN )++8zr(1 —UN )

1/2
8(1—UN }

1

where U is the Coulomb interaction and

Xo(q, z}
+RPA '5

1 U ( )
t

+2 arctan

' 1/2
8(1—UN )

Z7
+1 (16)

where

NDq
yo(q, z) =

Dq —iZ

with N=pIIg N(0). We approximate

(12)

IV. CRITICAL TEMPERATURE
AND THE GEILIKMAN-KRESIN FORMULA

In order to calculate T, and the expression for
26(0)/T, we will use the Eliashberg equations written as

[1 Z(to)]to= ——f dz' f dz[a (z)F(z)+g (z)]
2 0 0

tanh +coth
Z' Z 1 1

z'+z+ co z'+z —co

Z' Z
tanh —coth

1 1

Z Z+QP Z Z

XRe. &z' —a'(z )

2

Z(to)b, (to) =—f dz' f 'dz[a (z)F(z) —g (z)]
2 0 0

tanh +coth
Z' Z

2T
1 1

Z +Z+QP Z +Z N

Z' Z
tanh —eoth

2T 2T

&(Z')

&z' —a'(z')

1 1

Z 2+CO Z Z CO

—p' f dz'tanh Re .
z' 6(z')

(18)
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(3)

~ (eV)

FIG. 1. Dependence of the parameter A, on ~ ' for curve

(1), UN =0.9, curve (2), UN =0.8, and curve (3), UN =0.6, with
z =0.0005 eV, z, =0.2 eV, and EF=2 eV.

FIG. 2. Dependence of the parameter k on ~ ' for
UN=0. 9 and z, =0.2 eV. Curve (1), z =0.0005 eV, curve (2),
z =0.001 eV.

where where

a (z)F(z)=a (z)F(z)+
REF

(19)

(21)
The critical temperature T, can be obtained from the

linearization of Eqs. (17}and (18) and we get, if the mag-
netic correlations are neglected, the equation for T, :

Tc 1.134coD

1+k
X exp

X—[p" /(1+)M'lnro, /coD ) ](I,+ 1)

(20)

A, =A, „+2',/REF, P, =. I/EF, and p' is given by Eq.
(7). Using coD=5X10 eV, A, h=3. 5, @=1.5, EF=2
eV, and z, =boa we obtain an increasing of T, with the
disorder. For Ez~=4 we get T, =73 K. (When disorder
is absent the critical temperature, using the same parame-
ters, has a larger value. } If we consider now the magnetic
correlations in Eqs. (17) and (18},we obtain

1+1, +A,
T, = 1.134coDexp —[p /(1+@ intro, /coD)](I)+1)

(22)

In Figs. 1 and 2 we calculate A, as function of the in-
verse scattering time 1/r for different values of NU and

m'
The critical temperature T, as a function of I/r for

different values of the Coulomb interaction is given in
Fig. 3. We see that T, decreases with 1/r and in Fig. 4
we compare our theoretical prediction with the experi-

mental results. The values of I/r has been taken from
the resistivity measurements (Ref. 3} and from Fig. 4 we

see that there is good agreement between the proposed
mechanism of decrease of T, and experimental data.

In order to calculate the ratio b2, (0)/ Twe use the
McMillan approximation in Eqs. (17) and (18); and b,(0)
is obtained, following the standard method, as

Te(K)
TL-(K)

w "(eV) a "(eV)

FIG. 3. T, dependence on r ' given by Eq. {22) for
z =0.0005 eV, z, =0.2 eV and A,~h =3.5. Curve (1),
UN=0. 93, curve (2), UN=0. 9.

FIG. 4. T, dependence on r ' given by Eq. (22) with realis-
tic parameters and z =0.0005 eV, z, =0.2 eV, UN=0. 9, and

k„h =4; the experimenta1 data are taken from Ref. 3.
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1+A, +X
b(0) =2aiDexp —[p'/(1+ @'lnro, /ron )](I2+1)

(23)

where

& dz pPiz
I2=2 a zF z+ —g z

Q Z 2r

Xln 1+
COD

(24)

From Eqs. (23) and (22) we calculate

26(0) AC(I, I2 )—
T, [B C(I2+—1)][B C(I, +—1)]

(25)

where

A =1+X+A,

B=X—
A,~, (26)

N
1+p'ln

COD

V. DISCUSSIONS

We showed that the disorder introduced by nonmag-
netic impurities give rise to drastic effects on the critical

For UN=0. 9, A, h=4, and ~=0.7 eV ', we obtain
2b, (0)/T, =7. The deviations of the Geilikman-Kresin '

ratio 25(0)/T, for HTS's which contain a strong retarda-
tion effect due to disorder are large, and can be caused by
difFerent mechanisms such as the 2D character of the
electronic excitations.

temperature T, of a 2D HTS. Taking a frequency-
dependent diffusion coefficient, we calculated the
Coulomb pseudopotential and the effect of the magnetic
correlations on the critical temperature T, . If the mag-
netic correlations are neglected T, can increase with dis-
order. This can be explained by the dependence of the
Coulomb pseudopotential of the disorder, but for the
HTS's it is well known that nonmagnetic impurities give
a strong depression in T, . We showed that it can be ex-
plained by the contribution of disorder in the 2D magnet-
ic correlation factor A, , which maintains its singularity
of the form [NU/(1 NU)] b—ut also contains a factor
which depends on 1/r, and gives a decrease in T, . How-
ever, we have to mention that the magnetic correlations
in a 2D disordered Fermi system are a very difficult prob-
lem, because at low temperatures the susceptibility varies
as y(T)-T r (y= —', ) but in the high-temperature
domain the susceptibility is constant. The Moriya self-
consistent spin-6uctuation theory has been applied re-
cently to HTS's but the effect of disorder was not con-
sidered. The agreement with the experimental data can
also be explained if we use the predictions made by
Sachdev and Sing2 concerning the possible occurrence
of magnetic moments in the disordered Fermi system. A
qualitative explanation of the decrease of the critical tem-
perature has been given by one of us, but neglecting the
frequency dependence in the diffusion coefficient and tak-
ing into consideration the renormalization in the diffusive
dynamic susceptibility due to the scattering on the mag-
netic moments which may appear in the disordered in-
teracting Fermi liquid. The problem is open but it is one
of the keys for the selection of the appropriate pairing
mechanism for HTS's.
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