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The inSuence of the electromagnetic environment on the dc Josephson current is studied allowing

for nonadiabatic motion of the phase difference across a junction. The critical current is evaluated

nonperturbatively within mean-field theory, fully taking into account the nonlocal kernels in the
Ambegaokar-Eckern-Schon effective action. It turns out that the adiabatic approximation, which

can be justified when the superconducting energy gap exceeds the charging energy, yields qualita-

tively correct results even for the opposite case, although quantitative deviations from the adiabatic
approximation are found to be substantial in some experimentally accessible regions.

I. INTRODUCTION

The dynamics of a submicrometer tunnel junction with
capacitance C of the order of 10 ~s F or less can be
described in terms of the charge on the capacitor and
the phase defined as the time integral of the voltage
across it. These variables are canonically conjugate, ~

and their quantum fluctuations cannot be suppressed si-
multaneously. Which variable undergoes smaller quan-
tum fiuctuations depends on the impedance of the elec-
tromagnetic (EM) environment surrounding the junc-
tion. For a low-impedance environment, quantum fluc-
tuations of the phase are suppressed at the expense of
enhanced charge Huctuations, and vice versa for a high-
impedance environment. 2 4 The crossover impedance is
set by the resistance quantum Rq = h/4e constructed
from Planck's constant h and the elementary charge e.

For normal junctions, quantum charge Quctuations ob-
scure the Coulomb blockade of tunneling —the suppres-
sion of the low-bias tunneling conductance due to the
elementary charging energy. For superconducting junc-
tions, quantum fiuctuations bring about an even more
drastic efFect: If the dc impedance of the EM environ-
ment exceeds the critical value Bq, quant»m phase fiuc-
tuations completely suppress the supercurrent through
the junction. The quenching of the supercurrent at this
critical value is called the dissipative phase transition
(also referred to as the Schmid transition), which has
been studied theoretically for a quantum particle moving
in a cosine potential and coupled to a linear dissipative
environment (for a review, see Ref. 7). In fact, however,
this model can describe a Dosephson junction only when
the phase changes little on the time scale h/b set by
the superconducting energy gap L. The junction capac-
itance C plays the role of a mass for the phase degree
of freedom, and a large capacitance hinders rapid phase

motion. Therefore, only for junctions with capacitance
large enough to make the charging energy Ec =—ez/2C
much smaller than 4 (i.e., in the adiabatic L'imit) are re-
sults derived &om the cosine potential expected to be
valid.

By way of illustration, let us consider aluminum which
is often used for submicrorneter junctionss ~ owing to its
favorable processing properties. It has an energy gap of
about 2 K which equals the charging energy correspond-
ing to capacitance about 0.5 x 10 F. With the rapid
advance in microfabrication technique, it will soon be
possible to further miniaturize junctions, reducing their
capacitance to one-tenth of this value or less. Then the
restriction of the theory to the adiabatic limit will clearly
not be justified.

It is therefore interesting to study how quantum phase
Buctuations alter the dc Josephson current without re-
course to the adiabatic approximation. For resistive
Cooper-pair and quasiparticle current at nonzero volt-
age, Zaikin has recently examined nonadiabatic effects
perturbatively. ~s The dc supercurrent that we address in
this paper, however, cannot be studied perturbatively be-
cause any finite-order expansion in the tunneling ampli-
tude leads to a complete suppression of the supercurrent
if the dc impedance of the EM environment is nonzero.
We shall therefore work with a variational method, the
self-consistent harmonic approximation (SCHA), which
in the adiabatic limit was used by Fisher and Zwerger.

This paper is organized as follows. Section II pro-
vides a brief summary of the path-integral description
of a tunnel junction to establish notation and to make
this paper self-contained. Section III uses a variational
method to obtain a set of integral equations for a nona-
diabatic expression of the Josephson current. Section IV
numerically solves these equations and discusses the con-
sequences. Section V summarizes the main results of this
paper.
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II. PATH-INTEGRAL FORMULATION
OF THE PROBLEM

A. Effective action

While the operator description of a tunnel junction is
convenient when tunneling can be treated perturbatively,
the path-integral formulation has advantages if nonper-
turbative effects need to be taken into account. In this
formulation the key quantity is the effective action for
the degrees of &eedom of our concern.

The system we study consists of a Josephson tunnel
junction, its electromagnetic environment, and the exter-
nal driving source. Correspondingly, the effective action
has three parts Sg, So, and S, respectively. The rele-

vant variable in the problem is the phase y whose time
derivative is related to the voltage V across the junction
by

—= 2eV.
8(p

dh
(2.1)

Here and henceforth, we shall use a system of units in
which 5 and the Boltzmann constant k~ are equal to
unity. Electronic degrees of &eedom involved in tunnel-
ing and in the electrodynamics of the external circuit can
be traced out, yielding an efFective action which depends
solely on p. The part of the action describing Cooper-
pair and quasiparticle tunneling is given in imaginary
time by'4 ~

Sg[(p] = dry dr2 P(ri —r2) cos 'p(ri) + 'p(r2) 'p(ri) Ip(r2)
71 —72 COS

0 0 2 2
(2.2)

where the integrals extend from 0 to the reciprocal tem-
perature 1/T This .action is obtained by means of a
cumulant expansion of the partition function to second
order in the tunneling amplitude. The partition function
calculated from Sg therefore includes contributions of ar-
bitrarily high order in the tunneling amplitudes. The ker-
nels o; and P reflect properties of the normal and anoma-
lous electron Green functions of the junction electrodes.
The nonlocal nature in time of these kernels arises from
the elimination of the electronic degrees of &eedom that
are coupled to the phase y. According to BCS theory, the
kernels can be expressed at zero temperature in terms
of the modified Bessel functions Ko and Ki (Ref. 15) as

2n zp(ilu)„l)
Bq lcd~

l

(2.5)

time, evaluated with the action Sp. Taking a quadratic
form for Sp implies linear response of the EM environ-
ment in the relevant &equency region —a condition well
satisfied if the leads attached to the junction are metallic.
The Huctuation-dissipation theorem then lets us express
the Fourier transform of the retarded Green function of
the phase (in the absence of tunneling) in terms Zo(u).
Analytic continuation of this relation to the upper half
of the complex ~ plane and use of the symmetry of Gp
lead to17

&(r) =—

Q2 -2
n(r) = Ki (Girl)2' e2RT

Q2 - 2

Ko (&lrl) (2.3)

where u„=2+Tv (v = 0, kl, k2, . . .) are the Matsub-
ara frequencies for bosons. For a simple circuit with an
Ohmic resistance R shunting the junction with capaci-
tance C, one has Zo(ur) = R/(1 —iurBC).

We also need to include the action

where the junction electrodes are assumed to have the
same superconducting energy gap 6, and RT is the tun-
nel resistance of the junction in the normal state.

To the action (2.2) must be added a contribution So
describing the quantum dynamics of the phase in the ab-
sence of tunneling. This dynamics is governed by the cou-
pling of the phase to the EM environment of the junction,
and the strength of the coupling can be characterized by
the frequency-dependent impedance Zo(ur) of the entire
system. Since we are interested in time and length scales
that; are large compared to the atomic ones, Sp may be
assumed to be quadratic in p (cf. also Appendix A of
Ref. 16),

1/T 1/T
So[cp] = —— dri dr2 p(ri)Go (ri —r2)p(r2) &

2 0 0

(2 4)

where Go(r) = —(7 (p(r)y(0) ))o is the time-ordered (in-
dicated by 7) Green function of the phase in imaginary

1/T

S~[y] = —— I~(p(r)dr,
2e p

(2.6)

which describes an external source generating the current
I . The total action S = Sg+Sp+S describes a, current-
biased, shunted junction.

We are interested in the expectation value of the super-
current through the junction, which in the path-integral
formalism is given by

with

f 17p Ig[@]exp( —S[(p])
Dy exp( —S'[pj)

(2.7)

IJ(r) = 2e —dr'P(r —r') sin
V(r)+V(r') {2.8)

0 2

All path integrals in this paper are understood to have
the "thermodynamic boundary conditions, " i.e., the in-
tegration extends over all paths with restriction y(0) =
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C (1 dy)
d

2 E2e dr) (2.9)

B. Adiabatic approximation

The junction capacitance C contributes to the effective
action the "inertial" term

which makes irrelevant those phase paths y(r) which

vary rapidly on the time scale 1/Ec. If the condition
6 &) Ec holds, the remaining (relevant) paths change
little on the scale 1/A. Since for T = 0 the kernels o((r)
and P(r) are sharply peaked for small values of ~Ar~, one

may approximate the first contribution to SJ by

y(ri) —y(r. ) &
dr2 ry r2 cos (p rl

2 )
r' dy(r) . r" (dy(r) l

dr d7' r' cosy r + — sing r
2 dr 8 ( dr )

1 (1 dy(r)l'= —EJ drcos(p r + dr —Cp p r
2 (2e dr )

(2.10)

with Eg = —f drP(r) and hCp(y)
—e cosy f dr P(r)r . For the second contribution

one finds that

y(ri) —y(r2)
dry dr2 cl ry —r2 cos

2

1 ( ( g I2) (1 dy r
dr —

~

dr' o((r')r'
[ (

—
)

+ const
)&2 «)

dr —bC
i

—
i + const,

1 ( 1 dy(r)))
2 (2e dr j (2.11)

where bC —= e f dra(r)rz. This is the so-called adia-
batic approximation, in which the nonlocal time depen-
dence of the efFective action is replaced by the local one.
The o. term simplifies to a contribution proportional to
the squared phase velocity, which effectively increases
the capacitance by 8C = 0.75CE+Ec/Az. i4 This ca-
pacitance renormalization plays an important role in an
analysis of the superconducting-insulating phase transi-
tion in networks of Josephson junctions. i The P term
reduces, to the lowest order in d(p/dr, to the Josephson
potential Ez cos y(r), w—here the Josephson energy Ez
is expressed in terms of 4 and Bz by the Ambegaokar-
Baratoff formula Eg = orb, /(4Rz e ). Expanding sys-
tematically to second order in dy/dr, one also finds a
contribution (ignored in Ref. 18) hCp(y) = cosy b'C /3
to the capacitance renormalization from the P term. 2P

Because of its phase dependence —which corresponds to
a position-dependent mass in a mechanical analog —the
physical interpretation of bC(i(y) is less obvious than that
of bC . Fortunately, this does not cause any problem if

one considers the situation in which the phase makes only
small excursions from its average value (see below).

The adiabatic approximation becomes exact in the adi-
abatic limit b, /E~ ~ oo. In what follows we shall explore
situations in which the adiabatic approximation is not al-

ways justified.

III. VARIATIONAL PRINCIPLE AND
SELF-CONSISTENT HARMONIC

APPROXIMATION

We start from the variational principle for the free

energy)

F & F' = Fi, + T(S —Si,)i„ (3 1)

where F and Fi, are the f'ree energies that are evaluated
for the true action S and for an arbitrary trial action Si„
respectively. The symbol (A)&, indicates that the average
of a quantity A is to be taken with the trial action, i.e.,

f VyA[y] exp( —S„[y])
f 'Dy exp( —Sq, [y])

(3.2)

We take a Gaussian trial action Si, which well approx-
imates the true action S if the essentially contributing
paths y(r) undergo only small fiuctuations around some
average path (pp. Since we are considering a dc supercur-
rent, p0 must be independent of r. An appropriate trial
action can be obtained by expanding Sg to second order
in yi = y —yp and replacing the kernels n and P by n
and P that are to be determined so as to minimize F*:

x/r
sr(s) ~ f yl(rl) + yl (r2)dri dr2 P(ri —r2)— sin p0

0 2

1 p, (vl)+(pi(7'*) ' I W, (vz) —&p, (v2))

)2 2
cos yp + cl(ri —r2)—

2 2
(3.3)

where terms independent of yi have been omitted. Since the average (yi)q, is zero by definition, the total trial action
including S should not contain terms linear in yi, thus from Eqs. (6) and (14) we find that
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X/T
I = —2e P(T)dT sin(/)0 = I; sin@0. (3-4)

This relation is different Rom the usual Josephson relation in that the current amplitude is renormalized compared
with the classical value I, = 2eEg, and that the effective "critical" current I, depends on y0', that is, the functional
form of the Josephson relation is modified. This was pointed out for the adiabatic limit in Ref. 22.

The trial action is thus given by St, ——S+ S0, where

Z/T ~/T

S[y] = —f d7, f
X/T

d7y
2 0

V'1(T1) + V'1(T2) &
' pl(T1) IP1(T2))2T2 — T1 —T2

2
cos (pp + Ck(T1 T2)

2

dT2 V 1 (Tl )It (T1 T2 ) (b() 1 (T2 ) b (3.5)

where the last equation defines the kernel K(T) [= K(—T) = K(1/T —T)]. With this trial action the averages in
Eq. (3.1) can be expressed in terms of the Green function G(T) = —{7(p1(T)(/)1(0))i, as follows:

Z/T

{S ) dT [P(T) cos e[G(~)+G(0)l/4 ~(T)e[
—G(~)+G(0)]/4] (3.6)

dTK(T) G(T). (3.7)

The kernel K of the trial action is determined by the requirement that the variation of F* be zero:

0 = bF =bbt:+T'b(Sa + ,S, —S)i, = T{(bS)„+b(si)„—b(S)~)
1/T

0 4
p( ) p [G(~)+G(0)]/4

( )g [
—G(~)+G(0)l/4 + It (T)/iG(T—)

0 2

i/T 8G p)„
4[p( )

[G(~)+G(0)]/4( —ice„~+ 1) ( ) [ ( )+ (o)]/4( e
—'b~u& + 1) + 2' (T)e ~

]

(3.8)

We thus obtain
X/T

It ( ) d [ p( )
[G( )+G(0)]/4(1 + b~v

) + cb, (T)e[ G( )+G(0)]/4(1 e b~v+)]
2 0

(3.9)

This equation is closed by the expression of G in terms
of K,

IV. RESULTS

G((u„)= Gp'((d„)—K((u ) (3.10)
A. Adiabatic limit

2eK(pi = 0)
COS P0

(3.11)

This formula can also be obtained by directly taking the
average of the Josephson current (2.8) with respect to
the trial action S&„andusing the relation (3.9).

We have solved the coupled nonlinear equations (3.9)
and (3.10) iteratively on a computer, in the limit of van-
ishing temperature. Usually, convergence to within an
accuracy of 1 in 1000 was achieved in four iterations. We
now discuss the obtained results.

where Gp(pi„) is given in Eq. (5). We observe that the
nonadiabatic efFect emerges as a frequency dependence of
the self-energy for the Green function of the phase. The
supercurrent amplitude defined in Eq. (3.4) is obtained
&om Eq (3.5) as.

Jeff ( 1 1+1() /= o(1())exp
i
—,

/
lnI. (, n.m'/ 1 —1()'/ )

+0(—1()) exp
~

— arccoti1()] [, (4.»)( 2

/2vr E ') I;
1() = 1 —

i

cos (ppi~2 Ec i I. (4.1b)

To provide a reference point for our results, we first
discuss the supercurrent calculated from the SCHA in
the adiabatic limit 6/EG -4 oo at zero temperature.
tA'e consider a circuit in which a Josephson junction
having capacitance C is shunted by an Ohmic resistor
with resistance B. The total impedance is given by
Zp((b)) = B/{1—ituRC). In the adiabatic limit, the cou-
pled integral equations for G and K reduce to algebraic
equations, from which we obtain
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where I:—2eEJ is the classical value of the critical cur-
rent. The solution of these equations for I; /I, is plotted
in Fig. 1. For large values of Eg/Ec and/or o., = Rq/R,
the effective supercurrent is suppressed only slightly be-
low its classical value. If both Eg/Ec and a, are small,
on the other hand, the supercurrent vanishes. For an
intermediate region, there is a boundary between the su-

perconducting and insulating phases. This is the dissi-
pative phase transition.

Solving Eqs. (4.1) for I; /I, ~ 0 (and po ——0) yields

(4.2)

The SCHA thus predicts that as long as Eq/E~ ( 2/m,
the phase boundary between the regions with I, = 0
and I; & 0 lies at cr, = 1, independent of Eq/Ec. For
larger values of Eg/Ec, however, the SCHA predicts a
first-order phase transition along a phase boundary bend-
ing from a, = 1 to smaller values of o., (see Fig. 1).

In the limit Eg/Ec ~ 0, a perturbative renormal-
ization group (RG) analysisis produces the same phase
boundary as the SCHA. The opposite case Eq/Ec -+ oo
can also be treated by a perturbative RG analysis,
with the aid of the duality transformation introduced by
Schmid. The phase boundary, however, is found again
at cr, = 1 in disagreement with the result of the SCHA
when applied to the original action. Although it is not
unusual for mean-field theory such as the SCHA to over-
estimate the (phase) ordered region, prima facie, it takes
us by surprise that the SCHA fails where it is expected to
work best, for large Eg/Ec, where the potential energy
for the phase has deep minima, so that phase Huctua-
tions should be small and the quadratic approximation
to the effective action should be appropriate. In fact, the
disagreement with the RG result stems from the neglect
of very infrequent large Huctuations that cause the phase
to hop from one local minimum of the Josephson poten-
tial to a neighboring one. In thermal equilibrium, this
hopping leads to complete delocalization of the phase,
thereby destroying the supercurrent. In some experimen-
tally accessible regions, however, large Huctuations occur
so rarely that the SCHA result makes more sense than
the thermodynamically correct RG result. For instance,
for Eg = 1 K, n, = 0.5, and I = 0, the lifetime of

a state with a localized phase was estimated" to be 30
ns for Eq/Ec = 3, 1 min for Eq/Ec = 30, and 10
years for Eg/E& = 300. We also remark that, if one uses
the SCHA after the duality mapping, then the resulting
phase boundary for large Eg/Ec —of course agrees
with the RG result.

It is worth noticing that even for a, ) 1 supercurrent
can only be metastable, despite the fact that I, does not
vanish for yo ——0. The reason is simple: Since a nonzero
supercurrent requires po P 0 and I g 0, macroscopic
quantum tunneling of the phase has a nonvanishing prob-
ability, and will eventually give rise to an —albeit small—dc voltage. For o, » Eg/Ec, one can use a result
obtained by Korshunovz4 to estimate the lifetime of the
supercurrent. For example, with E~ ——1 K, I, = 0.1I„
and Eg/Ec = 1, one finds a lifetime of only 0.2 ms for
o., = 5, but already 2 days for a, = 10, and 10 years
for a, = 15. In view of these facts, the boundary of the
dissipative phase transition is not very signi6cant as far
as supercurrent is concerned. We also note that the life-
time of supercurrent depends very sensitively on E~/Ec
and a„and that it is long enough to be observed in a
parameter region where there is still a sizable inHuence
(about 10'%%uo) of quantum phase Huctuations.

B. Nonadiabatic case

We now turn to the new results we have obtained
for the case in which the energy gap 6 is not large
compared to E~. Figure 2 shows the nonadiabatic
SCHA result for I;+/I, as a function of b, /Ec, to-
gether with the SCHA result in the adiabatic approxi-
mation (obtained from Eqs. (4.1) with Ec replaced by
e2/2[C+ hC(po)]). For large 6/Ec the adiabatic limit
is recovered. With decreasing ratio b/Ec the effec-
tive critical current increases, which implies that quan-
tum Huctuations of the phase are suppressed. This can
be understood in the adiabatic approximation, where
b, /E~ only enters via the capacitance renormalization
by bC = 0.75C(Eq/Ec) (Ec/6) [1 + cos yo /3]. The in-

1.0

0.9

1.0
0.8

X o.6-
c 0.4

O, p
0,0

o 0.8

10
I

10 10 10
hjEc

I

10 10

FIG. l. I; calculated in the adiabatic limit A/Ec -+ oo
for yo ——0, normalized by the classical value I = 2eEJ.

FIG. 2. Dependence of I; /I, on the ratio of energy gap
b, to charging energy Ec, for E~/Eo ——1, cx, = 10, and
yo ——0. The solid curve is the nonadiabatic SCHA result,
and the dashed curve the adiabatic approximation.



9374 ULRICH GEIGENMULLER AND MASAHITO UEDA 50

crease in C by bC efFectively shifts up the ratio of the
Josephson energy to charging energy, and thus leads to
a larger value of I; /I, (see Fig. 1). Although the adia-
batic approximation could not, a priori, be expected to
hold unless 6/Ec )) 1, comparison with the nonadia-
batic result in Fig. 2 reveals that the adiabatic approxi-
mation gives qualitatively correct results even where this
condition is not met. This suggests that the quenching
of quantum phase Huctuations for small 6/Ec may be
ascribed mainly to capacitance renormalization.

Quantitatively, however, the adiabatic approximation
is not correct unless 6 )) E~, as is obvious from Fig. 2.
In Fig. 3 we show the relative deviation of the eEec-
tive critical current I, in the adiabatic approxima-
tion &om the nonadiabatic result I' over a wide range
of Eg/E~ and n„for 6,/E~ = 1/10 and Po ——0. This
deviation is quite large where I, is small, that is, near
the (mean-field) boundary of the dissipative phase tran-
sition.

For large Eg/E~ and/or large o.„where the sup-
pression of the supercurrent by quantum phase Huctu-
ations is small, the interesting quantity is the correction
hI, = I;~ —I, to the classical value I, rather than I;~
itself. The relative deviation of hI, in the adiabatic ap-
proximation from the nonadiabatic result for bI, is dis-

played in Fig. 4, for the same ratio 6/E~ = 1/10. Again
we see that the deviation can be quite large, about 50%%uo.

The dependence of I; on the ratio Eg/Ec and the
shunt conductance n, is exemplified in Figs. 5 and 6.
We see that the difference between adiabatic and nona-
diabatic results, as well as the suppression of supercur-
rent itself, vanishes more rapidly with increasing Eg /Ec
than with increasing o, In view of the lifetime esti-
mates in the previous section, parameters in the vicin-
ity of Eg /Ec = 1, o., = 10, and 6/Ec = 0.1 seem
most appropriate for the experimental investigation of
the suppression of supercurrent. There this suppression
amounts to about 14%, compared with 6% in the adia-
batic approximation. The jump of I' at the first-order
phase boundary predicted by the SCHA can be seen in
Figs. 5 and 6, but, as discussed previously, it is of little
experimental relevance.

Finally we examine the current-phase relation. In
Fig. 7 we plot [I;+(yo)/I;+(0)] sings versus the (aver-

1.0

0.~
U 0 0

l„-0-5

0

li~W~i ~ fag i$+g ~ a~ ~ &Ii

FIG. 4. Relative deviation of the suppression of the critical
current in the adiabatic limit, bI, ,

—:I; —I„from the
nonadiabatic SCHA result 6I, —:I; —I„for 6,/Ec = 0.1
and (po = 0.

1.0

0.8

u 0 6

0.0
10 10 10

EJ/Ec
10 10

10I—

FIG. 5. Dependence of I, on the ratio of Josephson energy
and charging energy, for 6/E& = 0.1 and yo ——0. The solid
curve is the nonadiabatic SCHA result, and the dashed curve
the adiabatic approximation; n, = 10 for the upper pair of
curves, and o,, = 0.5 for the lower pair.
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I
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FIG. 3. Relative deviation of the critical current in the
adiabatic approximation, I, from the nonadiabatic result
I' as a function of Eq/Eo and n, for 4/Ec = 0.1 and

yo ——0. The graph is clipped at +1.

FIG. 6. Dependence of I' on the shunt conductance for
A/Ec = 0.1, and yo ——0. The solid curve is the uonadia-
batic SCHA result, and the dashed curve the adiabatic ap-
proximation; Eq/Ec = 1 for the upper pair of curves, and
Eq/Ec = 0.1 for the lower pair.
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1.0 V. SUMMARY

0.8

0.6CO

O

& 0.4

0.2

0.0
0.0 0. 1 0.2 0.5

FIG. 7. Supercurrent-phase relation, normalized by
I; (po ——0). The solid curves are the nonadiabatic SCHA
results, the dashed curves the adiabatic approximation. The
three pairs of curves correspond to (from top to bottom)
Ez/Ec = 10, Ez/Ec = 1, and E&/Ec = 0.1; a, = 10
and E/Ec = 0.1 for all pairs. The topmost curve (with long
dashes) is the classical Josephson relation I /I, = sin rpo.

We have examined how quantum phase fluctuations
inhuence the dc supercurrent through the junction with
and without recourse to the adiabatic approximation.
Here we summarize the main results.

(1) The adiabatic approximation is found to yield a
qualitatively correct result even for low ratios of the su-
perconducting energy gap to the elementary charging
energy. Quantitatively, however, the reduction in the
Josephson current predicted by the adiabatic approxima-
tion is wrong by 50% in some experimentally accessible
regions.

(2) The efl'ective critical current, in general, depends
on the average phase, but the current-phase relations ob-
tained here reveal that differences between the adiabatic
and nonadiabatic results are small, irrespective of the
value of Eg/Ec.

(3) For large Eg/Ec, the SCHA and perturbative RG
analysis give different superconducting-insulating phase
boundaries. A prescription of how to obtain agreement
cs dkscussed.

age) Josephson phase po. For phases close to po
——m/2

the current-phase relation deviates signi6cantly &om the
simple sine function that is valid in the limit Eg/Ec ~
oo. Most of the difference between the nonadiabatic re-
sult and the adiabatic approximation, however, has been
taken into account by I;+(0); the remaining differences
prove to be small.
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