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The quantum kinetic-equation method is applied to calculate the response of a metal to a temperature
gradient above the superconducting transition temperature T,. It is shown that the fluctuation correc-
tion to the thermoelectric coefficient of a three-dimensional superconductor is nonsingular near 7,.. The
fluctuation correction is more important in low-dimensional systems: it diverges as In(T—T,) in a thin
film and as (T—T,)'/? in a filament. Applying the linear-response method, we confirm these results and
prove microscopically the Onsager relation for this problem. We also demonstrate how more singular
terms obtained in earlier papers are canceled out by other terms representing the corrections to the heat
current operator. The universal relation, independent on the electron mean free path, between the elec-
tric and heat current operators for the fluctuating order parameter is obtained.

I. INTRODUCTION

The advent of high-temperature superconductivity has
revived interest in the effect of superconducting fluctua-
tions on the thermoelectric power. There have been a lot
of experimental data' ~° and a number of theoretical pa-
pers'®™1* which have discussed this phenomenon. Let us
recall the definition of the coefficients describing the ther-
moelectric effect. Using the Onsager relations the ther-
moelectric coefficient 7 may be expressed in terms of the
electric and the heat currents (J, and J, ) which arise due
to an applied electric field E and a temperature gradient
VT:

. ~0E+qVT , (1)
J,=—nTE+«VT , (2)

where k is the thermal conductivity and o is the electrical
conductivity.

The experimentally measurable quantity is the thermo-
power or the Seebeck coefficient S = —n/0. Because
both coefficients 1 and ¢ have corrections due to super-
conducting fluctuations above T, the total correction to
the thermopower is given by

Ao A
ASy=— 2 |- h 3)
0 0 Mo

where o,=(2m%)e’ppepr and 1,=—(2)epprT are the
conductivity and the thermoelectric coefficient at the
transition temperature without the fluctuation effects, 7 is
the momentum relaxation time due to electron-impurity
scattering, pp and €y are the Fermi momentum and ener-
gy, and e is the electron charge (e <0).

Near the superconducting transition the fluctuation
conductivity of ordinary superconductors is described by
the Aslamazov-Larkin (AL) correction.!> The excess
conductivity of high-T, superconductors extracted from
the experiments is also explained by AL theory if anisot-
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ropy effects are included,*® while the present situation
with the thermopower is rather confusing.

Most of the measurements of the temperature depen-
dence of the thermopower above T, demonstrate a wide
maximum at 100-150 K. For high temperatures the
thermopower decreases and even changes the sign.!™>
Some authors!>!# interpreted these data as an indication
of superconducting fluctuations. Note that nonmonoto-
nous temperature dependence may be treated in many
ways. The main difficulty is associated with the change
of signs of the thermopower, while the type of carriers is
the same. In Ref. 16 this behavior was explained on the
basis of the renormalization of the thermopower due to
the electron-phonon-impurity interference. In the con-
text of the fluctuation effects it is more interesting that
some groups>* found a very sharp peak just above T..
This peak has the same temperature singularity as the
fluctuation correction to the conductivity, but the sign of
the effect is opposite to that which follows from the con-
ductivity correction to the thermopower [see Eq. (3)].
Other groups®’ did not observe this peak and considered
it as an experimental artifact. Taking into consideration
that in Refs. 3 and 4 different measurements were used,
the experimental data seem to be more sensitive to the
sample preparation than to the method of measurement.

Theoretical description of the fluctuation effects on the
thermopower is also controversial. The results for the
AL-type correction obtained in Refs. 10—14 demonstrate
different temperature and electron mean-free-path depen-
dencies. The problem of calculating the thermoelectric
coefficient is very complicated, because one needs to take
into account the interaction effects on the electron relaxa-
tion as well as a number of corrections to the heat
current operator.

The main goal of our paper is to resolve the problem of
the fluctuation correction to thermopower. In previous
work!” we suggested a new approach to calculation of the
thermopower, which was based on the quantum transport
equation method. This method allows one to calculate
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the electric current as a response of an electron system to
the temperature gradient. In this way one can avoid all
difficulties arising from interaction corrections to the
heat current operator. In Sec. I we apply the quantum
transport equation method to the problem of supercon-
ducting fluctuations. To compare our results with earlier
papers, 1214 in Sec. III we also consider the linear-
response method and demonstrate cancellation of the
strong singular terms. Our conclusions also essentially
differ from the results of Ref. 13, where the time-
dependent Ginzburg-Landau equation is used. In Sec. IV
we summarize our results and discuss the earlier papers
in more detail.

II. QUANTUM TRANSPORT EQUATION METHOD

To calculate Ang we employ the quantum transport
equation method. There are few modifications of this
method (for a review see Ref. 18). We will follow the
rigorous approach of Ref. 19, in which all nonequilibrium
terms are taken into account without any phenomenolog-
ical approximation. We have already applied this
method in Refs. 17 and 20 to calculate the electron-
phonon-impurity interference effects on the conductivity
and the thermopower.

In the Keldysh diagrammatic technique for nonequili-
brium processes the electron Green function G, the fluc-
tuation propagator L describing the electron-electron in-
teraction in the Cooper channel, the electron self-energy
2, and the polarization operator P are represented by ma-
trices

0 G4 o L4

6= GR GC ’ E= LR LC ’ 4)
3¢ =k P¢ PR

2: A , p= A ’ (5)
2 0 P 0

where 4 and R stand for advanced and retarded com-
ponents of the matrix function and C corresponds to the
kinetic component.

Without the electron-electron interaction the retarded
and advanced electron Green functions averaged over im-
purity positions are

G§(p,e)=[Gd(p,e)]*
-1
, E,=p*=pp)/2m ,  (6)

where m is the electron mass and [ - - - ]* means the com-
plex conjugation.

The interaction in the Cooper channel is conveniently
described by the fluctuation propagator as it is shown in
Fig. 1. In the thermodynamic equilibrium the fluctuation
propagator has the form

L{(g,0)=[L{(g,0)]*=[A"'—P&(gq,0)]", (N

where A is a constant of the electron-electron interaction

and P is the polarization operator in the Cooper channel.
Because electrons and holes drifting in the temperature

gradient give contributions to the electric current of op-

AN =3 AN
>

FIG. 1. Diagrammatic equation for the fluctuation propaga-
tor. The shaded triangles are the impurity vertex corrections.
The dark sport is the constant of the electron-electron interac-
tion A.

posite signs, the thermoelectric phenomenon arises due to
the difference between electron and hole states. The ex-
pression for Py(q,w) accounting for the electron-hole
asymmetry is given by

P8(q,0)=[P(g,®)]*

__v lnz‘}’ﬁ’p —ag? iTw
2 | AT, Y TRT,
2y
SR Wt -2 @)
461: 7TTC

where v is the electron density of states at the Fermi en-
ergy, p is the Debye frequency, and y is the Euler con-
stant. The electron-hole asymmetry is represented by the
small correction term of the order of ®/€g, which is ob-
tained due to expansion of the electron density of states
near the Fermi surface.?! Note that without this
term P{}(q,a))=P6’(q, —o) and the combination
L&(q,w)L§(g,0) is an even function of w.

For an arbitrary electron momentum relaxation time
the coefficient a in Eq. (8) may be expressed as follows:

2
= _YF 1 1,1
4T3 lfz L e ¢[2J
T 1
oV |2 J ©)

Here 1(x) is the logarithmic derivative of the ¥ function.
The functions G§ and L§ in the thermodynamic equi-
librium are

G§(g,€)=tanh [G&(q,0)—Gd(ge)], (10

€
2T

L§(g,w)=coth [L&(gw)—Li(gw)]. a1

o
2T

The components of the matrix ﬁ(q,w) satisfy an equation
similar to Eq. (11).

In the presence of an external disturbance the electron
system becomes nonuniform. Deriving the quantum
transport equation one makes the Fourier transformation
from the coordinate representation, X =(r,z), to the
momentum-energy representation (p,€). Induced by the
external disturbance the nonuniformity of the system
leads to the correction terms in the Poisson brackets
form:!%1°
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A(X,X)B(X,X,)= A(p,€e)B(p,e€)
+é{A(p,e),B(p,6)}, (12)

de Ot de Ot

0’4 B 3B A4

dp Or dp dr

(13)

The vector and scalar potentials ( A and ®) of the exter-
nal electromagnetic field are accounted for in the follow-
ing way:

¥ _d _eB3A D 33 14
ot ot ¢ 9ot dp ot de ’
& _9_edA d 33 1s)
or dr ¢ dr; dp; or de

If the electron system is considered to be driven from
equilibrium by the temperature gradient V7, Egs.
(13)—(15) result in

04 0B 0B 94

(4,B}=VT T dp oT ap

(16)

Note, that the response to the electric field is described
by the Poisson brackets in the following way:

04 0B 0B 34

de Op Oe ap an

{A,B}=¢E

To the first order in nonuniformity it is convenient to
look for a solution of the Dyson equation for the kinetic
component of the electron Green function G € in the form

GCp,e)=S(p,e)[G “(p,e)—GR(p,e)]+8G(p,e) ,
(18)

where 8G € is the Poisson bracket correction
SGC(p,6)=é[S(p,6),GA(p,EH—GR(p,e)}. (19)

Here S(p,€) plays the role of the electron distribution
function. In equilibrium S =S,= —tanh(e/T). In the
presence of the temperature gradient the function S is
determined from the following linearized quantum trans-
port equation:

a5,
(v- VT)'TTT"Ie-imp"‘Ie-e ) (20)

where I, ;,,, and I,_, are the collision integrals which cor-
respond to the electron-impurity interaction and the
electron-electron interaction in the Cooper channel.
They may be expressed in terms of the corresponding

self-energies by the equation
I(S)=I%S)+8I(S), I°=—i[=¢—8(24—-=R)], on
81 =—i[83C—5,(821—-83F)]+1{24+=R S},

where 83 is the Poisson bracket correction.
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Assuming that the electron-impurity scattering is a
dominant momentum relaxation process, one can solve
the transport equation [Eq. (20)] by iteration:
S =S,+¢,+¢,, where ¢, is the nonequilibrium correc-
tion to the distribution function S, determined by
electron-impurity scattering

aS,(€e)
€ 9
(v-VT)—=
T Oe
The correction ¢, includes the effects of the electron-
electron interaction

éi(p,€)=7{1, . (So+¢o)] - 23)

Our aim is to calculate the electric current which is ini-
tiated by the temperature gradient

do(p,€)= (22)

J,=nVT=2e [ %V[S(p,e)ImG 4(p,€)

),ReG “4(p,€)}] .
(24)

+1{S(p,e

It is clear from Eq. (24), that the fluctuation corrections
to the thermoelectric coefficient Ang may originate from
the correction to the distribution function as well as from
various corrections to ImG 4, which may be treated as
corrections to the electron density of states.

Near T, the most singular contribution to 7y is deter-
mined by the AL correction. In the transport equation
method this term corresponds to the following nonequili-
brium correction to ImG 4:

8G1=(G§ )18z, , (25)

where 831, is the nonequilibrium correction to the elec-
tron self-energy in the form of the Poisson bracket.

The Aslamazov-Larkin self-energy diagram X,; is
shown in Fig. 2. The corresponding equation has the
form

j dqdo 1
>4 =1 q
AL 2f<2w [1—&(g,0)]

GRq—p,0—€)Lq,0),

(26)

where

G4p,e)GRq—p,0—e€). (27)

O v el v (277)4

The nonequilibrium correction in Eq. (26) originates
from the composite fluctuation propagator shown in Fig.
2: LC—Lquv+8LC Without the Poisson bracket, the
equilibrium term is given by

P

FIG. 2. The electron self-energy =,; corresponding to the
Aslamazov-Larkin correction.
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LS, (q,0)=L&(q,0)P§(g0)Li(g0) (28)

and Eq. (28) reduces to Eq. (11). In accordance with Eq.
(12), the Poisson bracket correction to Eq. (28) is given by

i
8LC=—({L§,P§ILS +L§ (PG, L5} +PG (LG, L)) .

(29)

Recalling that P§ satisfies an equation analogous to Eq.
(11), we rewrite Eq. (29) in the following way:

8LC=—;-(P5‘ —PE)

LE [cothﬁ; L§

+ {LR coth-2- |L&

oT (30)

As we mentioned before, the main contribution to the
electric current originates from the nonequilibrium
correction to ImG 4, which according to Egs. (25), (26),
and (30), is

J,=2 [ ga‘%ﬁvso(e)zsc; A(p,€)

_— dqdco aPo(q,O)
(27)

coth—2 T ,P&(q,0) }L{,‘(q,w)LoA(q,w) .

(31)

Integration over electron variables in Eq. (31) corre-
sponds to that in the electric current block of electron
Green functions B, in the linear-response method [see
Eq. (40) of the following section].

Calculating the electric current as a response of a sys-
tem to the electric field and taking the Poisson brackets
in the form of Eq. (17), we obtain from Eq. (31) the well-
known Aslamazov-Larkin correction to the conductivity.
Considering a response to the temperature gradient and
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taking the Poisson brackets in the form of Eq. (16), we
get the thermoelectric coefficient A7y,

2 -2
_, (dqdo |3P3@0) | o | o
Amng ef 27)? 3q T2 snh2T
XLE&(q0)L{(qw) . 32)

Without the electron-hole asymmetry the combination
LEZL # is an even function of o, therefore the integrand in
Eq. (32) is an odd function. The only way to get a
nonzero result is to take into consideration the electron-
hole asymmetry in the fluctuation propagators L& 4.
Bearing in mind Eq. (8), we get

T—-T, i
L{(qu)=—= T ~+ag?— 181;'('0
[4 c
-1
2yw
® D
-2
y n T, (33)

Expanding LELG over w/ep we get the odd part of
L§L§

20 2vwp
LRLg = In
070 4epv? wT,
-2
X c + 2_ ITW
Re T. aq 8T,
-1
—T. ITw
X +ag?+ : 4
T. aq T, (34)

Substituting Eq. (34) into Eq. (32) and performing the in-
tegration, we find that there is no singularity in the tem-
perature dependence of the thermoelectric coefficient in a
three-dimensional superconductor. The fluctuation
corrections to 7 for a two-dimensional film of thickness d
and for a one-dimensional filament with the cross section
d? are presented in Table I. The dimensional crossover
takes place for critical dimension d ~vp /[T (T —T,)]'?
for the pure case and d ~[vgl /(T —T,)]"/? for the im-

TABLE 1. Fluctuation corrections to the thermoelectric coefficient and the conductivity (Ref. 15) in

different dimensions.

Anq Aagy
Oo
2y T. . T,
Two dimensional General — pl}Zi In Yo In T—T. ; ;;3 T—T.
172 372
One dimensional Impure — 2.1 n 2v@p T 3.4 T.
P (T ppd)? | #T. ||T—T. (T ppd?® | T—T,
T.r<1
172 32
One dimensional Pure — 0.54 n 2vop T. 0-39 T.
7T.(ppd)? 7T, T-T. 1T.(ppd)? | T—T,

T.r>1
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pure one. It is seen that in all cases the fluctuation
corrections to the thermoelectric coefficient are less
singular near T, than the AL corrections to the conduc-
tivity.

It may be shown that unlike the conductivity, the
Maki-Thompson correction to the thermoelectric
coefficient is not singular close to T, in all dimensions
even if the electron-hole asymmetry is taken into account
in the fluctuation propagator.

III. LINEAR-RESPONSE METHOD

In the linear-response method the thermoelectric
coefficient is given by

1
n=b—]—,lm[Q£h(Q)], (35)
where QR, (Q) is the Fourier representation of the retard-
ed correlation function of the heat and charge currents

QR (X —Xx")=—0O(t —t'){[T,(X),T,(X)]), (36)

J,(X) and J,(XZ) are operators in the Heisenberg repre-
sentation, X =(r,t) and ( - - - ) represents both the ther-
modynamic averaging and position averaging over ran-
dom impurity sites.

The heat current operator may be defined in terms of
the energy current operator J, if the electron energy is
measured with respect to the chemical potential p,

1, =Je—f:;Je . 37

The energy current operator for interacting electrons
may be obtained from the equation of motion for the
electron field operators?? or from the energy-momentum
tensor.?> Both methods result in the same expression

_ A (p+p")
J,,-Z%é‘pa: -y —B—p—a;na}apa
P

"“p
p.p,p"p" 2m
x6(p+pl_pu_plu)
+p’ i(p+p')R;
+ 3 %—r;lp—)Ue_impe‘p P ‘ayay , (38)
p.p,R;

where ap+ and a,, are the electron creation and annihila-
tion operators, U, iy, is the electron-impurity potential,
and R, is the impurity position.

The first term of the Eq. (38) describes the heat flux of
noninteracting electrons. The second term represents the
additional heat current due to the electron-electron in-
teraction and the third one is due to the electron-
impurity interaction. Diagrammatically the vertices of
the heat current operator are shown in Fig. 3.

As we discussed in the previous section, the main con-
tribution to the thermoelectric coefficient comes from the
Aslamazov-Larkin diagram, which is shown in Fig. 4.
The right block of electron Green functions B, is con-
nected with the electric current operator. The left block
of the electron Green function B, originates from the
heat current vertices of Fig. 3. Therefore, this block is
presented by the sum of the diagrams shown in Fig. 4,
B,= 3, B}. One can obtain the second block B} from
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<

FIG. 3. The heat current operator vertices corresponding to
Eq. (37).

the second vertex of Fig. 3. Here the constant of the
electron-electron interaction of the heat current vertex is
included in one of the fluctuation propagators. The
analytical expression corresponding to the diagram of the
thermoelectric coefficient shown in Fig. 4 has the form

6
—_4 rdqdo | 1
Ang T’ @rnt |V2 B,(q,0)B,(q,0)
X[LYg,0+ Q)L 4q,0)
+LAg o+ QLYg0)], (39)

where numerical factor 4 has spin origin and factors
1/V'2 appear due to the Keldysh vertex representation
(see Ref. 18). The block B, was calculated in Ref. 15.
For an arbitrary electron mean free path it may be ex-
pressed as follows:

aP&(q,0)
dq

where P& (q,w) is determined by Eq. (8).

As we emphasized, to obtain a nonzero thermoelectric
coefficient, the electron-hole asymmetry must be taken
into account. Let us begin with the first block

B.(q0)=—2e , (40)

1 _
B; =
2 __
B; =
B3 =

FIG. 4. The Aslamazov-Larkin diagram for the thermoelec-
tric coefficient in the linear-response method and blocks of elec-
tron Green function B, obtained from the three vertices of the
heat current operator.
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_ dpde _p 1
Bl(q,0)=—21I
#@0) m f e " m P 1= &g

X[G4(p,e)’GR(q—p,0—¢€)

£

Xtanh 2T

) 41)

where n is the unit vector directed along the temperature
gradient. Expanding the electron velocity and density of
states in powers of §, /€ and then integrating over §, we
find that £2 may be transformed to (i/7)* or € or o’
The analysis shows that €2~ T? and w?’~(T —T,)>. The
(T —T,)? term does not give a singularity near the transi-
tion temperature, while the 7~2 and T? terms result in
more singular corrections to the thermoelectric
coefficient than the corrections obtained in Sec. II. How-
ever, we will show below that these corrections are can-
celed out by the second and third blocks.

Let us consider the T2 term, which we denote as (B} ).
It may be shown that for both the pure and impure cases
this term has the same form

2yop
T

4

1 3(w?)
6 Qe

(B})=—qln (42)

€=€p

For a pure superconductor Eq. (42) was obtained in Ref.
11, where the fluctuation correction to the thermoelectric
coefficient from the T2 term was found to be
Ang~(T?/€p)Ac or.

In the block B? the difference between the electron and
hole states has already been accounted for in the heat
current vertex (without electron-hole asymmetry it is
equal to zero). Thus, the block B2 contributes to the
thermoelectric coefficient without additional expansion of
electron parameters near the Fermi surface. As seen
from Fig. 4, the expression for the second block is

Bﬁ(q,w)=—’%ReP§(q,w) : 43)
Comparing Egs. (42) and (43) we see that (B})'=—B2

and the T? term of the first block is canceled out.
The 772 term of the first block is

1 3(w?)

Bl "—__ L_—
( h) q24 TCT de €=¢€p ’ “4)
and gives the strong singular contribution Ay,

~(7%€r)"'Ac 51 However, it may be shown that (B} )"
is canceled by the block B;.

Therefore, to get a nonzero contribution to ther-
moelectric coefficient, it is necessary to take into account
the electron-hole asymmetry in the fluctuation propaga-
tors in Eq. (39) [see Eq. (33)], while the block B} is taken
without any expansion and is expressed through the
block B,(q,®) in the following way:

Bh(q,w)=-€:—Be(q,a)) . 45)
We note that Eq. (45) holds for an arbitrary electron

mean free path.
Finally, substituting Eq. (45) into Eq. (39) we determine
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the fluctuation correction to the thermoelectric
coefficient. As we could have anticipated, the results
coincide with the conclusions, obtained by the quantum
transport equation.

IV. CONCLUSIONS

Employing both the quantum transport equation and
the linear-response methods we have calculated the ther-
moelectric coefficient of a superconductor above the tran-
sition temperature. The main results are presented in
Table I. We found that the fluctuation correction to the
thermoelectric coefficient for a three-dimensional super-
conductor is nonsingular near T,, while it diverges as
In[T,/(T—T,)] and as (T,—T)"'/? in two- and one-
dimensional systems, respectively. In all cases this
correction has the same dependence on the electron mean
free path as the corresponding AL correction to the con-
ductivity. According to Eq. (3), both the fluctuation
correction to the thermoelectric coefficient and the AL
correction to the conductivity contribute to the thermo-
power. As seen from Table I, Aog/0 is more singular
than Ang/m,. Furthermore A7g/7, has a negative sign,
and both Aoy and Ay corrections result in a decrease of
the thermopower near the superconducting transition.
Thus a sharp peak in the thermopower observed in Refs.
3 and 4 cannot be explained by the fluctuation effects.

Now we compare our calculations with the previous
papers. 1 We found that the temperature singularity
of the thermoelectric coefficient 7 coincides only with
that obtained by Maki.'®!3 However, Maki’s results are
opposite by sign to ours and he actually found a peak in
the temperature dependence of 7. We predict a monoto-
nous decrease of an absolute value of 7 with decreasing
the temperature (=0 in the superconducting state).
The discrepancy stems from a sign of the term, which de-
scribes the electron-hole asymmetry in the fluctuation
propagator [see Eq. (34)]. An erroneous sign originally
obtained in Ref. 21 was quoted in Refs. 10 and 13. Be-
sides the sign of the effect, our results for a pure super-
conductor differ by a factor of T.7 from the correspond-
ing ones of Ref. 13. The reason for the discrepancy is as
follows. We found the universal relation, independent on
the electron mean free path, between the blocks of elec-
tron Green functions connected with the heat and elec-
tric current operators: B=eB,(q,»)/B,(q,0)=o [see
Eq. (45)], and according to Eq. (39), w is of order T —T.
Following Refs. 10, 13, and 24 such an equation may be
treated as the relation between the electric and heat
current operators associated with the fluctuating order
parameter, and further calculation of the thermoelectric
coefficient may be carried out by the time-dependent
Ginzburg-Landau equation.!®!3 In Ref. 13 the equation
B~T.to was used, which is wrong as we discussed
above.

More singular terms than ours were obtained in Refs.
11, 12, and 14, using the linear-response method. The re-
lation between the heat and electric current operators
was found to be B=~T, in Ref. 11. Electron scattering by
paramagnetic impurities with the characteristic time 7
was considered in Ref. 12 that results in S~7, !. In Ref.
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14 the effect was calculated in the frame of the marginal
Fermi-liquid hypothesis, the equation for B had the form
B=3"! where 3 is the electron self-energy. Note that
these anomalously large terms in the heat current block
B, originate from the heat current operator for nonin-
teracting electrons and also from the corrections to the
heat current operator, which arise due to the electron-
electron interaction in the Cooper channel as well as due
to any other interaction taken into consideration. How-
ever, our direct calculations for a system with the
electron-electron and electron-impurity interactions (Sec.
III) have demonstrated that all such terms are canceled
out, therefore the results of Refs. 11, 12, and 14 are
wrong. To show the cancellation we use the method of
nearly free electrons. The problem seems to be complex
in the case of an arbitrary electron spectrum, because the
modification of the electron spectrum results from the
electron-ion interaction, which also contributes to the
heat current operator.

To avoid all difficulties associated with the heat current
operator we use the quantum transport equation method
and calculate the electric current as a response to the
temperature gradient. This method provides a con-
venient framework for a description of the thermoelectric
phenomena, because the anomalously large terms corre-
sponding to the interaction effects on the heat current do
not appear at all. In particular, using the quantum trans-
port equation we did not find strong singular terms due
to the spin-spin interaction, which were obtained in Ref.
12 by the linear-response method.
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We also show that in the quantum transport equation
method the AL corrections to the thermoelectric
coefficient and to the conductivity are described by the
terms in the form of the Poisson bracket. The relation
between the Poisson brackets for the electric field and the
temperature gradient [see Egs. (16) and (17)] confirms the
universal relation between the electric and the heat
current operators for the fluctuating order parameter.

Note that a starting point of the linear-response
method is the Kubo formula [Eq. (35)]. This relation can
be proved only for a response of an electron system to the
electric field. It is still unclear how to formulate the
linear-response method for a nonmechanical disturbance
such as the temperature gradient. The advantage of the
quantum transport equation method is that it allows the
temperature gradient to be incorporated in a natural way.
Here we demonstrate that both methods lead to the same
results, therefore we confirm microscopically the validity
of the Onsager relation for this problem.
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