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We report the experimental determination of the crossover exponent (P) and the percolation critical
exponents for magnetization (P~) and spin-wave stiffness (8) for quench-disordered (amorphous) three-
dimensional (d =3) dilute Heisenberg ferromagnets. The values of P, 8, and P~, so obtained, as well as
those of the percolation correlation-length critical exponent v~ and the conductivity exponent 0., de-

duced from the exponent equalities v~ =P—(8/2) and o=(d —2)v~+P, conform very well with the
most accurate theoretical estimates published recently. A comparison of the presently determined ex-

ponent values with those theoretically predicted for site or bond percolation on a d =3 crystalline lattice
asserts that the critical behavior of percolation on a regular d =3 lattice does not get altered in the pres-
ence of quenched randomness if the specific-heat exponent of the regular system is negative. Consistent

with the Alexander-Orbach conjecture (Golden inquality), the fracton dimensionality d of the percolat-

ing cluster at threshold (the conductivity exponent 0.) turns out to be d =4/3 {0~2). The present re-
sults vindicate the universality hypothesis.

I. INTRODUtarON
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In Eqs. (1)—(3), P, v, and y are the percolation critical
exponents for M, g, and y. Several numerical and analyt-
ic calculations * of the exponents for bond and site per-
colation on lattices of dimension d have yielded accurate
values for d =2 only. For d =3, the theoretical estimates
for P~, y~, v~ and the thermal-to-percolation crossover ex-
ponent P= v~/vT (vr is the critical exponent for thermal

Randomly diluted magnetic systems with short-range
interactions have captured the attention of scientists
worldwide in recent years because they provide a fertile
testing ground'z for percolation theories. 3 4 The most in-
triguing aspect of dilute magnetism is the behavior of
such systems near the point Q(p =P„T=O) in the Tc(p)
I TN(p) J phase diagram (Tc{TttI denotes the Curie

I Neel j temperature, p is the concentration of magnetic
atoms in a given ferromagnetic (FM) Iantiferromagnetic
(AF)I alloy series, and p, is the critical concentration
(percolation threshold) at which an infinite FM (AF) clus-
ter first appears when p is increased from zero at T=O).
The connectivity and thermal fluctuations become criti-
cal as the point Q is approached along the paths p ~p, at
T=O and T—+0 at p =p„respectively. Along the former
path, the spontaneous magnetization (percolation proba-
bility) M goes smoothly to zero while the correlation
(connectedness) length g and susceptibility (mean cluster
size) y diverge in accordance with the relations' '

M(T=O, P)=m~(p —p, ) ', p &p, ,
P

correlation length), defined as' '

Tc(p) =t, (p p, )' p—&p, , (4)

range between 0.34 and 0.47, 1.71 and 1.82, 0.71 and
0.90, and 0.9 and 1.2, respectively. Early experimental
determination of the percolation and thermal critical ex-
ponents for crystalline d =2 and d =3 Ising and Heisen-
berg dilute antiferromagnets revealed that the exponent
values, not so accurate for d=3 as for d=2 systems,
agree well with the theoretical estimates for d =2 dilute
magnets only. While constant attempts are being made,
on the theoretical side, to refine ' the values of critical
exponents for percolation on d =3 lattices, parallel efforts
on the experimental front are lacking. One of the main
reasons for this is the difficulty in finding crystalline mag-
netic systems that can be diluted without drastic changes
in the lattice symmetry or in the lattice parameter. An
effective way to tackle this problem is to choose dilute
ferromagnets in the amorphous state instead. Dilute
magnets with quenched disorder have long been regarded
as model systems for studying percolation phenomena
and yet little or even no progress has been made in under-
standing their percolation behavior, as is evident from
the following remarks. While the sole attempt to experi-
mentally determine the critical exponents P~ and y~ for
amorphous dilute ferromagnets is plagued with thermal-
to-percolation crossover effects, all the theoretical ap-
proaches proposed hitherto treat site or bond percolation
on a regular crystalline lattice and tacitly assume' valid-
ity of the famous Harris criterion, even for extreme disor-
der (i.e., for p just above p, ), in order to describe the criti-
cal behavior of quenched random site- or bond-diluted
magnets. In this context, it should be recalled that the
Harris criterion, in its original form, states that the
thermal critical exponents of a pure (ordered) d =3 spin
system do not get altered in the presence of weak short-
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ranged quenched disorder if the specific-heat, C, critical
exponent u of the pure system is negatiUe and hence is
strictly valid in the weak-disorder limit only.

This state of affairs prompted us to determine accu-
rately the crossover exponent P and the percolation criti-
cal exponents for magnetization, P, and for spin-wave
stiffness, 0, defined as' '

-150

for amorphous (a-} (Fe Ni& )so(B,Si)20 (series I) and
(Fe&Nl[ & )soP]486 (series II) alloys. The main reasons
for choosing these alloy systems for the intended study
are (i) Ni atoms in them carry a negligibly small mo-
ment' and hence act as magnetic dilutents, (ii) the
thermal correlation length in (Ni-Fe)-metalloid glasses
diverges at Tc even for compositions close" to p, [the Fe
concentration at which paramagnetic (PM), ferrornagnet-
ic, reentrant (RE), and spin-glass (SG) phases coexist in
the magnetic phase diagram], and (iii) the values of spin-
wave stiffness directly measured by the inelastic neutron
scattering technique equal' those deduced from the
thermal demagnetization of M(T,p) for all the composi-
tions down to P, in similar (Ni-Fe)-based metallic glasses.

II. EXPERIMENTAL RESULTS AND ANALYSIS

The reader should refer to the preceding paper'
(henceforth referred to as Paper I) for details concerning
the sample preparation, compositional analysis, and mag-
netization measurements.

A. Magnetic phase diagram
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FIG. 1. Magnetic phase diagram on the Fe-poor side for
amorphous (Fe~Ni, ~)80(B,Si)2O alloys. The uncertainty limits
lie well within the size of the symbols.

Figures 1 and 2 depict the magnetic phase diagrams in
the Fe concentration range 0 ~p ~ 0.625 for the a-
(Fe&Ni& & )sp(B Si)zo (series I) and a-(Fe~Ni, ~ )soP]486
(series II} alloys, respectively, obtained by accurately
determining' ' ' Tc, T„E,and TsG from ac (zero-field)
susceptibility y„(T), electrical resistivity p(T), and bulk
magnetization (BM) measurements. In these diagrams,
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FIG. 2. Magnetic phase diagram on the Ni-rich side for
amorphous (Fe~Ni& ~)»P&4B6 alloys. The uncertainty limits lie
well within the size of the symbols.

Tc and TsG denote the temperatures at which FM-PM
and SG-PM phase transitions occur while TRE («T, )

marks the onset of strong irreversibility in the low-field
(H &100 Oe) magnetization. In other words, TRE(H) is
the temperature at and below which the zero-field-cooled
and field-cooled magnetizations corresponding to a given
field strength K cease to possess the same value and
TRF =hm~ pTaE(H). Note that the Fe concentration at
which PM, FM, RE, and SG phases coexist P, =0.03 for
series I and 0.10 for series II. As the temperature is
lowered below Tc, the alloys with p &p, enter at T= TRz
into a mixed (reentrant) state in which long-range FM or-
der coexists with the cluster spin-glass order. This infer-
ence regarding the nature of the RE phase is drawn from
the observation that spontaneous magnetization does not
drop to zero but instead remains finite as temperature is
lowered through TRz and that this nonzero spontaneous
magnetization is accompanied by the thermomagnetic
and thermoremanent effects which are normally associat-
ed with SG order. Moreover, there are strong indications
that, unlike PM-FM and PM-SG phase transitions, the
FM-RE transition [the dashed curves through T„E(p)
data in Figs. 1 and 2] may not be a true phase transition
in the thermodynamic sense. These findings are in
convict with the earlier claim that the RE state in the
same or similar alloy systems as the ones under con-
sideration is a pure SG state and the FM-RE transition
represents a we11-defined FM-SG phase transition. Since
the main concern of this paper is to ascertain whether or
not the percolation theories correctly describe the ob-
served variation of T& with p in the vicinity of, but above,

p„ the nature of the RE phase and the transition at TRE
wi11 form the subject of a forthcoming paper.

In order to accurately determine the thermal-to-
percolation crossover exponent P, we proceed as follows.
Equation (4) can be rewritten in the form

r —= Tc(p)[dTc(p) ldp ]
' =(p —p, )lg .
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tion. The best least-squares (LS) straight-line fits to the
t(p) data based on Eq. (6) yield the values /=1. 09(3)
[1.06(3)] and p, =0.026(2) [0.070(2)] in the concentration
range 0.012&(p —p, )&0.174 [0.043&(p —p, )&0.168]
for series I [II]. The straight line fit in Fig. 3 represents
the LS fit to the combined t(p) data for both the alloy
systems based on Eq. (6) with the choice of the exponent

/ = 1.08(3);p, values for the series I and II are the same

as quoted above. These values of p, and P are then used

in Eq. (4) to compute the corresponding values of the
critical amplitude t~ Th.e continuous curves through the

Tc(p) data points in Fig. 4 are arrived at when the values

ofp„ t, and P, deternuned by the above-mentioned ana-

lytic method, are used in Eq. (4).
0%
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FIG. 3. Quantities t —= Tc(p}[dTc(p}/dp] ' and
d= D(T=O—,p}[dD(T=O,p}/dp] ' as functions of Fe concen-

tration p in the amorphous (Fe~Ni& ~ )«(B,Si)&0 and

(Fe& Ni& & )80P&4B6 alloys. The solid straight lines through the
data points denote the least-squares fits to the combined data
based on Eqs. (6) and (8}with the choice of parameters given in

the text. The size of the symbols denotes the uncertainty limits.
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C

It is evident from Eq. (6) that for concentrations in the
close proximity to p, (i.e., in the asymptotic critical re-

gion, ACR), the t versus p plot should be a straight line

with slope (1/(()) and the intercept on the p axis equal to

p, . The data presented in Fig. 3 testify to the validity of
this analytic approach for both the alloy series in ques-

B. Spontaneous magnetization at 0 K

The magnetization (M) versus magnetic field (H) iso-
therm taken at 1.6 K in fields up to 20 kOe for a few
representative compositions in the alloy series I is shown
in Fig. 5. Similar M vs H curves are also obtained for
various compositions in the alloy series II. Spontaneous
magnetization at 0 K for different compositions in a
given alloy series, M( T=O,p), is obtained as an intercept
on the ordinate when the linear high-field portion of the
M vs 8 curve is extrapolated to H =0. Note that no dis-
tinction between the values of spontaneous magnetization
at 1.6 and 0 K is made in this work. Another important
point worth noting is that the M vs H isotherm at 1.6 K
presents a slight curvature in the high-field region that
persists to fields as high as 20 kOe (the curvature is more
pronounced in series II than in series I) and a large~'
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FIG. 4. Tz(p), D( T=O,p), and M( T=0,p) as functions of Fe
concentration p. The continuous curves through the data points
represent the least-squares fits to the data based on Eqs. (4), (5},
and (7) with the choice of parameters given in the text. The
dashed curves serve to highlight the deviation of the data from
the LS fits. The uncertainty limits lie well within the size of the
symbols.
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FIG. 5. Magnetization as a function of the external magnetic
field at 1.6 K for a few representative compositions in the amor-
phous (Fe~Ni& ~)«(Bi,Si)&0 alloy series.
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high-field susceptibility (=5 X 10 emu/g Oe) particular-
ly for the alloys with compositions just above p, (i.e., for

p —p, &0.06), presumably due to the frozen cluster SG
order embedded in a (long-range) FM matrix. The curva-
ture increases progressively as p ~p, . Such a curvature
gives rise to undesirably large uncertainty in M(T=O, p)
for p —p, &0.06 if the above-mentioned extrapolation
method is used. This problem is overcome by making the
modified Arrott plot isotherm [M'~~ vs (H/M)' r], con-
structed out of the M vs H data taken at 1.6 K, linear,
particularly in the high-field region, through a proper
choice of the thermal critical exponents P and y for the
spontaneous magnetization and initial susceptibility.
M(T=O, p) is then computed from the intercept on the
ordinate obtained by extrapolating the high-field linear
portion of the modified Arrott plot isotherm to
(H/M)' r=0. The observed concentration dependence
of M(T=O, p) is displayed in Fig. 4. In the ACR, per-
colation theories' ' predict a variation of M(T=O, p)
with concentration of the form given by Eq. (1). An at-
tempt to determine the critical exponent P from the

M(T=O, p)=mz(p —p, ) ~[1+a(p —p, ) '],P
(7)

which includes the CTS term with coefficient a and ex-
ponent 6i, is fitted to the M(T=O, p) data over different
concentration ranges by the LS method. The range-of-fit
analysis, in which the variation in the fitting parameters

mz, p„P&,a, and b, i, if any, is monitored as more and
more data points taken at p values far away from p, are
excluded from the fit, yields the best LS fits (continuous
curves through the data in Fig. 4) corresponding to the
choice of the parameters mz =90(3) [109(2)] emu/g,

P =0.41(2) [0.43(2)],p, =0.026(2) [0.070(2)], a = l.95(5 }

[0.95(5)], and 6,= 1.00(1) [1.00(1)] within the concentra-
tion range 0.037 (p —p )&0.22 [0.043 (p —p )&0.43]
f'or series I [II].

C. Spin-wave stiffness at 0 I
Accurate values of the spin-wave stiffness at 0 K,

D(T=O,p), shown in Fig. 4 for p &0.625, have been de-
duced from the in-field magnetization data through an
elaborate data analysis (whose details are furnished in Pa-
per I) which allows for the field-induced energy gap in the
spin-wave spectrum, the temperature renormalization of
the spin-wave stiffness, and the low-lying excitations that,
besides the spin-wave excitations, contribute to thermal

m (p) =M( T=O,p )[dM(T =0,p )/dp ]

data using the analytic method described earlier in con-
nection with the t (p) data did not succeed for the follow-

ing reason. The plot of m vs p exhibits marked curvature
and hence the values P~ and p, depend on the range of p
used for the fit. A curvature in the m vs p plot evidently
imphes that the ACR for M(T=O, p) is extremely narrow
compared to that for Tc(p) and that the correction-to-
scaling (CTS) terms make significant contribution for
concentrations not too close to p, . In order to verify this
assertion, the expression

demagnetization. In order to determine the percolation
exponent 8 for the spin-wave stiffness, the same analytic
method as the one already described in Sec. II A is em-
ployed, in that Eq. (5) is rewritten as

d=D(T=O p)[dD(T=O, p)/dp] '=(p —p, )/8

and the quantity d is plotted against (p —p, ) in Fig. 3. An
examination of Fig. 3 reveals that this approach is valid
for the glassy alloys investigated. The best least-squares
straight-line fits to the d(p) data based on Eq. (8) yield
the values 8=0.505(5} [0.509(5)] and p, =0.025(2)
[0.071(2)] in the concentration range 0.038 & (p —p, )
&0.6 [0.042 & (p —p, ) &0.43] for series I [II]. The solid
straight line in Fig. 3 represents the best LS fit to the
combined d (p) data for both the alloy series based on Eq.
(8) with the choice of the critical exponent 0=0.505(5)
and p, the same as mentioned above for series I and II.
The values of the exponent 8 and critical concentration
p, so obtained are then substituted in Eq. (5) to compute
the corresponding values of the critical amplitude d for
the two alloy systems. The continuous curves through
the D(T=O,p) data (open circles and squares) shown in
Fig. 4 represent the theoretical variation arrived at by in-
serting the ~al~~s of p, d, and 6}, det~~m~~~d by th
above-mentioned procedure, in Eq. (5).

Note that the values of Tc(p), M(T=O, p), and
D(T=O,p) for amorphous (Fe&Nii )so(B,Si)20 and

(Fe&Ni, )soP, 4B6 alloys determined in this work are list-

ed in Tables I and II of Paper I.

III. DISCUSSION

With a view to demonstrating that the values of the
percolation exponents (amplitudes) P, P, and 8 (tz, mz,
and d ) determined by the method described in the previ-
ous section are true asymptotic values and highlighting
the importance of the CTS term in the case of
M(T=O, p), the quantities [Tc(p)/t ]'~&, [M(T=O,p)/

1/P
C p

mz] ~, and [D(T=O,p)/d~]' are plotted against

(p
—p, ) in Fig. 6. The important points that merit atten-

tion are (i) the Tc(p), M(T=O, p), and D(T=O, p) data
yield the same (within the uncertainty limits) value for p,
for a given alloy series, (ii) p, is nearly three times smaller
in series I than in series II, (iii) the asymptotic critical re-

gion, where Eqs. (1), (4), and (5) hold, is wide for Tc(p)
and D(T=O,p) but extremely narrow for M(T=O, p),
and (iv) the CTS term in Eq. (7) has to be taken into ac-
count in order to arrive at the true asymptotic values of
the critical exponent P and amplitude m~ from
M(T =0,p) data taken at concentrations not too close to

p, . The present values of p, [p, =0.026(2) for series I
and 0.070(2) for series II] lie well below the critical con-
centrations for bond and site percolation' for nearest-
neighbor (NN) exchange interactions on the fcc lattice
(which forms an adequate description' ' of the NN
atomic configuration in the glassy alloys in question},

p~
—0. 1 19 and p~ =0. 195, but compare favorably with

the critical concentration for site percolation on the fcc
lattice when the exchange interactions involve first (1),
second (2), and third (3} nearest neighbors, ' i.e., with
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FIG. 6. Quantities [Tc{p}lt~]'~~, [D{T=Op}/d~]'~, and
1/P

[M{T=O,p}/m~] ~ as functions of Fe concentration p. The
solid straight lines and curves through the data points represent
the best least-squares Sts to the data based on Eqs. (4), (5), and
(7) of the text, while the dashed curves serve to highlight the de-
viations from the LS fits. The size of the symbols denotes the
uncertainty limits.

P=g=v~/v

8=2(g —v ),
(9)

(10)

p,'(1,2, 3)=0.061. This comparison asserts that the range
of exchange interaction in series II nearly equals the third
NN distance (r3NN) whereas exchange interactions in
series I extend well beyond r3NN

The most intriguing, but still unresolved, aspect of per-
colation phenomena is the exact structure of the infinite
cluster at and above p, . This information is crucial to the
understanding of most of the properties of random sys-
tems such as dilute ferromagnets, random resistor net-
works, microemulsions, and gels. Of all the model
descriptions ' ' of the inSnite cluster structure pro-
posed so far, the node-link model due to Skal and
Shklovskii and de Gennes (SSG) is by far the simplest
one. According to this model, the crossover exponent P,
the spin-wave stiSness exponent 8, and the macroscopic
conductivity (X) critical exponent o [X-(p —p, ) ] are
related to the critical exponents v„and g for the average
distance between nodes [the percolation correlation or
connectedness length, g(T=O, p) —(p —p, ) ~] and the
average length L of the one-dimensional random path be-
tween adjacent nodes [L -(p —p, ) ~] through the equali-
ties1

—4, 24

and

d=d —(Pr/v~) (12)

d=2(dv —P )/(o' —P +2v ) . (13)

Alexander and Orbach conjecture that for percolation
on the in6nite cluster

4
3 (14)

independent of d. Substituting the exponent values deter-
mined in this work and setting d =3 in Eqs. (12) and (13),
one obtains d =2.51(4) [2.47(5)] and 2.49(5) and
d =1.32(13) [1.31(13)] and 1.31(14) for series I [II] and
the combined data. While the present values of fractal
dimension are in excellent agreement with the Monte
Carlo ' and series expansion estimates d =2.52(3) and
2.50(2), a comparison of our values for fracton dimen-
sionality with Eq. {14}reveals that the present results are
consistent with the Alexander-Orbach conjecture. Com-
bining (13) and (14}and solving for o yields the expres-
sion

cr =1.91(6) for the combined data. The Snal values for
the critical exponents of interest, i.e., P~ =0.42(3),
v =0.83(3}, |()=(=1.08(3), o =1.91(6), and
hi=1.00(1), arrived at by taking into consideration all
the sources of error, are in excellent agreement with the
most accurate theoretical estimates P =0.41(3},
v =0.87(7), /=1. 10(2), o =2.00(5), and b, , = l. 1(2) for
site or bond percolation on 1=3 crystalline lattices re-
ported ' ' recently, and also with the experimental
value o = l.94(6) for water-in-oil microemulsion.
Moreover, the values of the exponent ratios
o /v~ =2.30(15) [2.31(16)] and 2.30(16) and

p~/v~ =0.488(42) [0.531(45)] and 0.506(55) for series I
[II] and the combined data conform very well with the re-
cent theoretical estimates 2.276(12), 2.31(6), and 2.45(5)
for cr/v~ and 0.464(66) and 0.471(16) for P /v obtained
by finite-size scaling, series expansion, and Monte
Carlo simulation, ' ' while the values of the conductivity
critical exponent o for the investigated alloy series obey
the inequality o ~2 for d=3, due to Golden, who as-
sumed that the conducting backbone near p, has a
hierarchical node-link-blob structure.

Within the framework of a model which is based on
the assumption that the infinite cluster at p, has a self-
similar fractal structure and makes use of the scaling
arguments, the fractal dimension d and the spectral (frac-

ton) dimensionality d of the percolating cluster at thresh-
old can be expressed in terms of the Euclidean dimension
d and percolation critical exponents P, v~, and o as

and
o.=[{3d—4}v~ —P~]/2 . (15}

cr =(d —2)v~+g .

The presently determined values of the exponents p and
8, when substituted in Eqs. (9}—(11), yield
v =P—(8l2)=0.84(3) [0.81(3)) and o =1.93(6)
[1.8'7(6)] for series I [II] and v~ =0.828(33) and

For d =3, Eq. (15} reduces to o =(5v~ —P )/2 and the
presently determined values of vz and P~ when substitut-
ed in this relation give the values o =1.90{8)and 1.81(8)
for the series I and II, which are the same (within the er-
ror limits) as those deduced from the relation, Eq. (11),
predicted by the SSG node-link model. Note that Eq.



S. N. KAUL AND P. D. BABU 50

(11) reduces to Eq. (15) if

g=dv /2 (16)

and that Eq. (16), too, is satisfied in the present case. In
view of the above observations, our results demonstrate
that the SSG node-link, hierarchical node-link-blob, and
self-similar fractal models are mutually consistent, even
though these models differ widely in the microscopic de-
tails and hence form completely different descriptions of
the structure of the infinite cluster at p, . This is not
surprising, considering that the structural details at
length scales less than the correlation or connectedness
length, g(T=O, p), are of no consequence so long as
g(T=O, p) diverges at p, . Thus Eqs. (9)—(11) and (15}
have a universal character in that they are of more gen-
eral validity than what an oversimplified underlying mod-
el would normally suggest. Other important points that
deserve a mention at this stage are (i) a close agreement
between the experimental values of the percolation criti-
cal exponents for amorphous site-diluted ferromagnets
determined in this work and those theoretically predicted
for site or bond percolation on three-dimensional crystal-
line lattices asserts that the critical behavior of percola-
tion on a regular d=3 lattice remains unaltered in the
presence of quenched randomness if the specific-heat criti-
cal exponent of the regular system is negative, ' and (ii)

the finding that the range of exchange interactions is
widely different in the two alloy series and yet both the
alloy series possess the same values for the percolation
critical exponents vindicates the universality hypothesis.
An inference like (i) above has recently been drawn based
on the results of Monte Carlo simulations of bond (site)
percolation on random two-dimensional (three-
dimensional) systems. Furthermore, consistent with the
above observation (i), the results of electrical resistivi-

ty, ' ' bulk magnetization, ' ' ' and zero-field suscepti-
bility'6'~ ~ 4' measurements [performed in the asymptot-
ic critical region on the same or similar (Fe-Ni)-metalloid
alloy systems as the present ones] have proved beyond
any doubt the validity of the Harris criterion even for ex-
treme disorder by unambiguously demonstrating that,
even for compositions extremely close to (just above) p„
Tc is sharply defined (b, Tc/Tc S 10 ) and the asymp-
totic values of the thermal critical exponents for specific
heat, spontaneous magnetization, and initial susceptibili-

ty are composition independent and the same as those
theoretically predicted for an ordered three-dimensional
(d =3) Heisenberg spin system.

Considering the fact that the critical concentration has
not been approached sufBciently closely in the present ex-
periments, a close agreement between experiment and
theory might seem fortuitous, but the following observa-
tions do not support such an inference. In this context, it
should be noted that the main difficulty in approaching p,
sufficiently closely in this work arises from the break-
down of long-range ferromagnetic order at p, {the con-
centration at which the present spin systems enter into a
spin-glass state when the concentration p is lowered
through p, ; see Figs. 1 and 2) which lies above p, . The
observations in question are (a) three different types of

data [Tc(p), M(T=O, p), and D( T=O,p)] yield the same
value for p, for a given alloy series, (b) p, is widely
different in the two alloy series and yet both the alloy
series yield identical values for the percolation critical ex-
ponents, and {c) within roughly the same concentration
range, the need to include the correction-to-scaling term
is felt only in the case of M(T=O, p) but not for Tc(p)
and D(T=0,p). On the other hand, one has to admit
that the actual behavior of the investigated alloy systems
is much more complicated than a simple dilution picture
would normally suggest. This is so because the spin-glass
phase exists for p &p, (and hence the SG order is present
in the range p, Sp ~p, also) and long-range ferromagnet-
ic order breaks down before the percolation threshold p is
reached. As a consequence, the magnetic atoms have a
power-law (fractal) correlation near the percolation
threshold if only the nearest-neighbor interaction is as-
sumed. The Harris criterion is replaced by the Weinrib-
Halperin criterion which predicts new exponents even if
cz &0 in the pure system. Thus, crossover to a new fixed
point (critical behavior) is expected. The presence of spin
interactions beyond the first neighbor in the systems un-

der consideration should make the crossover spread out
and new critical behavior hard to detect. This might
offer a simple explanation for a seemingly wide critical re-
gion for Tc(p) and D(T=O,p) but certainly not for the
necessity to include the CTS term only for M(T=O, p).
Moreover, there is no a priori reason to believe that one
should obtain the pure values for the exponents in the
crossover region. Furthermore, if the Weinrib-Halperin
criterion is applicable to the amorphous alloy systems
studied in this work, the thermal critical exponents are
also expected to possess values widely different from the
pure ones for concentrations close to P, . Extensive stud-
ies' ' ' ' of the thermal critical behavior in the alloys
with p close to p„ in which T& has been approached
sufficiently closely, do, however, yield the pure values for
the thermal critical exponents. These contradictions can
be laid to rest only when the type of measurements de-
scribed in this work are performed on amorphous mag-
netic systems in which the formation of the spin-glass
state at low concentrations can be completely avoided
and long-range ferromagnetic order breaks down at p, .

Obviously, such a metallic alloy system is hard to realize
in practice.

IV. SUMMARY AND CONCLUSIONS

High-resolution bulk magnetization, ac susceptibility,
and electrical resistivity measurements have been per-
formed on amorphous (Fe&Ni, z }so(B,Si }2o and

(Fe&Ni& z }SOP,4B6 alloys over a wide range of Fe concen-
tration 0.025 ~p 0.625 with a view to determining ac-
curately the crossover exponent P for Tc(p) and the per-
colation exponents for magnetization (P ) and spin-wave
stifFness (0). Reliable estimates have been obtained not
only for these exponents but also for the correlation and
conductivity exponents [deduced from the exponents 8,

and Pz with the aid of exponent equalities
v~=P —(0/2} and o =(d —2)v +P]. From the close
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agreement between the values of crossover and percola-
tion critical exponents (P,P&, 8,v, and t7) so obtained
and those theoretically predicted for site or bond percola-
tion on a d=3 crystalline lattice, we conclude that the
critical behavior of percolation on a regular 0 =3 lattice
remains unaltered in the presence of quenched random-
ness if the specific-heat exponent of the regular system is
negatiue. The asymptotic critical region, where the single
power-law behavior [i.e., Eqs. (1), (4}, and (5}] is valid, is
wide for Tc(p) and D(T=O,p) but extremely narrow for
M(T=O, p}; in the latter case, the correction-to-scaling
term in Eq. (7) had to be included in order to arrive at the
true asymptotic value of the critical exponent P and am-

plitude rn~ from M(T=O, p) data taken at concentrations
not too close to p, . Consistent with the Alexander-
Orbach conjecture (Golden inequality), the fracton

dimensionality d of the percolating cluster at threshold

(the conductivity exponent o) turns out to be d�—',
(=tt�). Finally, the observation that the range of ex-

change interactions is widely different in the two glassy
alloy series and yet the percolation critical exponents
have the same values for both of them vindicates the
universality hypothesis.
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