
PHYSICAL REVIEW B VOLUME 50, NUMBER 13 1 OCTOBER 1994-I

Propagation of a hole on a Neel background
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We analyze the motion of a single hole on a Neel background, neglecting spin Buctuations.
Brinkman and Rice studied this problem on a cubic lattice, introducing the retraceable-path ap-

proximation for the hole Green s function, exact in a one-dimensional lattice. Metzner et at. showed

that the approximation also becomes exact in the infinite-dimensional limit. We tackle this problem

by resumming the Nagaoka expansion of the propagator in terms of nonretraceable skeleton paths
dressed by retraceable-path insertions. This resummation opens the way to an almost quantitative

solution of the problem in all dimensions and, in particular, sheds light on the question of the posi-

tion of the band edges. We studied the motion of the hole on a double chain and a square lattice, for

which deviations from the retraceable-path approximation are expected to be most pronounced. The

density of states is mostly adequately accounted for by the retraceable-path approximation. Our

band-edge determination points towards an absence of band tails extending to the Nagaoka energy

in the spectra of the double chain and the square lattice. We also evaluated the spectral density

and the self-energy, exhibiting k dependence due to finite dimensionality. We find good agreement

with recent numerical results obtained by Sorella et al. with the Lanczos spectra decoding method.

The method we employ enables us to identify the hole paths which are responsible for the various

features present in the density of states and the spectral density.

I. INTRODUCTION

The discovery of high-temperature superconductivity
has intensi6ed the interest in the study of strongly cor-
related electron systems. Among the important related
subjects awaiting solution is the dynamics of holes in
the presence of a spin background. Among pioneering
works on the problem one can cite that by Bulaevskii, Na-

gaev, and Khomskii who, studying the motion of a hole
on an antiferromagnetic background, with the neglect of
quantum fluctuations, introduced the "string potential"
concept. As the hole moves on the Neel background it
leaves behind a string of overturned spins, thus increas-
ing the exchange energy proportionally to the length of
the string. This can lead to self-trapped (or, as they
were called in Ref. 1, "quasioscillator") states centered
at the original position of the hole. Two years later,
Brinkman and Rice2 studied the motion of a single hole
on different spin backgrounds, employing the Nagaoka
expansion for the hole propagator. This involves con-
tributions by hole paths restoring the spin background,
classified according to their length. For a cubic lattice
and ferromagnetic, antiferromagnetic, and random spin
backgrounds, they calculated the exact contributions of
hole paths up to length 10, neglecting spin fluctuations.
The density of states obtained was compared with the one
resulting from considering only the self-retracing paths of
the hole, the "retraceable-path approximation" (denoted
RPA throughout this paper). In this approximation,
which does not distinguish between different spin back-
grounds, one can exactly sum the series for the propa-
gator, which involves only local contributions, thus ob-
taining no momentum (k) dependence: The motion is
completely incoherent. With the RPA Brinkman and

Rice2 were able to account for the body of the band
in the case of a Neel background. Less agreement was
obtained2 for the random background, while the ferro-

magnetic case reduces to the uncorrelated single-particle
motion in a tight-binding band which generally is quite
different from the RPA description. They also observed
that the RPA became exact in the one-dimensional case
where, for any spin background, the free-particle result
is obtained. The band edges appear at the so-called Na-

gaoka energies.
In a series of recent works ' the motion of a hole on

a spin background was analyzed in the case of in6nite
dimensions. In particular, Metzner et al.4 estimated the
contributions to the propagator in terms of the dimen-
sion (D). Neglecting spin fluctuations, the only non-

retraceable contributions which would remain flnite at
D = oo would be those of loop paths circulated only
once. These would certainly not preserve a Neel-ordered

spin background, so that the RPA becomes the exact
solution of the problem in this case. For the Neel back-
ground at Gnite dimensions, the lowest-order corrections
to the RPA density of states in the case of a hypercubic
lattice would come from circulating elementary square
plaquettes three times (thus of order 1/D4). More
important are the nonlocal corrections to the propaga-
tor, the lowest of which is of order 1/D (the hole can
propagate to nearest neighbor sites on the same sublat-
tice circulating an elementary square plaquette one and
a half times). The latter corrections would give rise to
a k-dependent self-energy for the hole. Trugman al-

ready mentioned these nonretraceable paths in his study
of the two-dimensional Hubbard antiferromagnet. Quite
different physics is expected when the quantum fluctu-
ations associated with transverse exchange interactions
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are taken into account kom the start. This problem has
been addressed in many recent works; among others see
Refs. 7—13.

Taking into account the results mentioned above for
hole motion on a Neel background in the absence of quan-
tum Huctuations, we propose here a method to evaluate
the local and nonlocal parts of the propagator in order to
analyze the departures &om the RPA for reduced dimen-
sionality. In Sec. II we describe the method employed
to obtain these quantities. Basically, the Nagaoka ex-
pansion of the propagator is rewritten in terms of non-
retraceable skeleton. paths dressed by retraceable paths.
Though one can explicitly evaluate the contribution of
a dressed skeleton diagram of given length, one has to
determine numerically the numbers of bare background-
restoring skeleton paths. The results obtained with this
method for the double chain and the square lattice are
presented in Sec. III. We can quite reliably determine
the band edges, and our results place them at an inter-
mediate value between the RPA edge and the Nagaoka
energy. In general, we find good agreement with the re-
cent numerical results of Zhong et al. ,

i4 obtained with
the I anczos spectra decoding method. The method we

employ enables us to determine the origin of the distinc-
tive features exhibited by the density of states and the
spectral density. Thus, we can identify the relevant paths
responsible for the k dependence at reduced dimension-
ality. In Sec. IV we summarize our results.

II. ANALYTICAL METHOD

In this section we describe the method employed to
evaluate the hole propagator on a Neel background, in
which spin fiuctuations are neglected.

The Nagaoka expansion ' for the Green's function |
describing the propagation of a hole inserted into an ar-
bitrary fixed spin configuration

I s) takes the following
form:

G;,. (w) = ) act c~ s

relevant ones at D = oo on a Neel background. Even at
Rnite dimensions they would determine the leading terms
of the local Green's function. Following Brinkman and
Rice one can derive the RPA propagator by introducing
the following irreducible "self-energy" S (here irreducibil-
ity means that the path cannot be split up into two or
more consecutive retraceable paths):

GRpA(w) =
[ S( )]

~ (2)

S(w) = Z
I

—
I

C(w),
(t l'
Ewj

(4)

(Z —1 r (Z —11
C(w) =1+

I I
S(w)+

I I

S(w)'+".
j

1-(' jS()'
that is, it is written self-consistently in terms of the jump
to a nearest neighbor of the origin dressed by retrace-
able paths, where C is the RPA-dressed irreducible ver-

tex part.
The solution of the self-consistent system of equations

(4) and (5) is2

z
S(w) = 1 —4(Z -1)

I

—
I

2(Z —1) qwj

The lowest-order RPA self-energy will derive from the
contributions of single jumps to a nearest neighbor and
immediate return to the origin, so that

S'(w) = Zl —
I

(t)'
(w

where Z is the number of nearest neighbors. The next-
order irreducible self-energy contribution consists of one

jump to a nearest neighbor of the origin followed by a
further jump in any direction different from the previous

jump [thus having (Z —1) possibilities for this step] before
retracing the whole path. In general, one can write the
RPA irreducible self-energy as

Therefore the RPA propagator is given by

GRpA(w) =
w —,(~~,)

w —Qw2 —4(Z —1)t2

Above, c,. (c; ) creates (annihilates) a particle with
spin o at the lattice site i, while H is the Hamiltonian
describing the correlated hopping of a particle between
nearest neighbor sites. The coeKcients A,. - denote the
number of distinct n-step paths of the hole in the spin
background 8 which start at site j and end at site i,
restoring the original spin con6guration after the last
step. In particular we will consider the case of a Weel

spin background, 8 = N, where propagation is only pos-
sible between sites belonging to the same sublattice.

As we mentioned in the previous section, the paths in
which the hole completely retraces its steps are the only

From this expression one can easily determine the band.

edges, +nRp~, of the energy spectrum obtained. in the
RPA for a hole hopping on a Neel background as

wRpA = 2v'Z —1t~

which exhibits a reduction &om the &ee-particle value

(Nagaoka energy), wpp = Zt for Z ) 2, w'hile the
RPA coincides with the &ee-particle result in the one-

dimensional (Z = 2) case, as already mentioned in the
previous section.

Having introduced the retraceable-path approximation
(RPA) which gives a good approach to the local propa-
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gator, we will now describe the method we employed to
obtain the Green's function of a hole moving on a Neel

background. In the Nagaoka expansion (1) we take into
account all background-restoring paths in the following

way: For each path length, we take all possible nonre-
traceable "skeleton" paths which restore the Neel back-

ground, and dress them by inserting all possible retrace-
able paths. The RPA paths result &om dressing the triv-
ial skeleton path of length 0. For all other skeleton paths
two types of dressing have to be taken into account: (1)
additional steps within the skeleton path (internal dress-

ing), (2) irreducible RPA vertex parts inserted at all ver-
tices of the internally dressed skeleton path. To avoid
double counting one has to distinguish between external
and internal vertices in the internally dressed skeleton di-
agram. External vertices are connected by one link to the
skeleton which implies only one forbidden first step for
all retraceable-path insertions. The dressed "external"
vertex C,„(m) is therefore correctly described by Eq. (5).
Internal vertices, however, are doubly connected to the
skeleton path, such that two first steps are forbidden
for insertions of the retraceable-path vertex dressings.
Therefore, the RPA-dressed irreducible internal vertex
part is

1
' ( ) =

(
,

) ~( ).
In order to perform the dressing we have to count the

number of internal dressings which can be considered
for a skeleton diagram of length l. For this we define
N&" (m, n) as the number of paths of m steps on a skele-
ton diagram of length l, starting at site 0, reaching site
k (0 & k & I) after step m, and visiting the end points
0 and I exactly n times (including the start at site 0).
In terms of these numbers the dressed contribution of a
single skeleton diagram of length I, to the propagator is
given by

G, (~) = —) N,'(m, n)
~

—
~ C,.-.+'-"C."„. (iO)

ftl
&~)

m(x, y) = z [a~ -i(x, y) + g~+i(x y)j

(0 & IG &I),
g((z, y) = xyg& i(*,y).

The general solution of Eq. (14) is given by

g~(x y) = a+(* y)~+(z)+a-(x y)n" (*)

with

(i4)
(15)

g)(x, y) =, 2, 2. (18)
zy'(n+ —n )-

gi (1 —
zygo ) —rl' (1 —zygo+)

This generating function can be viewed as the Green's
function of a particle propagating on a linear chain of
length I with hopping amplitudes at the edge bonds dif-

ferent &om the internal ones.
From Eqs. (10) and (12) we see that the contribution

of a dressed skeleton diagram of length l is determined
as

C;„(m) (tC;„(m) C,„(m) &

E ~ 'C-(~))
For the special values of the variables of g~(z, y) ap-

pearing in Eq. (19) the expression (18) simplifies consid-
erably since 1 —zygo+(z) = 0. We therefore obtain the
very simple final result

(
G'~(~) = G'RPA(~)

+ V ~RPA)
(2o)

which holds even for l = 0, although our derivation did
not include this case.

In terms of these dressed skeleton diagram contribu-
tions we can now write the propagator as

1 2Z~(*) = —i + gi —4x
~

= ~~.
2x )

The coefficients ay are finally determined &om the equa-
tions for go and g~, (13) and (15), and one obtains

For the numbers N&" (m, n) the following recursive sys-
tem of equations holds:

N,'(O, n) =
N& (m+ 1,n+ 1)

N,"(m+1,n) =

h„,i,
N,'(m, n),

N,'+'(m, n) + N,"-'(m, n)

(0 & IG & I),

(11)N,'(m+ i, n+ 1) = N,
' '(m, n).

gg(x, y) = ) N,"(m, n)x y", (12)

and rewriting Eqs. (11) in terms of them. One obtains

go(»y) = y+ xygi(x y)

One can solve these equations by introducing the gen-
erating functions

where K~ . is the number of different bare background-
restoring skeleton paths of l steps between the end points
i and j. On a Neel background only skeleton paths com-
posed of an even number of steps l will contribute, as
sites i and j must belong to the same sublattice. Triv-
ially, considering that K; = b; ~, the RPA is contained
in the propagator of Eq. 21 .

Equation (21) represents a resummation of the Na-
gaoka expansion (1) motivated by the merits of the RPA.
As we will show in the newt section, it can be used quite
ef6ciently because the number of skeleton paths of length
l is much smaller than the total number of paths of the
same length. As discussed in the Introduction, the contri-
butions &om nonretraceable paths get less important the
higher the dimension of the lattice. Therefore, we have
chosen the two nontrivial systems of lowest dimension to
demonstrate the usefulness of Eq. (21): the double chain
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(l m oo). (22)

This determines the radius of convergence, which using
Eq. (20) gives the following simple relation between the
position of the band edge m, and the asymptotic growth
parameter o. of the number of skeleton paths:

~RP& ~
o & v Z

(n+ ~ ')t, c & &Z —1. (23)

and the square lattice.
The resummation (21) opens a new chance for a quali-

fied discussion of the band-edge problem. Brinkman and
Rice have given an argument which would suggest that
the spectrum of the correlated hole motion on a Neel
background extends to the Nagaoka energy mpp —Zt,
via exponential band tails. Zhong et OL. appear to pro-
vide evidence in favor of this scenario by showing that
their spectrum extrapolates to the Nagaoka energy. In
our opinion, both the Brinkman-Rice argument and the
evidence of Zhong et al. are not conclusive. It is, in fact,
obvious from a total spin decomposition of the Neel state
that the spectrum extends to mFp for finite size systems:
The maximum spin S = Lj2 is contained in an L-site
Neel background with a probability of order 2 ~. There-
fore the issue is not at all whether the spectrum extends
to mpp for systems of sufBcient size, as demonstrated
by the extrapolation in Ref. 14, but rather whether this
part of the spectrum survives with a finite weight in the
thermodynamic limit. The results we present in the next
section point to band edges below mpp.

The position of the band edge is related to the radius
of convergence of the series in Eq. (21). If we replace the
series by any finite summation, the band edge remains
at the RPA value (8). An extension of the spectrum
beyond this value can only result from the series diverging
for energies m & m, with m, ) wapA. One can quite
generally assume an exponential increase in the number
of skeletons with the path length:

tion that, even for the low-dimensional systems we have
considered, our numerical data provide good evidence for
the conjecture that a ( Z —1 is generally true.

To calculate exactly the propagator given by Eq. (21),
one would need to determine the number of distinct
background-restoring bare skeleton paths of all lengths,
which is a very complicated problem. In the next section
we describe how we have overcome this problem for the
concrete cases of a double chain and a square lattice Neel
backgrounds.

III. RESULTS AND DISCUSSION

As mentioned in the previous section, we did find a way
to estimate the numbers of different bare skeleton paths
for all lengths and thus, through Eq. (21), obtain the
propagator of a hole on a Neel background in two special
cases. In this section, we will first describe our estimation
in general, and in the two following subsections present
and discuss the results we obtained for the density of
states and spectral density, in the cases of a double chain
and a square lattice.

To be specific, we erst determined numerically the ex-
act numbers of different Neel background-restoring skele-
ton paths for as many path lengths as our computer facil-
ities allowed. For the case of a double chain we obtained
all skeleton paths up to a length of 32 steps, and for
lengths 34 and 36 we only determined the closed paths.
The results are presented in Table I. For the square lat-
tice Neel background we obtained all skeleton paths up
to length 24. In Table II we exhibit these numbers.

From the numbers of skeleton paths exactly obtained,
we determined the asymptotic behavior as a function of
path length exhibited by our data. This we could ade-
quately fit by the following functional form depending on
three parameters:

C- o'
(24)

The band-edge energy given by (23) grows monotoni-
cally with increasing o. until it reaches wpp for o. = Z —l.
The total number of nonretraceable skeleton paths of
length L for the hole, irrespective of whether the spin
background is restored or not, is Z(Z —1) ~. Thus o. =
Z —1 would mean that the number of Neel background-
restoring skeleton paths has the same growth behavior as
the total number of skeleton paths. This is extremely im-

plausible at dimensions D & 3. In this case the majority
of nonretraceable closed random paths is largely free of
points visited mere than once, which means that to re-
store a Neel background the hole essentially has to walk
twice through such a path. This implies that n should
be close to gZ —1, rather than to Z —1. The above
argument gets better the higher the dimensionality.

We conclude from the above consideration that we

should expect the band edge to be close to mRpA, that,
i.e., far away from mpp, for lattices at high dimension.
At the same time, we wish to emphasize that we have
not been able to make the above argument exact by a
strict estimate of an upper bound smaller than Z —1 for
the parameter o.. We will see, however, in the next sec-

Notice the exponential dependence with the length which
leads to the band-edge value given by Eq. (23), as de-
scribed in the previous section. %e determined the pa-
rameter o. from fitting the data for the local propagator,
the numbers of closed skeleton paths. The band edge
of the energy spectrum which we determine from the lo-
cal propagator is a "global" quantity, in the sense that
it has to contain all poles of the Green's function, and
the nonlocal Green's functions should not extend beyond
this edge. Taking the latter fact into account and also to
avoid spurious singularities in the self-energy obtained,
we took the parameter o. &om the local propagator Gt
and fixed it while fitting the nonlocal propagators. The
denominator in Eq. (24), depending on the parameter P,
will essentially account for the energy dependence of the
propagator near the band edge. Finally we included a
proportionality constant, the parameter C.

In Tables III and IV we detail the asymptotes ob-
tained for the double chain and the square lattice re-
spectively. The asymptotes were obtained by a weighted
fit to Eq. (24) of our exact short range data, attaching
to the latter a dispersion decreasing with path length.
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TABLE I. Exact numbers of nonretraceable Neel background-restoring skeleton paths on a double chain, classi6ed according
to path length or number of steps (1), and distance (d) between origin and end point, measured in units of the lattice parameter.
Due to symmetry in the double chain, nz~ ——2 different sites are end points with the same d(g 0), thereby contributing equally
to n(dg).

6
10
12
14
16
18
20
22
24
26
28
30
32
34
36

(d~-o)

0
0
4
18
36
120
270
846
2400
7052
21432
63538
193448
590154
1824844

l
(d~=2)

4
4

8
56
132
488
1336
3736
11180
32500
99900

304628

(d~ =4}

0
8
6
12
30
66

302
808
2610
7812

23006
71162
217352

(d~ =so)

0
0
0

20
28
56

192
364

1468
4476

14756
45688

141920

(d~=z6)

0
0
0
0
0

42
100
254
880
2236
7584

23898
78162

l
(cP =26)

0
0
0
0
0
0
0
96

300
880
3376
10100
35228

l
(d~ =36)

0
0
0
0
0
0
0
0
0

214
844
2836
11428

(di =50)

0
0
0
0
0
0
0
0
0
0
0

476
2280

4
12
14
58
150
416
1352
3704
11394
33850
103498
317598
984446

We employed a general linear least squares fit solved by
a singular value decomposition. In particular, for the
numbers of different skeleton paths of t steps extending
&om the origin i to the end point j defined by the prop-
agator considered, which were obtained numerically, we
considered a standard deviation o'~.

(x e (25)

Considering all data equally weighted one arrives at
asymptotes similar to those presented here, but taking
a path-length-dependent weight attached to the exact
short range data will certainly produce a better represen-
tation of the asymptotic behavior for long path lengths.
To quantify this, we can mention that the relative devia-
tion of the number of skeleton paths &om the asymptotes
tabulated is of the order of 10 4 (double chain) and 10
(square lattice) for the longest paths exactly investigated.

With the weighted fit (25) which we employed we could
minimize spurious effects in our results, such as negative
peaks in the spectral density. It is important to remark
that the n parameter we obtain, which determines the
band edge, is very stable to the consideration of differ-
ent Sts. We checked this by comparing weighted fits (25)
with other exponents of e ~, including the equal-weight
case, and considering other functional forms for the stan-
dard deviations of the data. In all cases the o, parameter
obtained was well within 2% of the value presented in
this work for the double chain, and 870 for the square
lattice where fewer exact data from which to obtain the
asymptote are available.

Having obtained the asymptotes for the skeleton-path
numbers, and taking into account that for short path
lengths (say, up to length lq) we know the exact values of
these (K) numbers, we evaluated the propagator given
by Eq. (21) in the following way:

TABLE II. Exact numbers of nonretraceable Neel background-restoring skeleton paths on a square lattice, classi6ed ac-
cording to path length or number of steps (l), and distance (d) between origin and end point, measured in units of the lattice
parameter. Due to symmetry, nz, difFerent sites are end points with the same d (see row in brackets).

l
(n„', )

6
10
12
14
16
18
20
22
24

l
(d2 —o)

0
0
8
72
440
1728
8512
33224
151224

(4)

8
16
16

192
528
2912
12176
58648

257472

0
32
24

120
384
1488
7408

35400
159376

0
0

32
32

208
768

4072
15072
76712

l
(d2 =so)

0
0
0

80
368
1056
5296
19904

102528

l
(d2 $6)

(4)

0
0
0
0
0

168
656

3224
16208

(d2 =18)
(4)

0
0
0
0
0
0

256
2312
10608

l
(dh =20)

(8)

0
0
0
0
0

128
640

2832
13600

0
0
0
0
0
0
0

384
3824

(4)

0
0
0
0
0
0
0
0

512

8
48
80

496
1928
8248

39016
171000
792064
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TABLE III. Double chain: Asymptotes obtained for K,' [as defined by Eq. (24)]. In the first
column we enter the relative position of end point j with respect to the origin i, denoting by n(i)
an nth nearest neighbor site of the origin i. For clarity, in the second column we write the distance
d between i and j (squared). The last column indicates which (n&&/nz, ) data (from Table I) were
employed to determine each asymptote by the weighted fit [Eq. (25)], by stating the respective l.

2 —'E

2(i)
3(')
6(i)
7(i)
10(i)

0

4
10
16
26

1.88136
1.88136
1.88136
1.88136
1.88136
1.88136

2.39084
2.27482
2.17748
1.76242
1.42770
0.86016

1.26191
0.66616
0.33958

5.278 x 10
9.05 x 10
5.7x10

22-36
22-32
22-32
22-32
22-32
22-32

fC;,,n''t
G,",(tu) = Ga.pA(~)~', &+). I t~', I

Gi(~)
l&2 ( J

G(k, iu) = ) e '"' 'Go~(tu). (2O)

lo

+) I
K,', —

i)2
I
Gi(~).

1
p(uj) = ——Im[G;;(tu)], (28)

and the Fourier transform of the propagator in real space
as

The second term in the above expression represents our
estimation of the asymptotic or long skeleton-path con-
tributions extrapolated to all path lengths, while the last
term is a correction to include exactly the short range
contributions evaluated numerically. It is an important
detail that the infinite series appearing in Eq. (26) is re-
lated to the polylogarithm function

z"
fp(z) = )

n=l

for which the analytic continuation beyond the radius of
convergence (Iz] = 1) is well known. We obtained the
numerical values for this function employing the MATH-

EMATICA program.
Having evaluated the local propagator as described by

Eq. (26) we determined the density of states p(to),

We define the spectral density as

1
A(k, ur) = ——Im[G(k, tU)] (30)

and the self-energy Z(k, io) by

G(k, ur) = 1
(»)

)

In the following we will present the results we obtained
for these quantities, and discuss the similarities with
the results which Zhong et al. obtained employing the
Lanczos spectra decoding method.

A. Double chain

In Fig. 1 we plot the density of states obtained for
the double chain with the method described above, and,
to compare, include the RPA density of states in the
figure. We obtain a shift of the band edge, m, = 2.94t,
from the RPA value (tuRpA = 2.83t) towards the Nagaoka
energy (tvpp = St), in accordance with the n parameter
obtained (see Table III): nRpA = ~2 ( n = 1.88 (
Q.Fp ——2. This result was referred to already in Sec. II.
The good estimation we obtain for n (independent of

TABLE IV. Square lattice: Asymptotes obtained for K,' [as defined by Eq. (24)]. In the first
column we enter the relative position of end point j with respect to the origin i, denoting by n(i)
an nth nearest neighbor site of the origin i. For clarity, in the second column we write the distance
d between i and j (squared). The last column indicates which (nz, /nz, ) data (from Table II) were

employed to determine each asymptote by the weighted fit [Eq. (25)], by stating the respective l.

2=1
2(')
3(')
5(i)
7(i)
9(i)
11(i)
12(i)

0
2
4
8
10
16
18
20

2.31204
2.31204
2.31204
2.31204
2.31204
2.31204
2.31204
2.31204

2.18809
1.76948
1.56262
1.67271
1.74651
1.05138
1.75567
1.40003

0.29007
3.298x10-'
1.056 x 10
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spectral density including in the Fourier transform of the
Green's function, G(k, ur), contributions up to those of
12th nearest neighbors.

In Fig. 7 we plot the spectral density as a function of
energy, for three different values of momentum k. Here
for k = (0, 0) we obtain a low peaklike structure near
the band edge and a shoulder at lower energies, which is
broader than the one in Ref. 14 where the data seem
to have been insufficient to enable them to trace the
complete spectral density curve. Both structures result
mainly &om the short range part of the nonlocal propa-
gators contributing to G(k, ui). The effect of dispersion
on the spectral weight distribution is coincident with that
shown by Zhong et al. In Fig. 7 we also plot the spec-
tral density for k = (x, 0), which exhibits the highest and
broadest peaklike structure, and k = (— —) which shows
three maxima, all in accordance with Ref. 14. Again thegain,
short range part of the nonlocal propagators contributing
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FIG. 8. Square lattice. Self-energy Z(k, io) of the hole
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RPA (boxes); k = (0, 0) (solid line), k = (s', 0) (dashed line),
k = ( —,—) (dot-dashed line).

to G(k, ur) accounts for this distribution of weight.
In Fig. 8 we plot the self-energy obtained for the same

k values taken for the spectral density, including the dis-
persionless RPA self-energy for hole motion on a square
lattice with Neel spin order. The qualitative effects of dis-
persion are similar to those obtained for the double chain,
but the departures &om RPA obtained are smaller, as ex-
pected. As before, the departures obtained mainly result
from the short range part of the nonlocal propagators.
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IV. SUMMARY

In this work we studied the motion of a hole on a Neel
background, neglecting spin Quctuations, in the &ame-
work of the Nagaoka expansion for the Green's func-
tion. Starting from the retraceable-path approxima-
tion, known to become exact in the one- and infinite-
dimensional cases, where no dispersion appears, we de-
rived a resummation of the Nagaoka expansion by consid-
ering nonretraceable skeleton paths and dressing them by
retraceable-path insertions. The contribution of each of
such dressed skeleton paths was evaluated exactly. The
problem is then reduced to the determination of the num-
bers of di8'erent bare skeleton paths of each length. We
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numerically exactly obtained these numbers up to length
36 for the double chain, and 24 for the square lattice.
From these numbers, we determined an asymptotic ex-
trapolation for all path lengths, and used all this infor-
mation to evaluate the Green's function. We then de-
termined the density of states and spectral density for
the double chain and square lattice cases. We determine
the band edges through a growth parameter o. obtained
in the asymptotic fit. The reliability of our determina-
tion of this parameter, placing the band edge at a value
between the RPA edge and the Nagaoka energy, points
towards the absence of band tails extending to the Na-
gaoka energy in the spectrums of the double chain and
the square lattice. At the same time, this confirms our
conjecture about the increase of the band-edge depar-
tures &om the Nagaoka energy with dimensionality. Our
results deviate from the exact solution of the problem
only due to the difFerences between our asymptotic ex-
trapolation and the unknown exact numbers of skeleton

paths longer than 36 steps for the double chain and 24
for the square lattice. That these deviations are small
is confirmed by the general coincidence of our density
of states and spectral density results with those obtained
through the Lanczos approach by Zhong et al. Our "an-
alytic" approach has the added advantage of determining
the relevant hole paths responsible for the main features
present in the density of states and the spectral density.
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