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The sign-reversal phenomenon of the quantized Hall conductance as a function of an external magnet-

ic field (H) observed in (TMTSF)&X is investigated theoretically. After giving a general Hall-conductance

formula written in terms of order parameters of the field-induced spin-density wave (FISDW), we have

done extensive mean-field calculations for a simplified standard model. It is shown that the many com-

peting order parameters b „(n=0,+1,+2, . . . ) which coexist in a FISDW state can make the sign of the
Hall constant change particularly near the subphase boundary of the FISDW and that numbering of the

integer subphases (N =0, 1,2, . . . stabilized in this order from high fields) does not necessarily coincide
with the Hall number L defined by L =cr„„/(e'/h).We have found that the jumps of the Hall constant
are accompanied by the spin-density wave gap closing when a FISDW is continuously evolving as H
varies. In order for the sign reversal to occur a FISDW must contain many order parameters hn with n

being both signs.

I. IN rRODUCriON

Much attention' has been focused on the field-induced
spin-density wave (FISDW) transitions in quasi-two-
dimensional organic conductors (TMTSF)2X (where
TMTSF is tetramethyltetraselenafulvalene and X =C104,
PF6, and Re04). This phenomenon has been investigated
theoretically and understood as "one-dimensionaliza-
tion" of the two-dimensional electron motion under per-
pendicular magnetic fields (H), thereby leading to the
Peierls instability for the electron-hole channel toward
spin-density-wave formation. The calculations based on
the so-called standard model, namely, the anisotropic
two-dimensional Hubbard model under perpendicular
field, account for the observed phase diagram of H vs T
(temperature} shown in the top panel of Fig. 1, where
the integer subphases characterized by integers
IV=0, 1,2, . . . , from high field are separated by a series
of first-order transitions signaled by the peaks in the diag-
onal resistance p (H) as depicted in Fig. 1(b).

So far the standard theory is quite successful in giving
the overall phase boundary between the normal and the
FISDW state. However, two mysteries remain unex-
plained. (1} The cascade phenomenon of the successive
SDW transitions inside the integer subphases at lower
temperatures in C104, giving rise to infinitely many
FISDW states in the H vs T plane, and (2) the so-called

Rebault anomaly, ' namely, the sign reversals of the
quantized Hall conductivity o„„(H)=L&(L can take
both signs) as a function of H. This sign-reversal
phenomenon was first observed with X =C104, ' '" and
now with PF6 (Refs. 8, 12, and 13) and ReO& (Ref. 14) as
well, and is regarded as a universal phenomenon associat-
ed with the FISDW.

These two mysteries cannot be accounted for in terms
of the standard theory in its naive form where a sub-

phase N is uniquely characterized by a single SDW order
parameter hz with the wave number Q„=2k',+N5 [kz
is the Fermi wave number and 5 '

( =Ac/ebH) the mag-
netic length, where b is the lattice spacing of the y axis].
Thus there exist no more countable subphases other than
N =0, 1,2, 3, etc., which are unable to account for the
infinitely many FISDW subphases observed, correspond-
ing to the cascade phenomenon mentioned above. Ac-
cording to Poilblanc et al. , ' who prove the quantization
of the Hall constant in the present bulk system by utiliz-
ing the Streda formula, ' a subphase characterized by EL
uniquely yields cr„=Le/h with the quantized Hall
number L (L =0, 1,2, . . . }. If this is true, the Hall con-
stant is just a monotonic function of H and exhibits no
sign reversal unless the arrangement of the subphases in-
cludes both positive and negative integer subphases in
some irregular way.

In Fig. 1(c) we display the Hall conductivity o (H),
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FIG. 1. Experimental results on {TMTSF)~PF& obtained by
Cooper et al. (Ref. 8). {a) H vs T phase diagram (b) Pe.aks in
the diagonal resistivity p„„{H)at T =0.5 K. {c)Hall resistance
p„~{H)showing the quantized Hall plateaus approximately cor-
responding to each integer subphase numbering. A negative-
Hall-constant region exists between the N=2 and N =3 sub-
phases which are expected to give the Ha11 numbers L =2 and
L =3 respectively in the naive standard theory.

showing the quantized Hall plateaus approximately cor-
responding to each integer subphase. However, between
the N=2 and N =3 subphases, which are expected to
give rise to the Hall numbers L =2 and L =3, respective-
ly, within the framework of the naive standard
theory, there exists a negative-Hall-constant region.
It is unlikely that the integer subphase with
% &0 {N= —2 or —3) intrudes between X =2 and
X=3, because the subphases in X =PF6 under pressure
are known to be arranged regularly %=0,1,2, . . . from
high fields an accord with the standard theory in all other
respects. ' '" As for X =Re04, ' the negative-Hall-
constant region is quite large (12&H (16T) followed by
the positive-Hall-constant plateaus in high fields. Again
it is unlikely that such a large H region is occupied by the
subphases with negative integers. In X =C104 the
cooling-rate dependences of the phase diagram' and Hall
measurements' '" reveal an interesting coincidence be-
tween these two quantities, namely, the phase produced

around 5.5-6.3 T by slowly cooling samples, which is ab-
sent in rapid-cooling experiments, indeed is responsible
for the negative Hall constant. This means that the con-
ventionally assigned integer number for a subphase does
not necessarily correspond to the Hall number, which is
in disagreement with Poilblanc et al. ' All these experi-
mental data point to something important missing in the
naive standard theory.

Previously we have found in connection with the cas-
cade phenomenon that the FISDW phase is in general
characterized by a set ID,„I(n is a rational number) of
many order parameters (MOP's), namely, the coexistence
of multiple OP's, while the naive standard theory is as-
sumed to be described by a single order parameter (SOP)
as mentioned above. The number of the MOP states is
infinite, corresponding to the fact that the combination of
many OP s is practically infinite and this is capable of ac-
counting for the infinitely many FISDW subphases in the
ground state.

One of the authors' set up a formula for the quantized
Hall constant of the FISDW phase under a given set of
many OP's, based on the argument due to Thouless
et al. ,

' who demonstrate that the Hall constant is a to-
pological number (Chem number) and quantized in a
two-dimensional electron system on a lattice under H,
starting with the Kubo formula. Indeed as Hasegawa
et al. have shown explicitly, the energy gaps between
the Landau bands in the so-called Hofstadter butterfly di-
agram ' correspond to integers with both signs.

The purposes of this paper are to demonstrate (1)
that the quantized Hall number 1. can take both signs
even for an integer subphase N which consists of multiple
order parameters I b,

„ I (n =0,+1,+2, . . . ) with b, ~ be-

ing the largest and L not necessarily equal to N, and (2)
that under varying parameters of the problem, i.e., H, the
Hall number L (H) changes in a stepwise manner, includ-
ing the sign change, even when the order parameters
evolve continuously.

II. FORMULATION OF THE PROBLEM

The quasi-one-dimensional organic conductors in this
class of materials are described in terms of an anisotropic
Hubbard model,

t, g—c;c; th pc—;c,
(f j)x~ (l j)y

+ U g c; tc; &c; &c; &, (2.1)

where c; and c; are the creation and annihilation
operators of electrons, respectively, t, and ti, are the hop-
ping matrix elements along the a and b directions, respec-
tively, and the hopping along the c direction is neglected
for simplicity. Because of the anisotropy (tbit, =0.1),
the Fermi surface consists of two warped lines for the
quarter-filled case, which is the case of (TMTSF)2X.

First, we consider the noninteracting case, V=0. In
the presence of an external magnetic Seld H the original
Brillouin zone is reduced and the Hamiltonian is writ-
ten"
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where a and b are the lattice constants, 5 =ebH/(Ac ), i.e., a 5 =2rrg/$0, P =abH is the fiux per unit cell a Xb, $0= bc/e
is the fiux quantum, and

ci =[.. ,ct (k.„—5, k ),ct (k„,k ),ct(k„+5,k»), ... ] . (2.3)

We have neglected the Zeeman efFect for simplicity since it does not alter the essential part of the result. The ofF-

diagonal term, —tbexp(hibk ), mixes the wave functions for wave numbers (k„,k» ) and (k, +5,k» ). It is to be noticed
that, if Plgo=q/p with integers q%1 and p, the width of the Brillouin zone in the k, direction is actually not 5 but
5/q. However, for a small field [a5=10 in the experiments for (TMTSF)zX] and small t&/t„one can neglect this
efFect, which splits each Landau band into q subbands.

The Hall conductance from a filled band is calculated by the general formula, starting from the Kubo formula, as'

2 1 kF+5/2

h 2n i k s~2 " tb» —Bk„— (2.4)

where
~ %(k„,k ) ) is the wave function at the wave num-

ber (k„,k ). This is a topological expression, giving rise
to the Chem number. The factor of 2 comes from the
summation over the spin index. The second term van-
ishes because of the periodicity in the k direction. The
first term is finite when the wave function changes its
character when crossing an energy gap. The contribution
to cr„„from the lower edge of the rth band from the bot-
tom cancels with that from the upper edge of the
(r —1)th band. Therefore, the Hall conductance is ob-
tained as the winding number at the Fermi level E» and
we get

M» k = +z
(2.5)

2

xP I P

where t, is the solution of the Diophantine equation

r =ps, +qt, ,

(2.6)

(2.7)

where k„=+aare the momenta at the opposite sides of
the Fermi momentum. It has been shown that, when the
chemical potential is in a gap below which r bands are
completely filled, the Hall conductance for each spin is
given by'

with ~t„~&p/2 and integers p and q defined above. If
q =1 and 2k»/5 is an integer, we get r =2k»/5. The
solution of the Diophantine equation is s„=O,t, =r for
the less than half-filled case,

~
r~ &p/2. For the more than

half-filled case the solution is s, =l, t, =r —p &0. This
can be understood as follows. The state at kz mixes with
that at —k» by the

~
t„~thperturbation in t&/t, and a gap

I&, Iof the order of t, (tb/t, )
" opens at the Fermi energy.

Since the wave function changes the phase of exp(ibk t„)
when crossing the energy gap, we get cr„=t,e2/h. In
the above calculation for the less than half-filled case we
get the same Hall conductance as that for free electrons
in two dimensions, in which t, Landau levels are com-
pletely filled, although each Landau level becomes a band
due to the lattice efFects. For the more than half-filled
case, the sign of the Hall conductance is reversed and the
holelike quantized Hall efFect takes place. A11 contribu-
tions of electrons below the Fermi energy are correctly
calculated from the property of the wave function near
the Fermi energy. When q%1, the subband structure
differs from the case of q = 1. The resulting Hall number
t, may be different. In the realistic magnetic-field region
of 2kF/5= 1000, that is, p is quite large, the energy gaps
in the Hofstadter spectrum are too small to observe the
quantized Hall effect. However, the situation is drastical-
ly changes if a new periodicity is created by a FISDW as
we will discuss below.

Now let us consider the effect of the interaction U.
Since the Hall conductance is obtained from the proper-
ties near the Fermi level as discussed above, we can
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linearize the dispersion along the k„direction around EF
and we get

in which tb is introduced to break the nesting of the Fer-
mi surface and can be given as a perturbation in tb lt, by

e(lt) = v~( ik„i

—k~)+ei(k ),
where vF = ~(2t, a sin(akF ) ~, and

ei(k )= 2tb c—os(bk } 2tb—cos(2bk ),

(2.8)

(2.9)
I

tb = —
t& cos(ak~)l[4t, sin (ak~)] .

This is the so-called standard model widely adopted to
describe Bechgaard salts. The Hamiltonian in the pres-
ence of a magnetic field H is now written ' as

Qy i ~yb de
~it 2n ib "-~xi 2m ib

X
i lu—F(3„+ei k—

6'(x, Q )

b, (x, Qy)

ifiu 8„+e k — +Q
(2.10)

where

e g+ (xk)
(x,k, }-:

e (I(( (xk +Q )
(2.11)

with g+ (x, k )(g (x, k )) being the field operator for right-going (left-going) electrons. The ei term in the diago-
nal elements becomes an element connecting k„and k„+5when a Fourier transformation with respect to x is per-
formed. In Eq. (2.10) the off-diagonal element h(x, Q ) is derived from the on-site Hubbard interaction U by a mean-
field approximation. The interaction term is written

&'= U J dx g g&(x,y;)g&(x,y;)Pt(x, y;)P&(x,y;)
yt

Xg (x,k'+Q„)P+ (x, k~) . (2.12)

The order parameter is defined by the mean field of the
spin-density wave as

Xf+ (x, k')) . (2.13)

zone in the k„direction, we return at the end to the same
state but with the spin down. In order to restore the ini-
tial spin it is necessary to go around the Brillouin zone
another time, and thus the total winding number is dou-
bled.

When the order parameter h(x) =b,ivexp(iN5x) exists,

Note that the order parameter depends on x and Q . We
assume b(x, Q )=5(x)5(Q —Q ), i.e., the Q com-
ponent of the spin-density wave is fixed as Q .

There are two types of couplings which connect the
states. One is the coupling due to the magnetic field P
which connects states at k„and k, +5 and the other is
the coupling due to the SDW. In order to connect the
stats at kF and —kF the order parameter must be in the
form

~/—bky—

kF+ $
F

-tbe-'

kx

b,(x}=g b,„exp(in5x ) . (2.14)

Then in terms of 6„these two states are coupled by
h„tI,"exp( inbkz ) (n =0,+1,k—2, . . . ) (see Fig. 2).

The Hall conductance is evaluated from Eq. (2.5) as
0 y 2' /A fof a single ofdcf paf amctcf state with

The factor of 2 in this expression is not duc to the
spin degeneracy but should be understood as follows. If
we start from the spin up and go around the Brillouin

FIG. 2. Schematic diagram of the coupling scheme of the
states at k„=kF and k„=—k+. The wave function at k„=kzis

coupled with that at k = —kF in the t, th perturbation in

(tb/t, ) (short right-going arrows), resulting in a factor of
exp(it„bky). In the presence of the order parameter of the
FISDW, coupling is also possible by using the SDW order pa-
rameter (long right-going arrow, 60) with a k„-independent fac-
tor or by a combination of the SDW order parameter and the tb

term such as h„tbexp( —int, bky ) (n =+1,+2, . . . , etc.) where

60 directly connects the states at k =+kF.
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2~~ 1
(2.15)

Therefore, the physics at an extremely high magnetic
Seld, such as the problems studied by Hofstadter, ' can

I

the periodicity in the k„direction is 2n/. ( lNl5). The flux

piercing through a supercell of 2m/( lNl5) Xb is
be realized by a moderate magnetic Geld due to the super-
cell enlarged by the formation of the SDW. The size of
the supercell is adjusted so that the flux per supercell is a
constant rational number, resulting in a plateau of the
Hall conductance since the chemical potential is pinned
in the SDW gap.

In order to see this more explicitly, we transform the
wave function as '

e g+ (x, k»)

e "g (x,k+Q)

1()'+ (x,k„)exp — f d hei(k» —g)
VF 0

(x,k +Q )exp f dgei(k»+Q» g)—
flV» 0

(2.16)

The Hamiltonian is written in terms of 1t)'+ (x, k») and f' (x,k»+Q») as

dk„ i lu—» B„E(x,k» )

f f dx[iti'+t (x k») g't (x k»+—Q»)]
0'

e

(x,k» )

(x, k +Q»)
(2.17)

where

b, (x,k„)=h(x) exp f dg[ei(k» —g)
AVF 0

p=4tbsin(bq» l2)/hu»5= oisin(bq» l2) /H,

with H =evi, bH/2ctb, ri=2tb /tb, and

I„(a,P) =i" g Ji(a)&„2!(P).
f = —oo

(2.21)

(2.22)

+ei(k» —
Q»

—g)]

(2.18}
00=a(x)e-'"" g 1„(a,P)e

The k dependence comes through x0.
We perform a Fourier transformation for f+ with

respect to x as

x0=b (k —q»/2)/5where q =Q m/b, —
=(k q» /2)hc /eH—,

a=2tb cos(bq»)/Au»5= cos(bq»)/H, (2.20)

I

4(x)= —a sin[25(x —x0)]+Pcos[5(x —x0)], (2.19)

|k'e (x, k„)=f *
fe (k„k)e *, (2.23)—a/a 2'ir/tt

where we have restored the extended Brillouin zone in
the k„direction. The momentum k„is measured from
k» for P'+ and from —k» for P' . Finally, we get

haik„uF5(k„—k„')
X

b, (k„—k„',k„)
E(k„—k„',k„} (k„',k )

0'-, —.(k.' k, +Q,')
(2.24)

where

i)k(k„—k„',k }=f dx E(x,k»}exp[ i (k„—k„')x]—.

(2.25)

The wave function g'+ and )9()' mix at the Fermi momen-
tum k =0. The energy gap at the Fermi momentum is

given by l~(0, k ) l and the wave function gets the phase
of E(0,k» }when k„crosses the Fermi momentum at fixed
k». Using Eq. (2.5},we find that cr„/(e2/h } is given by

I

the winding number of b, (O, k„}around the origin in the
complex plane as k is changed from m /b to m. /b. '—If
we take h(x) =b,Nexp(iN5x ), we get

E(O, k )=60'(a,P) exp[ iNb(k„—q /—2)

ia sin[2b(k ——
q /2)]

+i P cos[b (k —
q /2)] j .

(2.26)
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The amplitude of the gap at the Fermi momentum does
not depend on k and b(0, k») turns ( —N) times around
the origin in the complex plane as k is changed from

m
—li» to n/b Thus the Hall conductance is obtained as—2¹ /h as discussed above.

III. MODEL CALCULATION ON SIMPLIFIED
STANDARD MODEL

JV &0+%'i

&0= —g ( cosk)CkCk —v g (CkfCk+s+H. c.),
k k

1
—g g kn Ck+2k»+nsCk

k

(3.1)

(3.2)

(3.3)

with the self-consistent equation

In order to understand why the quantized Hall con-
stant can change its sign as a function of H, we explicitly
evaluate o „(H)by utilizing a simplified standard model,
namely, we consider the following mean-field Hamiltoni-
an by rewriting (2.1):

4„=—UX (CkCk+2k +„s)
k

F
(3.4)

Here we have dropped the spin index without losing the
essence of our problem and introduced v =t&/2t, and
ti', =0 (a =i» =1). We have assumed Q» =0. All the en-

ergy scales are normalized by t, . We allow the OP's 6„
(n =0,+1,+2, . . . ) to appear.

The mean-field solution is determined by numerically
diagonalizing (3.1)—(3.3) under (3.4) for rational magnetic
fields P/Pc= 1/p. The detailed numerical calculations
are given in our previous papers for the same spinless
standard model. The many-order-parameter state can
appear irrespective of the filling, 5, v, and U. It has been
also shown that the largest OP could be other than 60, in
contrast with what is expected by the Peierls theorem,
that the filling uniquely determines the nesting vector of
Q„=2kF. In this paper we mainly discuss the cases

p =36, u =U/t, =1.0—2.0, and v =0—0.2.
Let us briefly repeat the same argument as in Sec. II

with a simplified standard model to set up the formula of
the Hall conductance appropriate for our purposes. By
1inearizing the dispersion relation near the Fermi wave
numbers kkF, (3.1) can be rewritten in x representation
as

6'(x)
dk ivFB„—2v cos(5x —k )a= f ' fdxe'

b,(x)

ivFB„—2v cos(5x —k )
(3.5)

where the spatial dependence of the OP, h(x), is given by
the Fourier transformation in terms of 5& as

g(x) y g eilSx

/ = —oo

(3.6)

—tv, a„Z(x,k, )

X —, . 4(x, k ), (3.7)

where

b, (x, k )=h(x)e
—y Q J (&)e' ~»ei(l —n)sx

I, n

(3.8)

The scaling parameter a introduced before is given by

a=4v/vF5 . (3.9)

Instead of varying the magnetic field, which can always

'It=[/+(x, k»), g (x, k»)], and we have explicitly re-
stored the k» dependence suitable for the present prob-
lem. A transformation from 4 to 4' through

gp(x k»)=g+(x k»)exp[+i(2v/v»5)sin(5x k )]

yields

dk&=f fdxt(xk )

ilk
Z(k )= g blJl(n)e (3.10)

has been introduced. Thus our next task is to find a
mean-field solution to evaluate (3.10) in order to know its
winding number, which gives rise to the Hall constant L.

IV. SINGLE-ORDER-PARAMETER-LIKE STATE

Among various types of FISDW states which satisfy
the self-consistency condition (3.4), we first discuss the
single-OP-like state where the largest OP distinctly
exceeds many other smaller OP's in magnitude. This
type of solution is expected to be stable near the
FISDW —normal-state boundary. As shown in Fig. 3(a)
the FISDW subphases successively change via a first-
order transition as a function of v, or 1/H through the
scaling factor a defined by (3.9). The corresponding Hall
numbers are shown in Fig. 3(b), and faithfully reflect the
numbering of the largest OP in these subphases. There-
fore the situation is virtually same as in the single-OP
state because the second or third largest OP's are so small

be approximated by a fractional form via
0 (Ijtip/ab)(q/p), we can efFectively change H by vary-
ing u through this scaling factor a, which determines all
the physical quantities. In the following we regard the
change of 0 as the change of u. It is seen that the energy
gap at +kF is determined by 2 Z(k ) ~

where the complex
function
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compared with the largest OP. It is interesting to com-
pare the energy gaps at the Fermi level EF calculated by
two means. (1) Twice the minimum value 2~Z(k~ )~;„of
the complex Z(k„}function against 0&k„~2m. gives an
estimate of the gap at EF in the linearized dispersion ap-
proximation [see Fig. 3(c}]. (2) The direct diagonalization
for the mean-field Hamiltonian without linearization
gives the whole band structure, thus allowing one to esti-
mate the gap at Ez [see Fig. 3(d)]. Shown in Fig. 4 is an
example of the band structure, displaying a distinct gap
opened at EF. Comparing Figs. 3(c) and 3(d) it is seen
that both behave similarly, including the magnitudes, im-

plying that the linearization approximation is rather ac-
curate at least for smaller u values. It is also interesting
to notice from these figures that toward the phase boun-
daries the gap at EF understandably decreases, signaling
the instability of that state. The overall band-structure
change against v or H is shown in Fig. 5(a) and the en-
larged band structure near Ez in Fig. 5(b). The former
shows that as v increases the band tends to become frag-
mented from the upper and lower band edges while keep-
ing the maximum energy gap opened at E~. The num-
bers in Fig. 5(b) denote the Hall number at that state and
the position of EF below which the states are filled. As v

increases, the energy gap at EF tends to decrease,
reflecting the fact that the nesting is deteriorating.

F

0
I i

7l g 27l

Beyond a certain critical value of u the mean-field solu-
tion ceases to exist.

FIG. 4. Band structure as a function of k„(0 k~ &2m",

b =1) for the mean-field solution displayed in Fig. 3 (u =1.0
v =0.038, and 5=2~/36), in which 50 is largest. The energy
scale is normalized by t, . It is seen that the nine subbands from
the bottom among the total 36 bands are occupied, yielding a
large gap between the occupied and the unoccupied states above
(the band is quarter filled in our ease).

0 2 f7=0 (a)

I I I I I I I I i I I I I I I I I04 V. MULTIPLE-ORDER-PARAMETER STATE AND SIGN
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FIG. 3. Single-order-parameter-like solutions of the mean-
field equations (3.1)—(3.4), which have a single dominant com-
ponent of the order parameters, and the corresponding Hall
number as a function of v(u =1.5,5/2m. =

—,'6). (a) The magni-

tudes for various order parameters ~b,„~where the subphases
change successively via a Srst-order transition. (b) The corre-
sponding Hall numbers calculated by (2.5), showing that the
Hall step corresponds to the subphase transition, and (c) the as-
sociated energy-gap closings evaluated by taking the minimum
of the energy gap 2~Z(k~)~. {d) The energy-gap closings ob-
tained from direct band-structure calculations. The numbers in
(c) and (d) denote the numbering of each integer subphase. The
energy scale is normalized by t, .

In this section we consider a genuine multiple-order-
parameter state where many OP's with comparable mag-
nitudes coexist; This type of solution is expected to be
realized in the ground state because the fully fledged OP's
are competing. This situation is different from the
FISDW —normal-state boundary where a distinctive OP
dominates, stabilizing the single-OP-like state mentioned
in the previous section.

As shown in Fig. 6, several MOP states are found as a
mean-field solution for the given parameters of the prob-
lem, all satisfying a local minimum condition. These
MOP states have almost equal energies. The number in
each figure denotes the Hall number calculated by count-
ing the winding number of Z(k ) defined in (3.10). It is
seen that the Hall number does not necessarily corre-
spond to the numbering of the largest OP for a given
MOP state. According to (3.10) the winding number is
determined by summing up all contributions from the
MOP's where the MOP's are interfering with each other.

We display in Fig. 7(a} the v dependence or H depen-
dence of a MOP state in which the OP's change little, but
continuously evolve. Since the energy gap at EF or the
Hall constant determined by Z (k ) does depend on v and
a through the Bessel function J&(a) as seen from (3.10),
the Hall constant can vary even in such a case and exhib-
its a sign reversal as shown in Fig. 7(b). When the Hall
number exhibits a jump, the energy gap at EF must be
closed there. It is seen from Fig. 7(c) that the energy gap
at Ez evaluated by finding a minimum of 2~Z(k ) ~

tends
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to diminish toward the Hall steps. As U varies, Z(k~)
must cross the origin in the complex plane in order to
change the winding number if the MOP state continuous-
ly evolves as shown in Fig. 8, where the Hall number
changes from +1 to —2 in this case, corresponding to
the Hall step in Fig. 7(c).

It is now obvious that since the Hall constant is deter-
mined by a delicate combination of MOP's', 5

&
th

Hall jump occurs even when two MOP states with similar
sequences of MOP's transform within a single integer
subphase domain via a first-order transition. This situa-
tion is illustrated in Fig. 9 where the two MOP states
with the same largest (ho) and second largest (h9) OP's
interchange as a function of u at which the energies of the
two solutions are crossed. The corresponding Hall num-
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FIG. 6. Various mean-field solutions under fixed parameters

(u =2.0, v =0.1, and 5/2m. =1/36) and the corresponding Hall

constant. Each panel shows the distribution of the order pa-
rameters

~ h„~for each solution and the Hall constant. The en-

ergy is normalized by t, . It is seen that, depending on the de-

tailed combination of various OP's, the Hall constants are wide-

ly diferent from solution to solution. The energies of these

solutions are almost degenerate.

ber exhibits a jump at that point, in addition to the other

type of jumps due to the reason mentioned above, as
shown in Fig. 9(b).

VI. CONCLUSIONS AND DISCUSSIONS

— .7-
o

.-2
ic

ll lllllllll»(""'

I

0

FIG. 5. Energy bands normalized by 2t, as a function of v,

corresponding to Fig. 3 (u =1.5 and 5/2m= —'). (a) Global36

band structure and (b) band structure near the Fermi level EF
where the numbers denote the corresponding Hall constant and
the position of E+. It is seen that the energy gap decreases
when the subphase boundary is approached. Also compare
Figs. 3(c) and 3(d).

After setting up a general formula for the Hall conduc-
tance of a FISDW state, we have explicitly evaluated it
for several types of mean-field solutions for a simplified

N
standard model and found in general that the numberi

of the integer subphases (N =0, 1,2, 3, . . . ) does
not necessarily correspond to the Hall number L
given by o„„=2LeIh because the FISDW is charac-
terized by a set of multiple order parameters [b,„)
(n =0,+1,+2, +3, . . . ) whose largest OP is b, . ItN

should be noted in passing that the quantized Hall con-
ductance o., l(e Ih)=2L for the FISDW is always an

even integer because L is an integer. This must be
checked experimentally.

We have provided an explanation why the quantized
Hall constant changes its sing in the FISDW problem
and explicitly demonstrated that the sign reversal of the
Hall conductance can occur as a function of H in terms
of the concept of the multiple-order-parameter state. A
necessary condition for the sign reversal to occur is that a



50 QUANTIZED HALL CONDUCTANCE AND ITS SIGN REVERSAL. . . 929

n=&

-1

s s s ~ / ~ s s

(a) 0.3- n=o

02- '
(a)

0-
s ~ s s s s I

0.1-

0-
s

I
I g
ssa

s s s s s I

~ ~ s ~ s s I ~ s s2
(b) 2- s I s s I s I

0-

-2 s s ~ s s s I s s s

0.03- 5.04 0.06 0.08 0.1

H v

'
0.05

s s s I

0.1
H

FIG. 9. Example of the first-order phase transition as a func-
tion of U or 1/8 where the largest and the next largest OP keep
their order intact (u =2s 0 and 5/2m =1/36). (a) The third larg-
est OP and others are changed at the first-order transition. (b)
The Hall conductance exhibits a jump at the transition point in

addition to the jumps when the state is continuously evolving.

FIG. 7. Mean-field solution of (3.1)-(3.4) with multiple order
parameters and sign reversal of the Hall constant as a function
of u(u =1.5,5/2~= 3'6). (a) The magnitudes for various order
parameters 6„.(b) The corresponding Hall numbers calculated
by (2.5), and (c) the associated energy-gap closings evaluated by
taking the minimum of the energy gap 21Z(ky ) I.

0.01-

FISDW subphase contains multiple order parameters
IE„Iwith both signs of n =0,+1,+2, +3, . . . . This
concept also enables us to understand the cascade
phenomenon of successive phase transitions. This feature
is absent in the naive standard theory of the single-
order-parameter state. In the case where a FISDW state
continuously evolves against H, the jumps of the Hall
constant must be accompanied by a gap closing. We
have points out another possibility of the sign reversal,
associated with the first-order phase transition where the
underlying FISDW subphases with different Hall number
simply transform. This can occur even within one integer
subphase domain in which the largest order parameter
does not alter. This might be the case in X =PF&, where
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o Rsvp) 0'
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FICx. 8. Change of the winding number of the complex func-
tion Z(k~) from I to —2 [ImZ(k~) vs ReZ(k~)], corresponding
to Fig. 7 where around u =0.1 the sign reversal of the Hall con-
stant (1~—2) occurs.

FIG. 10. Possible phase diagram of M vs T (schematic). Thin
(thick) lines indicate a first- (second-) order phase transition.
Two second- and two first-order lines meet at a point, giving rise
to a tetracritical point denoted by a. Two first-order lines inter-
sect each other denoted by b. Branching out of a first-order
liner into two first-order lines gives rise to a tricritical point
denoted by c. These three kinds of phase transitions are collec-
tively called the cascade phenomenon.
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the sign change of the Hall conductance is observed '
within a subphase either N=2 or N=3, as shown in
Fig. 1.

So far we only consider the magnetic field of the form

P/go = 1/p. In this case, all k„points whose number is p
are connected to each other through tb. When the field is
given by a form Plgo=q/p where p and q (%1) are mu-

tually prime, 5=(q/p)(2m. /a) is a multiple of q in p-
divided k„reciprocal space. A "fractional" order param-
eter of the form b,„+& with m =1,2, . . . , q

—1, whose
wave number is Q„=2kF+(n+m/q)5, becomes possibly
nonvanishing. Indeed, as shown before, the fractional
OP s are finite in a mean-field solution in general. While
the fractional OP plays an important role in forming the
density wave, it plays a negligible role for the Hall con-
ductance because we can always reassign the fractional
OP b„+~&q to some "integer" OP 4„,where n' is at
least of order p, which is a large number. Therefore, the
contribution from such an OP with large integer index is
negligible in view of (3.10), as J (a) is practically zero
even when 5„+~&qis nonvanishing. It is also noted that
the OP's with smaller index contribute to o more
effectively than those with larger ones because of the
same J„(a)factor.

We sketch a possible phase diagram of H vs T in Fig.
10, where the thick (thin) line indicates a second- (first-)
order phase transition and each "cell" surrounded by
transition lines is characterized by a particular set of
MOP's, each corresponding to a subphase. On the
FISDW-normal-state boundary two second-order and
two first-order transition lines meet at a point, constitut-
ing a tetracritical point. This has been observed experi-
mentally. ' At lower T there are at least two possibilities
for the topology of the phase transition lines: (1) intersec-
tion of two first-order lines and (2) branching out of one
first-order line into two. Both types are observed experi-
mentally ' as cascade phenomena. The corresponding
Hall-constant behavior cr„(H)when sweeping H under a
fixed T is difficult to predict from the present calculation,
since except for the integer subphase just beneath the
normal-state boundary in which the largest OP is
N =0, 1,2, . . . from high field, the lower sub-subphases,
sub-sub-subphases and sub-sub-sub-subphases, etc. , are
difficult fully characterize, with subtle and slight
differences. Basically the numbering N of the integer sub-

phase indicated in Fig. 10 roughly corresponds to the
Hall number L =2N, giving rise to a Hall step. However,
in particular near the integer subphase boundary where
various OP's are comparable in magnitude, the Hall
number L can differ from that numbering and could be
positive or negative. It is highly desirable to establish the
H vs T phase diagram at lower T (which is lacking
presently} and to perform detailed Hall-constant mea-
surements in order to check whether or not the Hall step
always corresponds to some phase transition.

In connection with the X =C104 problem, ' it is noted
that the phase diagram in H vs T is quite distorted, con-
trary to that expected from the standard theory, because
of the presence of the anion ordering at 24 K. The sign
reversal in this particular case might be explained in a
more conventional way. If we slightly extend the stan-

dard model, the ordering of the integer subphases can be
made different from N=0, 1,2, 3. . . , giving rise to the
sign reversal of the Hall conductance. That is, getting
back to the original standard model, the transition to
FISDW is realized for those values of N and Q, which
give the maximum of ~IN(a, p)~ defined by (2.22), as
shown by Virosztek, Chen, and Maki. They have shown
that the maximum of

~ IN (a,p) ~
is realized for

N=. . . , —4, —3, —2, —1,0 in this order as H is in-
creased. The transitions between the subphases with
different N are first order. In the parameter regions
around rt=2t&/th =50 the FISDW's with N )0 are not
realized. However, if we take a smaller value of g, which
is possible in the case of large next-nearest-neighbor hop-
pings in the b direction, N does not change monotonical-
ly. We can show that the sequence of the subphase num-

bering for g=2 is N =. . . , —2, —1, +1,0, and thus the
sign reversal might occur.

We also show another example that the sign of Hall
conductance is changed by increasing the magnetic field.
We extend the standard model as

e~(k )= —2t~ cos(bk ) 2tb cos(2bk——8}
—2t3 cos(3bk ), (6.1)

where the parameter 8 gives a sin(2bk„}term, which has
been introduced by Yam. aji and the third-neighbor hop-
ping t3 is also introduced. Then I„(a,p} in (2.22) is re-

placed by

I„(a,P, 5, 8)=i "g ( —1) e' J,(a)
l, m

XJ„z/ 3 (p)J (y), (6.2}

where y=2t3sin(3bq„/2)/(3t&H). If 8=m/2 and y=0,
we can show that max~I~ =max~I ~~, i.e., the phases
with N and Narc degen—erate. Therefore, it is not
surprising that sign of the Hall conductance is changed
from 2Ne /h to —2Ne /h for 8=m/2 and y=0, in

which FISDW of N and —N are almost degenerate. If
the transition temperature of even N is suppressed by
anion ordering as recently shown by Osada, Kagoshima,
and Miura, the successive transitions such as
N=. . . , —5, +3,—3, —1 may be possible for suitably
chosen parameters.

Finally, we would like to emphasize the significance of
the present problem. As mentioned in Sec. I, the two-

dimensional electron system on a lattice under a perpen-
dicular magnetic field is nothing but the so-called Hofs-
tadter problem ' widely discussed in various contexts.
The resulting recursive band structure as a function of H
(the butterfiy diagram} is very intriguing and contains
deep physics. The calculated Hall conductance associ-
ated with prominent gaps is indeed quantized and differs

widely from gap to gap, including sign changes. The es-

timated required magnetic field strength (a few mega-

gauss) for the natural unit cell (a few A by a few A) is far
beyond present-day technology. However, by introduc-

ing the electron interaction and inducing density-wave
formation, the enlarged supercell now effectively reduces
the required magnetic-field strength to a moderate value
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(a few tesla} as discussed in Sec. II. The density-wave
(charge or spin) state always keeps the Fermi level pinned
inside the energy gap in order to stabilize the condensate,
which is a necessary condition to observe quantized Hall
plateaus; thus we do not need localized electronic state as
in the quantized Ha11 conductance in a two-dimensional

electron liquid at the interface of two semiconductors un-
der a perpendicular field. The two mysteries discussed in
this paper, the recursive phase diagram in H vs T or cas-
cade phase transitions and the sign reversal of the quan-
tized Hall conductance, are deeply related to each other
and also to the Hofstadter problem.
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