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In order to understand the structure and dynamics of hot dense hydrogen, a tight-binding model
for hydrogen is developed by 6tting the energies of the hydrogen molecule and various crystal
structures of solid hydrogen. Pair correlation functions and self-difFusion coefBcients obtained from
tight-binding molecular-dynamics simulations on relatively large systems for long time scales com-
pare very well with density-functional molecular-dynamics results at various densities (0.1—3 g cm )
and temperatures (0.1—5 eV).

I. INTRODUCTION

An understanding of hot dense plasmas is important in
many areas of physics. For example, in inertial confine-
ment fusion (ICF),i the stability and symmetry of target
pellets of deuterium and tritium mixtures at densities of
hundreds of gem

s and temperatures of los of degrees
K are essential for reaching ignition. In astrophysics, the
modeling of both stellar and planetary interiors hinges
on the properties of dense hydrogen. In particular, aug-
menting the traditional one-component plasma (OCP)
with quantal efFects has important ramifications for the
evolution and crystallization of white dwarfs.

Recently, there have been several attempts to de-
scribe the structure and dynamics of dense hydrogen
with molecular-dynamics simulations. To treat particle
interactions quantum mechanically, Hartree-Pock and
density-functional7 s approximations were employed in
the electronic structure calculations. These calculations
are very accurate but expensive so that small size sam-
ples (& 64 atoms) were studied at low temperatures
[& O. l eV (Refs. 6, 7, and 9) and & 1 eV (Ref. 8)]. On the
other hand, Zerah et al. combined the Thomas-Fermi
model into molecular-dynamics simulations and studied
hydrogen plasmas at higher temperature ( 2.5 eV) with
54 hydrogen atoms.

However, static quantum chemistry calculations on
large collections of atoms '~ showed that certain prop-
erties of dense plasmas such as the width of the electronic
energy levels only began to converge after the inclusion
of tens to hundreds of atoms in the sample. In addi-
tion, models based on an atom in jellium came to simi-
lar conclusions. Therefore, to model hot dense plasmas
with a large collection of atoms, we aim to develop tight-
binding models for hydrogen.

The tight-binding molecular-dynamics (TBMD)
method has been utilized in many studies of the struc-
tural and dynamical properties of semiconductors in
various phases. In this method, the forces govern-
ing atomic motions are calculated quantum mechani-
cally including electronic contributions obtained from
parametrized tight-binding Hamiltonians. Therefore,
quantum-mechanical many-body interactions, which are

crucial to modeling hot dense plasmas, are included
automatically in the simulations. Moreover, the TBMD
method can be applicable to long time simulations on
large systems of the order of hundreds of atoms. is is

In this paper, we present a tight-binding model for
hydrogen to study the structure and dynamics of hot
dense hydrogen plasmas. The details of the model are
described in Sec. II, followed by the results of molecular-
dynamics simulations in Sec. III, and the summary in
Sec. IV.

II. TIGHT-BINDING MODELS FOR HYDROGEN

In the tight-binding molecular-dynamics (TBMD)
scheme, the Hamiltonian governing the atomic motions
1S

n ipj

where the 6rst term is the kinetic energy of ions, the sec-
ond term is the electronic energy calculated by summing
eigenvalues of occupied states from the tight-binding
Hamiltonian Its, and P(r,s) in the third term is a pair-
wise potential representing the ion-ion repulsion and the
correction for double counting the electron-electron in-
teraction in the second term.

In an earlier approach, Skinner and Pettifor devel-

oped a tight-binding model for hydrogen with one s or-
bital per hydrogen atom as the basis, by coupling the
Harris-Foulkes scheme with Anderson's chemical pseu-
dopotential theory. Although the binding energies of
diatomic molecular and solid hydrogen (simple cubic
and face-centered-cubic crystal structures) compared well
with 6rst principles results, there are shortcomings in
the applications for molecular-dynamics simulations of
hot dense hydrogen. To study the structure and dynam-
ics at high density (p & 1 gem ) and high tempera-
ture (T & 1 eV), excited atomic orbitals are necessary in
the basis since the probability of electrons to occupy ex-
cited states is not negligible. Furthermore, the inclusion
of only nearest-neighbor interactions is not practical in
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molecular-dynamics simulations where a phase transition
from diatomic molecular to atomic liquid phase could oc-
cur.

In this paper, we present a tight-binding model for hy-
drogen which should be applicable to study hot dense
hydrogen with molecular-dynamics simulations. We
use an orthogonal atomic orbital basis of the ground
(s) and excited (s') orbitals for each hydrogen atom.
First, to 6t hopping matrix elements in the tight-binding
Hamiltonian, we have performed configuration interac-
tion (CI) calculationsi for the ground state of the hy-
drogen molecule (iZ+), its first excited singlet state

(E,FiZ+), and triplet excited state ( Z+). These cal-
culations are nearly indistinguishable with those of Ko-
los and Wolniewicz, is except for finer grids especially at
short distances If. we assume no interaction between
the s orbital and s' orbital [h„i(r) = 0], within the
tight-binding (Hartree) approximation, we can express

I

the binding energies of these molecular states as a func-
tion of the hopping matrix elements h„(r) and h, , (r),
and the pair potential P(r):

E(iZ+, r) = 2h„(r) y P(r), (2)

E(E,F Z+, r) = h„(f ) + h, , (r) + E„+y(r), (3)

E('Z+, .) = y(r). (4)

Here, h p(r) represents the hopping integral between a
and P orbitals on two interacting hydrogen atoms sepa-
rated by distance r, and E„~ is defined by the difference
between on-site energy terms E, and E,~.

In nonlinear fits to CI results, we used the atomic value
10.205 eV for E„i. For the hopping integrals, we used
the following functions:

h„(r) = ——e ' '"(P, z + P, sr + P, 4rz),

h, , (r) = e& —" & + "»" + " '" &(p, i 4 + P, , sr + p, i srs + p, I mrs + p, i sr~ + p, srs),

P(r) = e~'"(P—yz+Ppsr+ P~4r + P~ sr + P~sr ).

Although the binding energies of diatomic molecular
and solid phases [body-centered-cubic (bcc) and face-
centered-cubic (fcc) crystal structures] compared reason-
ably with first principles calculations 'z without the in-
teraction between the s orbital and s' orbital, we found
that the excited energy levels were unphysically close to
the ground energy levels at very high density. To in-
troduce the interaction between two orbitals we simply
assume that h„I (r) is a linear combination of h„(r) and
h, ~,i(r). We determined the coeRcients by a qualita-
tive fitting to the electronic density of states of hydrogen
clusters obtained from the Hartree-Fock calculations. zi

Specifically, there is a repulsion between s and s' energy
levels with the introduction of the nonzero h„i(r) term
in the tight-binding Hamiltonian matrix. In the Hartree-
Fock calculations, we obtained the electronic density of
states of a hydrogen cluster (%=54) with ls basis and 1s-
2s(p) basis separately. In this way we get the amount of
the energy level shift between bonding and antibonding
states. We performed the cluster calculations with and

without the h„~ (r) term in the tight-binding method and
adjusted the shift by varying the coefficients, fitting qual-
itatively to the Hartree-Fock result. The resulting form
1S

h„(r) = 0.2h„(r) + 0.2h, , (r). (8)

Finally, it was necessary to scale down h, i, i (r) by half
and increase E„i to 1.5 Ry to obtain reasonable relative
binding energies between diatomic molecular and solid
phases of hydrogen. In Table I, we list all the resulting
parameters for the new tight-binding model for hydrogen.

In Fig. 1, we show the radial dependences of the hop-
ping matrix elements and the pair potential. We note
that, by the nature of the fitting procedure, the s' or-
bital represents both the atomic 2s and 2p orbitals in a
complicated way, although the notation implies a single
28 orbital. To facilitate the molecular-dynamics simu-
lations, the overlap integrals and the pair potential go
smoothly to zero at r = 8 bohrs. Specifically, for h p(r)
and P(r) we use

TABLE I. Parameters for the tight-binding model of hydrogen as de6ned in Eqs. (5)—(7).

P, , g

P, ,4

Pet, 4

p, (~
Pp g

Py4

1.1418475
0.8154019
-0.5784604

0.008104665
0.00128827
1.716997
-1.23886

Pa', 2

P,~5

P4.&

Py, 5

0.0042828

0.234274
0.06333355

—0.3733631 x 10
1.984032
2.504998

P, ,3

P,i3
P. ,
p, I 9

Py, 3

P4, ,6

0.737475

-0.007893832
-0.014445175

0.47620535 x 10
1.4063775
-0.4479742



I. KW'ON, J. D. KRESS, AND L. A. COLLINS

0.6

0.4

U)
0.2

U

0
CD

(D

2

!
L

0-

Ih (r)l
----Ih (r)l ',

S S

-------- lh (r) I ]SS

0.3

0.2 I-

oE

0

-0. 1

-0.2

0.2

Eo 0

0

-0 ' 2

i i~i i

0
~ g

I I I i I I I I i I I i
i i

I
i i i r

I
i r r

oo0
0 0 0

oooo
I i i i i I i i ~ I

H (KW)

bcc(MJF)—
fcc(MJF)—

o H

+ bcc
fcc

I I I I i I

0 1 2 3 4 5 6 7 8
r(bohr)

2 3 4
r(bohr)

FIG. l. (a) Radial dependence of the tight-binding hopping
matrix elements as a function of separation r between atoms.

(b) Radial dependence of the repulsive pair potential as a
function of separation.

FIG. 2. Binding energy as a function of nearest-neighbor
distance for diatomic molecule (Hq), body-centered-cubic

(bcc), and face-centered-cubic (fcc) crystal structures of hy-

drogen. (a) The results of Refs. 18 (KW) and 19 (MJF); (b)
the results of the tight-binding model.

f(r) =ao+aq(r —rq)+a (r2—r~) +as{r —r&)

forr~ &r(r „, (9)

which is required to go smoothly to zero at the designated
cutoff distance r The four. coefBcients are determined

by requiring that f(r) be continuous at rq and zero at
In our tigh. t-binding model for hydrogen, we chose

rq ——6 bohrs and r = 8 bohrs. In this way, all neigh-
bor shells up to a distance of 8 bohrs are automatically
included during simulations with no ambiguity in cutofF
distances for different structures and phases.

In Fig. 2, we compare the binding energies of di-
atomic molecular and solid phases of hydrogen with the
first principles calculations. ' The binding energy of
the diatomic hydrogen molecule at the equilibrium bond
length 1.4 bohr is 2.305 eV/atom which is very close to
the result of Kolos and Wolniewicz (2.373 eV/atom). ~

Although the equilibrium bin. diag energies of bcc aad fcc
crystal structures relative to the diatomic molecule are
very close to the values of the first principles calculations
(1.394 eV/atom versus 1.320 for bcc and 1.391 versus
1.336 for fcc), equlibrium interatomic separations of this
tight-binding model are longer than the first; principles
results (3.64 bohrs versus 2.95 for bcc and 3.82 bohrs ver-
sus 3.05 for fcc).2o We also calculated the binding energy
of the diamoad structure as a function of interatomic dis-
tance and found the equilibrium energy 1.032 eV/atom
higher than the diatomic phase at an interatomic sep-
aration of 2.94 bohrs, which is very close to the first

principles result obtained by Barbee and Cohen (1.139
eV/atom at 2.48 bohrs). z2

III. MOLECULAR-DYNAMICS SIMULATIONS
OF HOT DENSE HYDROGEN

In order to test the tight-binding model, we

have performed constant-volume, constant-temperature
molecular-dynamics simulations with N hydrogen atoms
in a cubic box with periodic boundary conditions. We

started in a bcc or fcc structure with velocities deter-
mined randomly &om a Boltzmana distribution at the
desired temperature T and then equilibrated at T with a
conventional velocity-scaling method. %e also performed
simulations with diamond structure to assure that the
initial geometry played no role in the simulations. To
introduce the effects of excited and continuum states, we

invoke local thermodynamical equilibrium that sets the
electron and ioa temperatures equal. We populate the
electronic states according to a Fermi-Dirac distribution
at the ionic temperature. In the cases reported in this

paper, N ranges &om 128 to 686 depeadiag on densi-

ties and temperatures in the simulatioas. Time steps
ranged from 0.073 to 0.29 fs, aad total trajectory simu-

latioas varied between 150 and 700 fs.
The calculated pair distribution function g(r) at low

temperature (0.1 eV, 1160 K) is shown in Fig. 3. g(r}
gives the probability of finding an atom at a distance r
&om a reference origin atom. At low densities, we ob-



50 TIGHT-BINDING MODELS FOR HOT DENSE HYDROGEN 9121

10

S 0

0.5

0

~ ~

~ ~
~ ~
~ I
~ I
~ ~
~ ~
~ ~

I ~
~ ~
I ~
I ~
I ~
I ~
I

~ ~r

2 3 4
r (a.u. )

p= 0.1

p = 0.5

A
I oA

5 6 7

calculations at p = 1.0 gcm s. In addition, N = 216
diamond-structure and N = 256 fcc-structure supercell
calculations produced the same result. This insensitivity
is crucial in representing very dense systems since 6nite
size effects become larger as the density increases. For
a comparison, we note that the Skinner-Pettifor models
showed size dependences in the MD simulations. s Also,
there is no ambiguity of cutoffs in our model, while the
TBMD results of the Skinner-Pettifor model show cutoH'

dependences.
In Fig. 5, we display the effects of temperature at a

fixed density (p = 1 gem ). We observed a phase tran-
sition from molecular Huid to atomic Huid as we raised
the temperature from 1160 to 60000 K. Referring to the
electronic density of states, hydrogen transforms to liquid
metal at sufficiently high temperatures.

The coefficient of self-difFusion, D, provides an impor-
tant measure of the dynamics in a hot dense plasma.
In Fig. 6, we compare the self-difFusion coeff1cients of
the TBMD simulations, obtained from the slope of the
atomic mean-square displacement, 26 with the LDA-MD

FIG. 3. Pair correlation function g(r) as a function of radial
distance at T = 0.1 eV and at densities p = 0.1, 0.5, 1.0, 1.2,
1.5 gem with the TBMD simulations.

(a) p = 0.5

serve a molecular Huid characterized by the distinctive
peak of Hz at 1.4 bohr As th. e density increases, the po-
sition of the first peak remains nearly the same, but the
second peak moves significantly toward shorter distances.
This indicates the change in intermolecular spacing due
to the compression, as also observed in other studies. s

At about p = 1.2 gem (r, [= (3/4zn) ~ ] = 1.31, cor-
responding to pressure 300 Cpa (Ref. 25)) we en-
counter the gradual disappearance of the molecular peak,
inferring pressure dissociation. This transition comes at
a slightly higher density than for the density-functional
molecular-dynamics simulation with the local d.ensity ap-
proximation (LDA-MD). 1s To study the phase transi-
tion accurately at this temperature, we would need to
include the zero-point motion of hydrogen, the energy
of which is a few tenths of eV. However, we note that
our results, obtained without the contribution of zero-
point motion of hydrogen, compare very well with other
results ' using the same approximation.

Figure 4 shows the electronic density of states at p =
0.5, 1.0, and 1.5 gcm, indicating that atomic liquid
hydrogen at high density is metallic, while at low density
hydrogen is a molecular insulator. At low density (0.5
gem s), there is a gap at the Fermi level, while there
is no gap at high density (1.5 gem s). At intermediate
density (1.0 gcm s), we observe the closure of the gap,
and hydrogen looks like a very poor metal with a very
small n111nber of states at the Fermi level.

We studied si.ze eHects in the MD simulations with
our tight-binding model and found no dependence on the
sample size. For example, we obtained the same result
for both N = 250 and N = 432 (bcc-structure) supercell
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FIG. 4. Time-averaged electronic density of states in arbi-
trary units at T = 0.1 eV and at p = 0.5 (a), 1.0 (b), 1.5 (c)
gcm
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results and the OCP model. 2 The agreement between
the TBMD and LDA-MD results is very good within sta-
tistical errors. However, at low temperature (T = 1 eV),
the OCP values are significantly lower than the TBMD
values for the whole range of density. At this temper-
ature, the plasma coupling constant I' (= e /r, kBT),
which is the ratio of the Coulomb to thermal energy,
ranges from 9 to 28. In such a strongly coupled plasma
regime, the interatomic potential energy prevails over
the thermal motion. However, our study indicates that
quantum many-body effects still dominate over the bare
Coulombic interactions. In the OCP theory, electrons are
assumed to form a rigid, uniform background neutraliz-
ing the average space-charge 6eld of the ions.

We note that all the cases in Fig. 6 correspond to an
atomic fiuid phase of hydrogen with no peak in g(r) At.
very low density (p & 0.5 gcm ) and at low tempera-
ture (T = 1 eV), we observed the molecular fiuid phase
being stable. In this phase, the self-diffusion mechanism
is different from the atomic diffusion.

As we increase the temperature, we observe better
agreement between the OCP and TBMD results, as dis-
played in Figs. 6(b) and 6(c). Now I' drops into the
range of 2—6 at T = 5 eV and the thermal effects clearly
compete with the interatomic interactions. At this high
temperature, the electrons form a smoother distribu-
tion that more resembles the OCP assumptions. Similar
behavior was found by Younger for He in which the
self-diffusion coe%cient obtained &om the Hartree-Fock
molecular-dynamics simulations became comparable to
the OCP value at density about 8 gem at T = 5 eV.

Zerah et al. have performed molecular-dynamics sim-
ulations of the hydrogen plasma with the Thomas-Fermi
theory (TFMD). To compare our TBMD model with the
TFMD model, we have calculated the self-diffusion coef-
ficients at p = 2.5 gcm 3. At T = 0.5 eV (I' 50 and r,

1), we obtained D = 2.0x10 cm s ~, w'hich is twice
the TFMD and thrice the OCP value. However, at higher
temperature (T=2.5 eV, I' 10, r, 1), the TBMD
value (D = 8.7 x 10 s cm s ) is only 11% larger than
the TFMD and 47% larger than the OCP value. The
Thomas-Fermi theory includes the inhomogeneity of the
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FIG. 6. Self-diffusion coeRcient multiplied by density as
a function of density. (a) At T = 1 eV, with the LDA-MD

(cross), the TBMD (open circle), and the OCP (solid line);

(b) at T = 3 eV, with the LDA-MD (triangle), the TBMD
(square), and the OCP 1'solid line); (c) at T = 5 eV, with the
TBMD (solid circle) and the OCP (solid line).

electron gas simply by assuming uniform electron distri-
butions locally in the inhomogeneous charge cloud, while
the OCP theory assumes a homogeneity of the electron
gas. Here, again, we observe the consistent phenomenon
that the thermal excitation apprears to provide a charge
distribution characteristic of the simpler models.

IV. SUMMARY

In this paper, we have presented a tight-binding
model for hydrogen. With the tight-binding molecular-
dynamics simulations, we have studied the structure and
dynamics of hot dense hydrogen plasmas at various den-
sities and temperatures. Pair correlation functions and
self-diffusion coefBcients have been calculated and com-
pared very well with the sophisticated density-functional
molecular-dynamics results. At high temperature and
high density, the self-diffusion coefFicients of the TBMD
simulations are comparable to the OCP values, while the
difference is large at low temperature where quantum
many-body effects are dominant. Work on mixtures of
hydrogen isotopes is forthcoming.
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