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The variational-cumulant-expansion (VCE) method is adopted to calculate the Heisenberg model.
The free energy of the model is expanded to the third order, and the analytical formulas for the critical
temperature T, are given for each order. The first order of VCE corresponds to the mean-field theory,
the second order gives the same result for T, as the 1/z expansion, and the third order gives a more com-
plicated correction. As a comparison, the results of the two-dimensional (2D) Ising model for VCE to
the seventh order are shown. We carry out a trial to predict the critical temperature of the infinite order
of the VCE, and get a very accurate result for the 2D Ising model. A prediction of T, for the Heisenberg

model is also made.

I. INTRODUCTION

Expansion methods are often used in the study of the
Heisenberg model. The conventional method is mean-
field (MF) theory, which ignores the coupling of spin fluc-
tuations on neighboring sites. The cluster-expansion
techniques' overcomes the shortcomings of MF theory to
some degree and gets better results. Recently, Fishman
and co-workers applied the 1/z expansion,? where z is the
number of the nearest neighbors, to Heisenberg models
for varied spins, exchange constants, etc., and got fairly
good results.

This paper uses the variational-cumulant-expansion
(VCE) approach to study the Heisenberg model. VCE is
an effective analytical method which originated in the
study of lattice gauge theory® and has been widely used in
statistical physics to study classical statistical models.*>
It shows good convergence at high and low temperatures
simultaneously. The preliminary results are all fairly
good. The VCE method is applied here to quantum spin
models. We expand the free energy of the Heisenberg
model to third order and give the critical temperature T,
to first, second, and third order with varied spins on
square and cubic lattices. The result shows that the first
and second orders correspond to the zero and first orders
of the 1/z expansion, respectively, and the third order
gives more a complicated and accurate correction of T..
In comparison, the spin-] Ising model on a square lattice
is calculated with the VCE method to the seventh order.
The two-dimensional (2D) Ising model is simple and solu-
ble; therefore, it can be calculated to high order and com-
pared with the exact result,® which may reveal some
properties of the VCE method.

Finite-order expansion usually has an obvious devia-
tion from the exact value, especially when the order is
low. The effective way to overcome it has never been
found in previous work on the VCE method. We think
there are two ways to deal with it: First, make an effort
to evaluate the order as high as possible; second, try to
find an extrapolating method to predict the critical-point
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behavior at infinite expansion with information obtained
from finite series. In most cases high order is difficult to
reach; one must seek help from the extrapolating method.
We use the weighted fitting method of statistical
mathematics and obtained stable and accurate predic-
tions of the critical temperature of the 2D Ising model
with deviations of 0.04%. The prediction is also made
for the Heisenberg model in varied cases.

II. MODELS AND THE VCE METHOD

The actions corresponding to the spin-; Ising and

spin-s Heisenberg models are
SI=_BHI=BEGin’ (1)

(ij)
SH=——BHH=B ES,-‘SJ- Iy (2)
(ij)

where we let the coupling constant and Boltzmann’s con-
stant kg be 1, and therefore S=1/T, with T as the tem-
perature of the system and o; taking a value of 1. The
suffix i runs over all the sites and {ij) over all the pairs

of sites i/ and j which are nearest neighbors. In Eq. (2),
the spin operators s; obey the commutation relations

[SiarS;8]1=1€4p,8Siy - (3)
The trial action S is chosen as
Sor=Jr 20; , 4)
i
Son=Ju Zsiz » (5)
i
where J; and J are the variational parameters.

The partition function is written as

$ 75050 1=7¢e° %), , 6)

Z =Tr[e5]=Tr[e
where Z, Ee_F":Tr[eso] and o

EZO"ITr[eSO( -+ +)]. From Egq. (6), we get
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(11)

where L,=09L,/3dJ. The third-order free energy is car-
ried out in the same way; because it is very long and com-
plicated, we do not display it, but the determined critical
temperature is shown in the following section.

III. CRITICAL TEMPERATURES
OBTAINED FROM THE VCE METHOD

In the involved problem, the mth modified free energy
F,, (J,T) versus J has the general quality as shown in Fig.
1(a) for low temperature 7, which has two minimum
points mirrored by the j =0 line. As T increases, both of

the minimum points are close to J =0, and after a
J

T{V=2d ,
T?'=2d—1,
T¥=(12d*—12d +2)/(6d —3) ,

T!Y=(24d*—36d*+8d +5)/(12d*—12d +2) ,

vs the variational parameter J at temperature T: (a) T =3.0, (b)
T =7.0. The critical temperature is T."=5.0.

definite temperature T.™, there is only one minimum
point at J =0 as shown in Fig. 1(b). T:™ is the critical
temperature determined by the mth order of the VCE ap-
proach. The above description can be expressed as’

8°F,,
52 |rmzim 12005 (12)

then, one can derive T.™ from Eq. (12).
The critical temperature T.™ of the Ising model is
displayed from the first to seventh order:

(13)

T!>=(240d*—480d >+ 180d 2+ 120d —58) /(120d > — 1080d 2 +40d +25) ,
T ®=(720d°—1800d *+ 1020d *+270d 2+ 167d —376) /(360d * —720d *+270d >+ 180d —87) ,
T!”=(10080d °— 30 240d°+23 520d *— 1680d 3+ 17 052d *—29 232d + 10 502) /

(5040d°— 12 600d *+7140d >+ 1890d >+ 1169d —2632) .
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TABLE I. Critical temperatures of the 2D Ising model given by the VCE approach with the non-
weighting and 1/D (m)-weighting fit method. For comparison, the exact result is also given.
Order (m) 1 2 3 4 5 6 7
VCE 4.00000 3.00000 2.88889 2.65384 2.61449 2.54102 2.51666
No weight 2.23077 2.22222 2.24208 2.24607 2.25329
1/D(m) weight 2.26912 2.23768 2.26068 2.26091 2.26834
Exact result 2.26920
The critical temperatures 7™ of Heisenberg model from the first to third order are
T'V=2ds(s +1)/3,
TP=TV—s(s+1)/3—1/4, (14)

T=T?—(1—16s —3252—325°—16s*) /[20( —3 —4s + 8ds —4s2+8ds?)] ,

where s is the spin quantum number and s(s +1) is the
eigenvalue of spin operator s?>. One can see that T'" and
T!? are the same as the results given by the zero and first
orders of the 1/z expansion, % respectively.

IV. EXTRAPOLATING METHOD
AND PREDICTION OF THE CRITICAL TEMPERATURE

The numerical results of the critical temperature of the
Ising model in a square lattice, where d =2, are shown in
Table I. The values approach the exact value order by
order, but have fairly large deviations. The numerical re-
sults of the Heisenberg model are also shown for square
and cubic lattices with different spins; see Table II.

Figure 2 shows the plots of the critical points T\™ of
the 2D Ising model against 1/m; we find that the trend of
points (1/m,T'™) shows good linearity, where
m =1,...,7. Itis reasonable to fit these points with

T=a+b/m . (15)

We attempt to find a good fitting such that the estimated
a is as close to T'®’, the critical temperature of infinite
expansion, as possible.

In general, high-order expansion is more accurate than
the lower one. Since information given by the higher-
order expansion is more important, one should add larger
weight to it to fit the straight line [Eq. (15)]. The weight-
ing is a basic approach to dealing with such kinds of
problems. Because information of involved deviation is
very limited, we were unable to determine the weights
theoretically. One thing that can be done is to try to find

I

some weighting method which can estimate the exact
value stably and accurately. Several natural and reason-
able ways have been tried, and the best one found by far

for the 2D Ising model is adding the weight
W(m)=1/D(m) (16)

to (T\™—a —b/m)?, where D(m) is the distance be-
tween the points (0,a) and (1/m,T\™), and

D(m)=V(1/m)*+(a—T'™) . 17

This can be explained geometrically: The accuracy of a is
emphasized by adding larger weight to the point which is
nearer to the point (0,a), and the weight is inversely pro-
portional to the distance between (0,a) and (1/m, Té’")).

One can obtain the estimated ¢ and » by minimizing
the value of

§ W(n)T"—a—b/n)

n=1

(18)

with fixed W (n). In matrix form, one gets
B=XT"wx)"'x"wr , (19)

where

7D

(2)
Tc

—
ROt

Té"')

TABLE II. Critical temperatures of the Heisenberg model given by the VCE approach with the
1/D (m)-weighting fit method for varied dimensions and spins.

d s First order Second order Third order Prediction of 1/D weighting
2 1 1.0000 0.5000 0.3333 0

2 1 2.6667 1.7500 1.5238 0.9315

2 3 5.0000 3.5000 3.1619 2.1992

3 % 1.5000 1.0000 0.9167 0.6029

3 1 4.0000 3.0833 2.9550 2.3826

3 3 7.5000 6.0000 5.8028 4.8660
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FIG. 2. For the 2D spin-% Ising model, the fitting straight
line T —1/m of points (1/m,T.™), where T\™ denotes the crit-
ical temperature determined by the mth-order VCE.

and
w() o 0
0 wW(2) 0
W= : :
0 0 W(m)

One can get a and b by solving Eq. (19), noting that W
depends on a and b.

With the above method, the results of the 2D Ising
model are carried out and displayed in Table I, labeled
“1/D(m) weight,” where the value for the mth order
means that a fitting is made among the figures of the first
m orders of the VCE. The predictions are fairly stable
among different orders, and the prediction of higher or-
der is more accurate, for example, the seventh order esti-
mates T,=2.268 34 with deviation of 0.038% from the
exact result. For comparison, the results of the non-
weighted fitting method are also given in Table 1. The
predictions are also very good, which means linearity is
the main property of the points (1/m,T.™), but they are
not as accurate and stable as the weighting ones. In fact,
“1/D(m) weight” means modifying the linear fitting by
considering unlinear factors; it is more complicated and
detailed. Therefore one gets more accurate predictions
with this method.

The Heisenberg model is studied in the same way. We
plot the points (1/m, TC"")), where m =1,2,3 for different
(d,s) in Fig. 3, where (d,s) indicates the system with di-
mension d and spin s, and find that the points also show
linearity. We fit them with the 1/D(m) weighting
method and make a prediction of the infinite series. Be-
cause there are only three points to fit one line, the pre-
diction is not so reliable as in the Ising model. However,
it gives some information of the actual T, at least, and
most likely the prediction is closer to the exact value than
the third-order correction when the linearity is especially
good; for example, for d =2 and s =1, the “most reli-
able” value list in Ref. 8 is 0, and that is just our predic-
tion.
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FIG. 3. For the Heisenberg model with varied (d,s), where d
is the lattice dimension and s is the spin quantum number, the
fitting straight line T —1/m of points (1/m,T'™), where T.™
denotes the critical temperature determined by the mth-order
VCE.

V. FURTHER DISCUSSION

There are some results which can be inferred about the
critical temperatures of the Heisenberg model on two-
and three-dimensional lattices. For s =3 on the square
lattice, Ref. 9 gives T, several methods, such as Weiss
molecular field (MF), 1.000; Oguchi two-spin cluster
(OTSC), 0.845; three-spin cluster (TSC), 0.572; Kramers-
Opechowski (KO), 0.55. Reference 8 with an effective-
field theory (EFT) gives it as 0.704, while Ref. 10 with the
same method modifies it as 0.659, but they think the most
reliable result should be 0. The first order of the 1/z ex-
pansion derives T, as 0.500. In this paper, the third or-

(4

der of the VCE gives T, as 0.333, and the prediction of
the fitting result is O (see Table II). For s = on the cubic
lattice, Ref. 9 lists T, as MF, 1.500; OTSC, 1.400; TSC,
1.041; KO, 0.915. Reference 8 with the EFT gives it as
1.223, while Ref. 10 modifies it as 1.078, but they all
think the reliable result should be 0.84. The 1/z expan-
sion derives T, as 1.000. In this paper, the third order of
the VCE gives T, as 0.917, and the prediction of the
fitting result is 0.603 (see Table II).

It should be emphasized that the linear fitting method
is just a trial for the Heisenberg model. The method is
not perfect, and the datum size is small; therefore, the
prediction cannot be very reliable. But the result of the
third order of VCE is strict, and it is more accurate than
the second-order correction and can be relied on.

From calculations of the Ising and Heisenberg models,
one can see that the VCE is an effective method to study
model systems. We find that the first order of the VCE is
equivalent to the zero order of the 1/z expansion, and the
second order of the VCE corresponds to the first order of
1/z expansion; therefore, the VCE may have some quali-
ties common with the 1/z expansion. If the hypothesis is
right, the third-order VCE should correspond to the
second order of the 1/z expansion. It seems that each
method has its singular advantages over the other. The
relation of the two methods needs further investigation.
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