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Nucleation in disordered media
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A theory of the nucleation of crystalline particles in disordered media is proposed accounting
for small statistical Buctuations in microscopic structural parameters, which are shown to affect
considerably the thermodynamic barrier to nucleation. As a result, the classical nucleation-rate
exponent W/—kT takes the correction I'(W/kT) at high temperatures, where I' depends both on
the correlation radius of the disorder and its amplitude; this correction may be significant. At low

temperatures the nucleation-rate exponent remains finite in the case of uncorrelated disorder, while
it is proportional to T at T —+ 0 in the case of strongly correlated disorder. The implications of
these findings for nucleation in glasses are discussed.

The classical nucleation theory largely evolved in the
1920s—1940s (Refs. 1—4) remains practically unchanged
until the present. According to this theory the steady-
state nucleation rate I may be expressed as a function of
temperature T by

kT )

where A is a constant approximately independent of tem-
perature, R' and G are the thermodynamic and kinetic
barriers to nucleation, respectively, and k is Boltzmann's
constant. The kinetic barrier is usually related to the
viscosity g so that Eq. (1) becomes

A' ( WiI = —exp /—
kTy

'

where A' is a constant. As expressed in terms of the &ee
energy difference between the two phases per unit volume

p () 0), and the interfacial energy per unit area a, the
thermodynamic barrier in forming a spherical embryo of
radius R is given in the capilarity approximation by

4mR
W = m x(E, (Ra)) = max( — X+4xB a
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where F, (R) is the change in the free energy due to the
embryo formation. The latter change reaches its maxi-
mum at the critical radius R, = 20/p, . Since only the
nuclei of radii R & R are stable, the thermodynamic
barrier coincides with the maximum value of F, (R), as
is reflected in Eq. (3).

During the last decade the above theory was applied to
describe crystal nucleation rates in glasses. Based on
these studies a conclusion has been made that the steady-
state crystal nucleation rates calculated by the theory are
many orders of magnitude smaller than the experimen-
tal values in inorganic glasses. Even though the theory
allows for a justification of the activation temperature de-

pendences of nucleation rates, the corresponding absolute
values are in some cases 20 orders of magnitude smaller
than the measured quantities. The discrepancy could be
explained by postulating a temperature-dependent inter-
facial energy o (T). However, the above postulate can
hardly be theoretically substantiated. s

It is the main purpose of this work to discuss the role
of a disorder in nucleation processes like crystal nucle-
ation in glasses. The idea is that there are some lo-
cally favorable inhomogeneities in randomly disordered
media, which effectively decrease thermodynamic nucle-
ation barriers and thus increase nucleation rates expo-
nentially. This increase will be shown to depend both on
the correlation radius of the disorder and on its arnpli-
tude.

While the short-range order topology in the ensem-
ble of structural units ("elemental cells" ) of a glass is
conserved, their microscopic parameters (valence angles,
bond lengths, etc.) fluctuate, leading to the correspond-
ing Huctuations in atomic energies. Associated with the
above are local Huctuations in the free energy difference
between the two phases and in the interfacial energy.
These fluctuations are of static nature: Their lifetimes
are much longer than the time of the nucleation process.
That is why the nucleation rates are expected to be dif-
ferent in different local region of a glass. (Note that the
above arguments fail as applied to nucleation in Hexible,
liquidlike systems where fluctuations are short-lived. )

Following the standard nucleation theories we consider
the change in the &ee energy I' in forming a spherical
nucleus of radius R as composed of two contributions:
the energy gain due to a new phase formation and the
energy lost due to the interface formation. Each of the
contributions can be in turn regarded as a sum of Huc-
tuating (random) and nonfluctuating (average) terms in
the case of a disordered medium. Taking only nonBuc-
tuating terms into account we would have I" of exactly
the same form, as in the classical nucleation theory [see
Eq. (3)]. Adding the Huctuating terms gives

4vrR'F = — (p) + 4~R'(0.) + X& + Y&
3

= F (R) + X~ + Y~. (4)
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Here (p) and (0) stand for nonfluctuating parts of the
corresponding quantities, while X~ and Y~ are random
parts of the free energy difference between the two phases
and the interfacial energy for the nuclei of a given radius
R, respectively, possessing zero average value (XR)
(YR) = 0.

To establish the probability distributions for the above
random quantities, we note that a nucleus is supposed to
consist of a large number of molecules and, thus, both
X~ and Y~ can be regarded as a sum of large number
of random contributions corresponding to individual el-
emental cells in a system. These numbers are approxi-
mately equal to N = 4zRs/3V and N„= 4zRz/Vz~s,
where V is the characteristic volume of elemental cell
in a random system. Assuming microscopic cell Quctua-
tions are small they can be considered as Gaussian ones,
characterized by the corresponding dispersions h and hz.
Consequently the above mentioned s»ms of such fluctu-
ations also obey Gaussian statistics with the dispersions
b, = N b and b,„=Nvb„. As a result the probability
distribution for random quantity F has the form

(E) (2 D)
—1/2 [F —F.(R)]

2D

with the dispersion D = N b + N„b„.
Let us consider first the limiting case of a very small

disorder D ~ 0, so that p (F) is close to the h function
and, thus, E = F, (R). To be considered as the ther-
modynamic nucleation barrier the latter energy must be
the maximum one among all the energies E, (R) referring
to different radii R, that is, F = max(E, (R)) = W, in
accordance with Eq. (3). Thus, based on the probability
distribution in Eq. (5) the above approach reduces to the
standard nucleation theory in the limiting case of a very
small disorder .

We now turn to the case of a finite disorder. The solu-
tion we are looking for implies the nucleation barrier F to
be considerably smaller than W owing to some favorable
static fluctuations. Even though such fluctuations appear
with small probabilities P (E) « 1, they are expected to
increase the effective nucleation rate exponentially. In
other words, there are some optimal Huctuations result-
ing from the competition between an exponential increase
in the nucleation rate and an exponential decrease in the
probability P(F) with the barrier F decrease. Taking
P (F) in the form P (F) oc exp [—y (F)], one can repre-
sent the average nucleation rate as

T

P(F, R) = p(E)dF =exp
0

[F —F, (R)]
2D

J

f (R;) = —4z(p)R, a+ 8z(a)R, a+ z;+ y,
= f. (R)+x, + y;,

where z; and y; are Gaussian random quantities with
the dispersions h 4nR2/V ~ and b„4+R;/Vz~ When.
small, the probability that this layer can be created with-
out a loss in free energy takes the form

p (B;)= exp (—[f —f. (R.)]'t at f = 0, (9)

where

(10)

It has been taken into account in the last equality that the
probability under consideration is to be small. Another
reading of Eq. (7) is that the condition F = F, (R) deter-
mines two characteristic radii Ri (& R,) and R2 () R,),
such that P (F;R) is close to the unity at R & Ri and
at R ) R2. One can say that the minimum work needed
to form a nuclear of radius R does not exceed F with the
probability close to the unity if R & Ri or R ) R2, while
this probability turns out to be much less than unity if
Ri & R & Rz. Since the nuclear radius R changes in a
wide range, from R « R, to R )) R„ in the course of its
growing, one can expect the region Ri (F) & R & R2 (F)
to play the role of a bottleneck in forming a nucleus with
a barrier E (less than W). Therefore, the probability to
form a nucleus with a barrier less than F can be esti-
mated as a product of the probabilities p (R,) that the
minimum energy needed to form a nucleus of radius R;
does not exceed F for all R, ranging from Ri to R2. In
its turn, p (R;) can be defined as the conditional prob-
ability that the minimum work f (R;) needed to form a
spherical atomic layer of radius R; is negative provided
that all the previous layers (of smaller radii R) begin-
ning from R = Ri have been created without a loss in
energy. Bearing in mind that at R ) R, atomic layers
can be created with negative average changes in free en-
ergy and, thus, no Quctuations are needed to make these
changes negative, only layers with R ( R, are to be in-
cluded in the above mentioned product of probabilities.
The minimum energy needed to create an atomic layer
with radius R; and width a = Vi~s is given by

(I) = —exp
~

—
~ d [P (F)] = Io exp [

—S(T)],
g i kT)

~ (T) ™in~ (F) +
kT

=
V (Eo) + „T

W

Combining the above gives

[f.(~)]'~
2b, (R;)

[f, (R)] (R&

~

~

2E(R) (a)

(6) P(E) = p(R;) =

We are now in a position to determine the average
nucleation rate defined in Eq. (6). In order to find the

where the barrier Eo corresponds to the optirna1 Quctua-
tion.

To find the probability P (E) of the nucleation barrier
not exceeding a given value E ( R', we first calculate the
conditional probability P (F, R) of the minimum work
needed to create a nucleus (stable or unstable) of a given
radius B not exceeding a given value E:
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exponent S (T) it is convenient to express the quantity
to be minimized in terms of Rq .. exp —) p;~ z;z~ (16)

"* jf (B.)] R F. (R, )

IR, Ri 2A (R) a kT

Since dF, (R) /dR = f, (R) /a, in accordance with the
definitions for F, (R) and f, (R) in Eqs. (4),(8), the equa-
tion for Rq takes the form

f. (R, )
26 (Ri) kT (13)

Expressing Ri from Eq. (13) and substituting it in
Eq. (11) leads to the final result

W 1+3(+( b R,
kT (1+()s ' (o)a2kT a

In the limiting cases Eq. (14) reduces to

S(T) = (1 —2t,") at ( « 1, (15a)

S(T) = —
~

1 ——,
~

at (&&1. (15b)
W(o.)a2 a ( 2 5

b R. I,

Note that although nonlinear in 1/T over a wide tem-
perature interval, the dependences in Eqs. (14),(15) can
be approximated by the linear form W,~/kT within nar-
row temperature intervals AT « T which are normally
of interest in the experimental investigations of nucle-
ation. Therefore, the above results do not contradict the
experimentally observed temperature dependences of nu-

cleation rates in glasses. At the same time the absolute
value of S(T) can be strongly reduced due to a disor-
der [say, S (T) is approximately 2 times smaller than the
classical result W/kT at ( = 2]. Note also that S(T)
remains finite at low temperatures (that is, the effective
thermodynamic barrier to nucleation W,g is proportional
to T at low temperatures). The predicted phenomenon
of zero temperature nucleation can show up in a multi-
component glass provided the diffusion remains finite at
low temperatures, which may be in principle achieved by
the exposure of a glass to penetrating radiation or intense
light.

%e have been tacitly assuming above the disorder
to be uncorrelated. There is ample evidence in the
literature that the arrangements of structural units
in a glass are not completely random but have some cor-
relation on a scale of r, 10—30 A. , varying between dif-
ferent glasses. The above consideration can be relevant
only if the critical radius R is considerably greater than
the correlation radius r, . As a matter of fact the equal-
ity R, = a has been used in the course of the preceding
analysis, although the results can be shown to hold true
in the general case of uncorrelated disorder R » r ) a.

We now turn to the opposite limiting case of strongly
correlated disorder r, » R which also allows analyti-
cal consideration. We note that the probability distribu-
tion for any microscopic Buctuating parameter z; has the
Gaussian form

provided that the fluctuations are small and (z;) = 0,
where the indices i and j denote elemental cells in the sys-
tem under consideration. A possible correlation is char-
acterized by the coeKcients P;~, so that (z,z~) = P,
o,;~. The latter quantity depends on the distance r,~

be-
tween cells i and j, that is, a,~

= n (r,~). In particular,
n;~ reduces to the Kronecker 8 in the case of uncorre-
lated disorder, while a,~ is almost independent of r;~ in
the case of strongly correlated disorder. The distribution
in Eq. (16) is associated with the probability distribution
for a sum of the random quantities Pz z, , of the type
representing the random variables X~, Y~ in Eq. (4) and
z, , y, in Eq. (8). The latter suin can be easily provedis

to obey Gaussian statistics with the dispersion gi n,~.
In the case of uncorrelated disorder the latter dispersion
transforms to the cell's (microscopic) dispersion multi-
plied by the number N of terms in the sum, a property
which has been already used in Eqs. (9),(12) above. In
the opposite limiting case of strongly correlated disor-
der the number of terms in the sum becomes equal to
X2/2. Therefore, to describe the nucleation in the case
of strongly correlated disorder one should insert the ad-
ditional multiplier N/2 = 2vrR2/a2 into the expression
for the dispersion in Eq. (10). After that Eqs. (12) and
(13) can be used to obtain the final result for the average
nucleation rate. The result cannot be represented in the
analytical form within the whole range of its applicabil-
ity. In the limiting cases of small and large Huctuations
one gets

S(T) = (1 —4q'j at q « 1, (17a)

S(T) = — q ~ at q)) 1,2kT (17b)

where

2nd fR l
(o)a2kT ( a )

Note that q = 2x(R, /a) ( )& ( and, thus, correlations
in the static disorder lead to an exponential increase in
the nucleation rate as compared with that of the uncorre-
lated disorder case, at least at not very low temperatures.
Which of the two cases (strongly correlated or uncorre-
lated disorder) is relevant depends on the relationship
between the critical radius R and the correlation radius
r in a particular glass.

I et us estimate the parameters ( and q which govern
the nucleation rate exponent in Eqs. (14) and (17). We
note that (o)a2 is typically of the order of characteris-
tic bound energies for atoms in a solid, while b and b„
represent Huctuations in these energies due to a disorder.
The quantities ~h/(o )a2 and ~b&/(o )a2 may not be
very small in amorphous solids, since atomic potentials
are extremely sensitive to random changes in microscopic
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structural parameters like valence angles, bond lengths,
etc. For instance, associated with the above quantities,
relative dispersions in microscopic spring constants are
estimated as 0.1 by means of the computer model-
ing of difFerent glassy structures. ' The same order of
magnitude estimate can be extracted &om the compari-
son of atomic kinetics data with the theory based on ac-
counting for statistical fluctuations in atomic potentials
in glasses. ~s Putting also ~b/kT 1 one can roughly es-

timate $ 0.1(R,/a) and z 0.1(R,/a) . For a typical
ratio R,ja 10 in glassess r the latter estimates give

1 and & 100. With these parameters Eqs. (14),
(17) predict the nucleation-rate exponent S (T) in a dis-
ordered system to be few times smaller than in a crystal
with the same average parameters. Such a decrease in
S (T) may correspond to an increase in nucleation rates
within 10—20 orders of magnitude for typical S (T) 50.

Two comments with regard to the underlying concepts
of the above theory are in order. The first is that Huc-

tuations in the diffusion coefficient in a disordered media
have not been taken into account. The reasoning behind
this approximation is that diffusion barriers in random
media are normally characterized by the dispersion b re-
lated to Huctuations in microscopic atomic potentials,

while Huctuations in thermodynamic barriers are gov-
erned by the dispersion of the order of b (R,ja) )) b and,
thus, are expected to be much more important. The sec-
ond comment is that an assumption of a nucleus remain-
ing spherical in spite of a disorder in a random medium
can be substantiated in the case of a small disorder. In-
deed, supposing deviations from a spherical shape are
relatively small, R'/R « 1, they can be taken into ac-
count by the correspondingly small renormalizing of the
parameters b, (0), and (p) above. This procedure leads
to the conclusion that the nucleation-rate exponent S (T)
increases with R'/R decrease, and, thus, the spherical
shape wins over all other ones. However, the question
remains open about a nucleus shape in the case of an
arbitrary disorder.

In summary, a theory of nucleation in disordered me-
dia is proposed which is based on accounting for small
statistical Huctuations of microscopic structural param-
eters. The fluctuations are shown to increase the nucle-
ation rate exponentially and to change its temperature
dependence. The correction to the exponent of the clas-
sical nucleation theory due to a disorder may not be small
depending both on the correlation radius of the disorder
and its amplitude.
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