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We calculate hysteretic magnetization curves and ac-susceptibility components y'„and y'„'for n = 1, 3,
and 5 for a type-II superconducting thin circular disk subjected to a low-frequency oscillating applied
field, extending previous approaches for calculating hysterctic current-density and magnetic Lx-density
profiles in the critical state. We also present limiting expressions for y'=pl and y"=pl' for both small

and large values of the ac field amplitude, and we show how y" is simply related to the ac loss per cycle
per unit volume. Finally, a comparison is made between our results and those obtained for slab and strip
geometries.

I. INTRODUCTION

Recently there has been much interest in the properties
of superconducting films in time-varying applied magnet-
ic fields. Such properties are of importance for both fun-
damental and applied reasons. For example, supercon-
ductors have considerable potential for use in specialized
electronics applications, and it is important to know how
magnetic flux penetrates thin-film superconductors and
how large the corresponding ac losses are.

A critical-state theory for the penetration of magnetic
flux into thin type-II superconducting strips of infinite
length was developed in 1970 by Norris, ' and several re-
cent papers ' have applied this approach to study more
complicated problems in strip geometry.

An important theoretical advance recently has been
made by Mikheenko and Kuzovlev, who showed how to
apply the critical-state theory to thin superconducting
disks. This work has been extended (and corrected) by
Zhu et al. The latter paper contains the basic informa-
tion that is needed to calculate the hysteretic ac losses in
a thin superconducting disk, as well as related properties
such as the complex ac susceptibility.

In the present paper, we begin in Sec. II by briefly re-
viewing what is known about the distribution of currents
in a thin superconducting disk in the presence of a per-
pendicular applied field. We first discuss the behavior in
very small applied fields, where no vortices penetrate but
induced supercurrents flow in circular patterns around
the axis of the disk. We then treat the behavior in the
critical state, where vortices penetrate the disk edges.
The magnitude of the current density J in the flux-
penetrated annulus is J„the critical-current density,
while in the nonpenetrated region inside this annulus the
magnitude of J is less than J, but is not zero, except on
the axis. The latter behavior contrasts strongly with that
in an infinitely long superconducting cylinder.

In Sec. III, we show calculations of the disk's magnetic
moment in a low-frequency oscillating applied magnetic
field, and display results for the magnetization hysteresis

loops. In Sec. IV, we extend the results of Ref. 5 by
Fourier analyzing the magnetization in terms of the ac
susceptibility coeScients g'„and y„"and by presenting a
general result relating the ac loss per cycle to the n =1
component of the imaginary part, y"=y", . In Sec. V, we

apply these results to calculate and display y'„and y'„'(for
n =l, 3, and 5) as universal functions when the Bean
model [J,(B)=const] applies. Finally, in Sec. VI, we
summarize our results and relate them to other work in
this field.

II. CURRENT-DENSITY
AND MAGNETIC-FIELD PROFILES

IN A THIN SUPERCONDUCIING DISK

In this paper we consider a high-tt type-II supercon-
ducting disk of radius R and uniform thickness d, where
d «R. We assume either that d & A, , where A. is the Lon-
don penetration depth, or, if d & A, , that A=2K, /d «R,
where A is the two-dimensional screening length. (The
approach given in the present paper would require fur-
ther extensions to handle the weak-screening limit for
which A&R.) We suppose that the disk is in the x-y
plane, centered on the z axis, and we use cylindrical coor-
dinates p =(x 2+y ) '~, P = tan '(y /x), and z, with cor-
responding unit vectors p=x cosP+y sing, P=y cosP—x sinter, and z.

Starting with a zero-field-cooled disk containing no
vortices, application of a weak applied magnetic field
H, =H, z simply induces azimuthal screening super-
currents in the disk. If the local magnetic field at the
edge of the disk is less than the lower critical field H, &,

then no vortices penetrate into the sample. Because of
strong demagnetizing effects, the net magnetic field bends
around the sample, and screening currents, arising from
the discontinuity of the radial magnetic fleld H (p, z) at
z =Ed/2, flow over the entire surface of the disk. It can
be shown ' ' that in an applied magnetic field H, =H, z
the induced current density, averaged over the film thick-
ness, is
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Ppd R
8, ( p, O)=8, + f G( p, p')J&( p')dp',

2K 0

where 8, =p.oH„

(2)

G( p, p') =K [k(p, p')]/(p+p') E[&—( p, p')]/( p
—p'),

(3)

k ( p, p') =2( pp')' /( p+p'), (4)

and E and E are complete elliptic integrals. It is found
that 8,(p, O} vanishes for p&R, and outside the film

(p&R), B,(p, O) obeys

8, ( p, 0)=8, ~ 1+—2 1 . i R—sin
+(p/R) —1 P

Strong demagnetizing effects are responsible for a sharp
rise in the value of B,(p, 0) near the film's edge. This
inverse-square-root divergence is rounded off when one

Jp(p)= —(4H, /md}p/(R' —p')'~' .

This expression applies for all p (R except within a nar-
row region of negligible width d or A, (or A) at the film's
edge.

The flux density 8, ( p, z =0) in the plane of the film
can be calculated from the Biot-Savart law expressed as

more carefully considers behavior on the small length
scales d and A, (or A). For example, when A, & d, an
analysis of demagnetization effects" ' yields
B,(R,O) =(R /d)' poH„aside from numerical factors of
order unity.

When the applied field H, exceeds (d /R)'~ H„,the lo-
cal magnetic field at the film's edge exceeds H„,and (in
the absence of surface-barrier effects) vortices then nu-
cleate at the edge and penetrate into the superconductor.
If there are pinning centers present, the distance to which
the vortices penetrate depends upon the strength of vor-
tex pinning in the film. According to the critical-state
model, ' in a quasisteady state the vortices penetrate only
as far as necessary to reduce the magnitude of the local
current density J to the level of the critical-current densi-

ty J, . In general, J, depends upon the local flux density
8, but in this paper we neglect this dependence and con-
sider only the Bean model, which assumes a constant J, .
For simplicity we also ignore the effects of the reversible
magnetization (i.e., we take B=poH in the interior of the
film), and we assume that there are no surface barriers to
flux entry and exit. For the purposes of calculating
critical-state profiles, these assumptions correspond to
setting ~ )

=
entry

=
As shown by Mikheenko and Kuzovlev, the resulting

current-density distribution J&(p) (again averaged over
the film thickness) is

J&( p) = —(2J, /m. )tan '[( p/R )(R —a )' /(a —
p )' ], p & a,

= —J„a+p(R .

The magnitude of J&( p } is equal to J, throughout the annular vortex-filled region, whose inner radius a is given by

a =R /cosh(H, /Hd ) .

(6a)

(6b)

As pointed out by Norris, the current density cannot change discontinuously in the interior of the film, and so the
magnitude of J&( p) decreases continuously from J, at p=a, the outer radius of the vortex-free region, to zero at p=O,
the center of the disk. Here

Hd =J,d/2

is a characteristic field for disk geometry; later we shall make use of the corresponding characteristic flux density

Bd =poHd =juoJ, d /2. In the limit of small H, it can be shown from Eqs. (6) and (7) that J&( p) reduces to that given in

Eq. (1). Shown in Fig. 1 are plots of J&( p)/J, versus p/R. Note that these plots depend only upon the dimensionless

ratio x =H, /Hd =8, /Bd.
The corresponding flux-density distribution 8, ( p, O) in the plane of the film can be calculated from Eq. (2) or, more

conveniently, from the following expressions, which were derived using the weight-function approach of Ref. 4.

B,(p, O)/Bd =0, 0&p&a,
m/2

=cosh '(R/a) —cosh '(R/p)+ f, P, (p/R, O)dO, a &p&R,
sin (a /p)

=8,/8„+f, P, (p/R, O)dO, p&R,
sin (a /R )

(9a}

(9b)

(9c)

where

Pi(x, O)=—,, x &1,2 (1—OcotO)

(1—x sinO)'

Pz(x, O)=-=2 1

(xz —sin 8)'~
sin '(x 'sinO)

sinO

x&1 . (11)
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FIG. 1. Induced azimuthal current density J~(p), normalized
to the critical-current density J„vsradius p for thin-disk

geometry in increasing magnetic field, calculated from Eq. (6)
for normalized applied field values H, /Hz=B, /B&=0. 75,
1.50, 2.25, and 3.00, where Hd =J,d/2. The vortex-free radius
is a =R /cosh(H, /H&).

FIG. 2. Magnetic flux density in the film plane B,(p, 0), nor-
malized to Bs=psHd=poJ, d/2, vs radius p for thin-disk

geometry in increasing magnetic field, calculated from Eq. (9)
for normalized applied field values H, /Hz=B«/B&=0. 75,
1.50, 2.25, and 3.00. The vortex-free radius is
a =R /cosh(H, /Hz ).

Figure 2 shows plots of B,( p, 0)/Bd versus p/R, corre
sponding to the current-density profiles in Fig. 1.

A striking result is that, according to Eq. (7), for finite

applied fields H, the annular region where the current
density is J, never fills the entire disk, and the critical-
state flux-density profiles never penetrate all the way to
the center, where B,(0,0}remains equal to zero. In prac-
tice, however, the above two-dimensional approach
breaks down and B,(0,0) becomes nonzero when the
vortex-free radius a approaches the largest of the quanti-
ties d, A, , and A. '

Of interest for the computation of ac losses are the
current-density and magnetic-field profiles produced
when the applied field H, oscillates quasistatically be-
tween the values +ho and —hc. We begin with a
current-density profile with vortex-free radius now
defined as a =R /cosh(hc/Hz ) corresponding to H, =bc,
and we consider the changes that occur as H, is reduced
from +hc to —hc. As explained by Zhu et al. , the re-
sulting current-density profile must have J&(p)=+J,

I

b =R/cosh[(hc H, )/2Hd] .— (12)

The reverse-field contribution leaves the previous flux-
density distribution B,( p, 0) unchanged for p(b, but as-
sures that J&( p) =J, in the outer annulus p) b, where
vortices are moving out of the sample or antivortices are
moving in. The resulting current-density distribution in
the film is

within an annulus of inner and outer radii b and R. The
reason for this is that vortices near the outer radius must
experience a Lorentz force that drives them out of the
sample as the field is initially decreasing. This leads to a
finite azimuthal electric field in the outer annulus, where
the flux density is changing. In film geometry, the
current density J&( p) cannot change discontinuously'
from —J, to +J, but instead must be a continuous func-
tion ofp. The appropriate solution is a superposition of a
frozen-flux contribution given in Eq. (6) and a reverse-
field contribution that is also obtained from Eq. (6), but
with J, replaced by —2J, and a replaced by b, where5

J&(p)= —(2J, /n. )tan '[(p, R)(R —a )'~ /(a —
p )'~ ]

+(4J, /sr)tan [(p/R)(R b)'~~/(b p) —~ ], p+a, — (13a)

= —J,+(4J, /sr)tan '[(p/R )(R b)' /(b —p)' ], a —p~b~, (13b)

=+J, 5 &p&R . (13c)

Shown in Fig. 3 are plots of the normalized current density J&(p)/J, versus p/R as the applied field H, is reduced
from +he to —hc. These plots depend only upon the dimensionless ratio x =H, /Hd=B, /Bd. Figure 4 shows corre
sponding plots of the normalized flux density in the film plane B,( p, 0}/Bz versus p/R. These are calculated numeri-
cally from the following expressions, which are derived by superposition from Eq. (9}:



9358 JOHN R. CLEM AND ALVARO SANCHEZ 50

8,(p, O)/Bd=0, 0&p&a &b &R,
m. /2=[cosh '(R/a) —cosh '(R/p)]+ f P, (p/R, O)dO, a &p&b &R,

sin (a /p)

= [cosh '(R /a) —cosh '(R /p) ]—2[cosh '(R /b) —cosh '(R /p) ]
n (b/ )+f, P, (p/R, O)dO f—

, P, (p/R, O)dO, a &b &p&R,
sin (a /p) sin (b /p)

=~, /~d+ f, P2(p/R, O)dO f—, P, (p/R, O)dO, a &b &R &p .
sin (a /R) sin (b/R)

(14a)

(14b)

(14c)

(14d)

b =R/cosh[(ho+ H, )/2Hd ] . (15)

III. MAGNETIZATION HYSTERESIS
IN A THIN SUPERCONDUCTING DISK

The magnetic moment of a disk in a perpendicular
magnetic field has only a z component, which can be cal-
culated from the current density J&(p) using'

R
m, =hfdf p J&.(p)dp,

As expected, the profile of B,( p, O} versus p when

H, = —ho is the negative of that when 0, =+ho. As
will be shown in Sec. EEI, this leads to hysteretic magneti-
zation curves that are symmetric with respect to the ori-
gin.

The current-density and Aux-density profiles produced
when the applied field H, increases from —ho to +ho
are simply mirror images of those shown in Figs. 3 and 4.
They are given as the superposition of a frozen-Aux con-
tribution calculated from Eq. (6), but with J, replaced by
—J, and a reverse-field contribution also calculated from
Eq. (6), but with J, replaced by 2J, and a replaced by b,
where5

I

and the magnetization can be calculated from
M, =m, /V, where V=aR d is the sample volume.

%hen a small alternating field 0, is applied, then, as-

suming no vortex penetration, the screening is maximum,
and the magnetization calculated from Eqs. (1) and (16) is

M, = yoH, —
, (17)

S(x)= 1

2x
cos

1 sinhx

cosh x

The function S(x) is a monotonically decreasing func-

tion of x, behaving as S(x)=1—x /2 for x «1 and

where go=8R/3nd. Thu's the external magnetic suscep-
tibility" in this case of perfect screening is y= —yo.

Starting from the zero-field-cooled state, and applying
a magnetic field H, that causes an annulus of vortex
penetration to occur, leads to a magnetization whose
magnitude is less than that given in Eq. (17). Substitution
of the current distribution of Eq. (6) into Eq. (16) yields
the initial magnetization

M, = yoH, S(H—, /Hd ),
where
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FIG. 3. Azimuthal current density Js, (p) [Eq. (13)], normal-

ized to the critical-current density J„vsradius p for thin-disk

geometry as the applied magnetic field H, is reduced from

ho =3Hd to —h 0 (normalized applied fields H, /Hd
=B,/Bd =3.0, 1.5, 0.0, —1.5, and —3.0), where Hd =J,d /2.
The vortex-free radius is a =R /cosh(ho/Hd ). The inner radius
of the annulus where J&( p) =J, and the Aux density is decreas-
ing is b =R /cosh[(ho H, )/2Hq]. —

FIG. 4. Magnetic Ilux density in the film plane B,( p, O) [Eq.
(14)], normalized to Bd =poH„=IMOJ,d/2, vs radius p for thin-

disk geometry as the applied magnetic field H, is reduced from

ho =3Hd to —ho (normalized applied fields H, /Hd

=B,/Bd=3.0, 1.5, 0.0, —1.5, and —3.0). The vortex-free ra-

dius is a =R/cosh(ho/Hq). The inner radius of the annulus

where J&( p) =J, and the Aux density is decreasing is

b=R /cosh[(ho —Hd)/2Hd].
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S(x)=n./4x for x »1.For H, /Hd «1, Eq. (18) reduces
to Eq. (17), while for H, /Hd »1 the magnetization ap-
proaches the saturation value M, = —M~„where
M~f =(mgp/4)Hd =J,R/3 corresponds to the result ob-
tained from Eq. (16) when J&( p) =J,. Because of Eq. (7),
however, complete saturation never occurs for a finite ap-
plied field; in this two-dimensional approach, as discussed
in Sec. II, the zone where the current density is J, never
penetrates all the way to the center. The initial magneti-
zation given by Eq. (18) is shown as the dashed curve in

Fig. 5.
If the applied magnetic Seld H, oscillates quasistatical-

ly between +hp and —hp, the current distribution of Eq.
(13) yields the magnetization5

Mt = gphpS(hp/Hd )

+yp(hp —H, )S [(hp H, )/2—Hd )], (20)

IV. GENERAL RELATIONS
BETWEEN ac LOSSES AND SUSCEPTIBILITY

IN A THIN SUPERCONDUCTING DISK

When the time dependence of the magnetic moment
nt, (t) or the magnetization M, (t) of the sample is known,

~2 I I ~ I I ~ I I I I I I I ~ I I I I I I I ~ I I I I I I I I I I I I I I I I I1.

0.8—

0.4—

when H, is decreasing from +hp to —hp [see Eq. (12)].
Similarly, the magnetization is

M t
= +mph pS ( h p /Hd )

—yp(hp+H, )S [(hp+H, )/2Hg)], (21)

when H, is increasing from —hp to +hp [see Eq. (15)].
The solid curves shown in Fig. 5 are magnetization hys-
teresis loops calculated from Eqs. (20}and (21).

M, (t)= g (y'„cosnrpt+g'„'sinnrot)hp, (23)

where the ac susceptibility coefficients y'„and y'„'are ob-
tained from

p CO

M, (t)c osn rptdt,
'fr p P

I M, (t)sinnrptdt .
Ir p p

(24)

(25)

Often the response of the sample is measured only at
the fundamental frequency (n =1), such that only the
values of g'=yI and g"=y'(' are obtained. In this case y'
and y" can be thought of as the real and imaginary parts
of the complex susceptibility g=g'+ly". That is, if
H, =hpexp( irpt), then—the n =1 part of the magnetiza-
tion [Eq. (23)] is M„=ReM„,where M„=fH,. The
real part of g (y'} measures the inductive response, while
the imaginary part (y") measures the resistive response.
To see the connection between y" and the hysteretic ac
losses, note that when Eq. (23) is substituted into Eq. (22)
and the integration is carried out, only the n =1 term in-
volving g"=g suvives, and the result may be written as

8 v=@0 H, M, =BOA (26)

where

so also is the time dependence of the magnetic ffux

through the circuit that produces the applied magnetic
field H, (t)=H, z(t). When H, oscillates between +hp
and hp with period T, we may obtain the sample's ac
loss per cycle by integrating the power P=IV delivered
to the magnet that produces H, . The resulting energy
dissipation per cycle per unit volume of sample is

dM, (r)
~v=po

p t

If H, (t }=hpcosrpt, where rp=2Ir/T, the magnetization

M, (t}also is periodic with period T, and it is convenient
to Fourier analyze it as follows:

~oreeeos0 y"=y", =2 /Irh p . (27)

-0.4—

-0.8—
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I I I ~ I I I I I I I

-4 -3 -2

ea

I I I I I I I I I I I I I I I I I I I I I I ~ I ~ I I I

-1 0 1

b IH
2 3 4

FIG. 5. Magnetization M, vs applied field H, . The dashed
curve shows the initial magnetization [Eq. (18)], starting from
the zero-Seld-cooled state, while the solid curves show magneti-
zation hysteresis loops when H, is cycled between +hp to —hp
[Eqs. (20) and (21)] [normalized fields ho /Hd =(a) 0.75, (b) 1.50,
(c) 2.25, and (d) 3.00]. M, is normalized to the saturation mag-
netization M, =(7T+p/4)Hd =J,R /3, while H, is normalized
to Hd =J,d/2. The dot-dashed curves show the magnetization
hysteresis at the special value of x =hp/Hq=1. 942, where
y"= A /mh p has its maximum value 0.241yp.

Thus y"=y't' has a sim le geometric interpretation as the
ratio of the area d = H, dM, = ftM, dff, of the toattae-

tization hysteresis loop to the area Irh p of a circle whose
radius is the ac field amplitude hp. Exactly the same in-

terpretation can be given to y" for an infinitely long
cylinder in a parallel applied magnetic field. ' We ern-
phasize that our definition of g corresponds to the exter-
nal susceptibility discussed in Ref. 11, and not to the
internal susceptibility.

V. CALCULATIONS OF THE ac LOSSES
AND SUSCEPTXSILll Y

XN A THIN SUPERCONDUC. ILNG DISK
FOR CONSTANT J,

When the critical-current density J, is independent of
field, the hysteretic magnetization in an applied ac field of
amplitude hp is given by Eqs. (20) and (21). Substitution
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of these into Eqs. (24) and (25) for odd n yields

2+0
(1—cosO)S [(x /2)(1 —cosO)]cosn Od 8,

0

2+0 nf [
—S(x)+(1—cosO)S [(x /2)(1 —cosO)]] sinn Od 8,

7T 0

(28)

(29)

where x=hp/Hd, Hd=J, d/2, and yp=8R/3nd. Be-
cause of the symmetry of the magnetization curves

[Mt, ( H, }—= Mt—,(H, )], we find y„'=y'„'=0for all
even n. The expression for y', agrees with Eq. (21) of Ref.
5, except for the di8'erent definition of magnetic suscepti-
bility.

The n =1 components of the ac susceptibility can be
shown to have the limiting behavior

y'= —yp(l —
—,",x'), x «1,

y" =ypx /m, x « 1,
(30)

(31)

g'= —gp(1. 330x —0.634x ~2), x ))1, (32)

g"=gp(x ' —1.059x 2), x )) 1 . (33)

%e also find from numerical calculations that the peak in
y" occurs at x =1.942, where y"=y",„=0.241yp and
y' = —0.382xo.

Since x =hp/Hd Eq. (32) shows that the magnitude of
y' varies as hp

~ for large hp, in agreement with an as-

sertion by Mikheenko and Kuzovlev, but we agree with
Zhu et al. that the expression for y' in Ref. 4 is quanti-
tatively incorrect. On the other hand, Eq. (32) contra-
dicts the claim of Zhu et al. that the magnitude of y'
varies as h p

' for large h p.
Figure 6 shows plots of both y' and y" versus

x =hp/Hd, and Fig. 7 shows a log-log plot of g" versus

X.

The nonlinear response of the superconductor when

pinning is present is rejected in the presence of higher
harmonics in the voltage wave form and the appearance
of susceptibility components with n =3, 5, etc. For linear
response, only the fundamental ( n = 1 } components
would be present, as is the case for eddy current damping
in a normal-conducting disk. Despite the nonlinearity,
all the even harmonics are zero because of the symmetry
of the magnetization hysteresis curves. Shown in Fig. 8

are the components y3 and y3', while Fig. 9 displays the

components y5 and ys'. Note that, for finite hp/Hd, y',

(Fig. 6) is never zero, while g3 (Fig. 8}has one zero and gs
(Fig. 9) two zeros. Also note that, while y3 and y'I' have

a similar appearance, except for a di8'erence in amplitude

by a factor of about 5, ys' has an extra wiggle near

h p/Hd 1

VI. DISCUSSION OF RESULTS

In this paper we have combined the approaches of Mi-

kheenko and Kuzovlev and Zhu et al. to calculate the
critical-state behavior of the current density and Aux den-

sity, the ac-susceptibility components, and the hysteretic
ac losses for a thin superconducting disk of thickness d
and radius R. Our expression for y' [Eq. (28)] agrees
with that in Ref. 5, except that the authors used a
different definition for the magnetic susceptibility. As
was shown in Ref. 5, the calculation of the ac susceptibili-

ty given in Ref. 4 is incorrect.
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FIG. 6. Real {y') and imaginary {y") parts of the n =1
(fundamental-frequency) complex susceptibility, normalized to

yp=8R /3md, as a function of hp/Hg where hp is the ac ampli-
tude and Hd =J,d /2. The thick curves are calculated from Eqs.
(28) and (29), and the thin curves show the limiting expressions
for y' given in Eqs. (30}and (32}.

FIG. 7. Imaginary part y" of the n = 1 (fundamental-

frequency) complex susceptibility, normalized to yp= SR /3md,

as a function of hp/Hd, where hp is the ac amplitude and

Hd =J,d /2. The solid curve is calculated from Eq. (29), and the

dashed curves show the limiting expressions for y" given in Eqs.
(31) and (33). The ac loss per cycle per unit volume is @pe"mh p.
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Indenbom, and Forkl, who applied the Norris approach'
to obtain the hysteresis losses of a long, thin strip of
length L, width 2a, and thickness d in the presence of an
oscillating applied magnetic field of frequency v and am-

plitude ho. They correctly included the effects of screen-

ing currents that flow below the critical value in the
frozen-flux portions of the strip, and they accounted for
the fact that the current density cannot change discon-
tinuously in a thin film. They found that the rate of ener-

gy dissipation is
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FIG. 8. Real (y3) and imaginary (y3') parts of the n =3
(third-harmonic) complex susceptibility, normalized to

yo=8R /3md, as a function of ho/Hz, where ho is the ac ampli-
tude and Hd =J,d/2. The solid curves are calculated from Eqs.
(28) and (29).
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FIG. 9. Real (ys) and imaginary (gs') parts of the n =5
(fifth-harmonic) complex susceptibility, normalized to
y0=8R /3~d, as a function of ho/Hd, where ho is the ac ampli-
tude and Hd =J,d /2. The solid curves are calculated from Eqs.
(28) and (29).

Previous calculations of the magnetic susceptibility
have been presented in Refs. 17 and 19. A key assump-
tion made in both papers, however, is that the current
density J in the film always has magnitude J, in the flux-
penetrated regions, and that it reverses direction and thus
changes discontinuously at the inner radius of the ad-
vancing flux front. While this assumption is valid in the
critical-state model for an infinite slab or cylinder in a
parallel magnetic field, it is not correct for the case of
film geometry, as shown explicitly in Fig. 3. Thus, while
the results of Refs. 17 and 19 evidently give a reasonable
approximation to the behavior of g' and y" versus
x =h p /Hd they cannot give a quantitatively correct
description of the ac susceptibility.

P=n2vfapR dh py"(x), (35)

where x=hp/Hd and H&=J, d/2. For h, «H~ this

gives [Eq. (31)] P =(SvppR /3Hd)h p, and for hp »Hg
[pq. (33)], P =(4~vta+ dJ, /3)(hp 1.059Hd—). As ex-

pected, the power-law dependence of P upon ho is the
same in the two limits; i.e., P ~ h p for small hp and P ~ hp

for large hp for both strips and disks. Recent work by
other authors has shown that in the critical state the
behavior of thin-film strips is similar in many respects to
that of thin-film disks.

The behavior of a thin film in a perpendicular field is

very different, however, from the critical-state behavior
of an infinite slab or cylinder in a time-varying parallel
magnetic field. ' For example, in a slab of thickness 2W,
the field H' that pushes a flux front (in which the magni-
tude of the current denisty is J,) to the center is given by
H*=J,8'. (Here it is assumed that B»H„.) The satu-
ration magnetization is then M, =J, W/2, so that
M, /H' =

—,'. In a film of radius R and thickness d, how-

ever, we find that the saturation magnetization is

M, =J,R/3, while the characteristic applied field at
which the flux front is pushed a significant distance in to-
ward the center is Hd =J,d /2 Thus .M, /Hd
=2R/3d » l. Another important difFerence is that M,
saturates at exactly H' for the slab, while saturation
occurs only in infinite applied field for the disk [see Eq.
(7)].

What is common to the hysteretic critical-state
behavior of both thin films and slabs is that during quasi-
static changes of an applied magnetic field, vortices move
(and the local flux density B changes) wherever the mag-
nitude of the current density J (assumed perpendicular to
the vortices) exceeds the critical value J, . What is
different about the two geometries is that in the slab the
local current density J can change only where the flux
density 8 changes. In a film, on the other hand, changes
in the applied field induce screening currents J (associat-
ed with the discontinuity in the changing tangential com-
ponent of the magnetic field at the top and bottom of the
film) to flow not just at the edges but throughout the filin.
However, these currents do not cause flux motion or a

P =4vtap/a dL J,hp[(2/x)ln coshx —tanhx ], (34)

where x=hp/HI and HI=J, d/ir For. hp«HI this

gives P =(2nvtapa L/3H/)hp, and for hp »HI,
P=4vppa dLJ, (hp 1.386—H&).

Our corresponding results for a disk of radius R and
thickness d are
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change in the perpendicular component of the magnetic
flux density unless the magnitude of J exceeds J,.

The results given in this paper are restricted to slow,
quasistatic flux changes for which the magnitude of the
electric field E induced by the moving magnetic flux is
small by comparison with pfJ„where pf is the flux-flow

resistivity. Under these conditions, the magnitude of the
induced current density J is always very close to the criti-
cal current density J, in regions of the sample where 8, is

changing. Rapid variation of the externally applied field,
on the other hand, causes rapid flux motion, generates
large values of the magnitude of E (exceeding pfJ, ), and
induces current densities of magnitude well in excess of

Such a high-frequency response of a thin disk re-

quires a difFerent approach, accounting for flux-flow
eddy-current losses, such as those presented in Refs. 20
and 21.

In summary, we have extended the results of Mikheen-
ko and Kuzovlev, " as amended by Zhu et al. , to calcu-
late the critical-state current-density and flux-density
profiles in a thin superconducting disk subjected to a
slowly varying perpendicular applied field. We in turn

used these results to calculate the magnetization hys-
teresis, ac losses, and nonvanishing ac-susceptibility corn-

ponents y'„and y'„',where n is odd. We also pointed out
how the current and Geld penetration, magnetization, and
energy dissipation for a film in a perpendicular field di5er
from those for a slab or cylinder in a parallel Geld.
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