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Excitation oscillations in conformationally disordered chains with random traps
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In this work the short-time dynamics of quenched Frenkel excitons in binary, coiled chains is investi-

gated by numerical calculations. Quenching is modeled by means of a non-Hermitian damping Hamil-

tonian accounting for interstitional traps. The dependence of donor and acceptor response functions to
5-pulse excitation is examined as a function of diagonal disorder, off diagonal disorder induced by ran-

dom non-nearest-neighbor contacts {degree of coiling), coupling strength, and two types of initial condi-

tions {localized and nonlocalized). The results clearly demonstrate that the relaxation behavior shows

significant oscillations even after averaging over a representative ensemble of chain configurations and

over all possible initial localized conditions over a wide range of model parameters.

I. INTRODUCTION

Transport of electronic excitation among aromatic
sites fixed to a polymer chain is usually considered to be
an incoherent process, the dynamics of which being
governed by a Pauli master equation. This concept has
been applied both in analytical theory' and in computer
simulations. ' The hopping exciton model has its
justification in the limit of large phonon coupling and
strong chain vibrations which destroy the phase relations
of migrating excitations. The other limiting case is
coherent excitation motion which arises from strong,
short-ranged site-to-site interaction at very low phonon
temperatures where the nuclear motional degrees of free-
dom are frozen in. The coherent approach of optical dy-
namics has so far obtained little attention in polymers, if
any at all. However, in the light of the spectacular pro-
gress in femtosecond spectroscopy, oscillatory excitation
phenomena should give rise to more and more interest,
both experimentally and theoretically.

In the absence of a heat bath, a widely accepted model
for coherent exciton motion is Schrodingers' equation for
Frenkel excitons, which, applied to any finite system of
chromophores, predicts an oscillating time dependence of
the individual site-occupation probabilities of the chro-
mophores. A great deal of work has been devoted to the
study of Frenkel excitons in condensed systems with
some kind of disorder, i.e., lattice defects, randomly
placed traps or impurities, and inhomogeneous broaden-
ing. These investigations were concerned with both sta-
tionary quantities such as the absorption line shapes or
the density of states and transient response functions
subsequent to 5-pulse excitation. ' Huber and co-
workers used analytical theories and numerical methods
to compute absorption line shapes for a Frenkel Hamil-
tonian with inhomogeneously broadened transition fre-
quencies. This group also investigated the asymptotic 6-
pulse response behavior of trapped systems on the basis
of the coherent potential approximation, the t-matrix
method, and numerical simulation. The problem of ran-
dom trapping was also addressed by Parris who resorted
to eigenvector analysis of the Frenkel Hamiltonian and

also suggested an approximate, effective Schrodinger
equation with a continuous Hamiltonian, the solutions of
which are in good agreement to the asymptotic decay
profile. '

All these transient studies ' have in common that
they were directed toward trapping in periodic arrays of
chromophores for which disorder was introduced either
by the position of the traps or by imposing certain distri-
bution functions on the parameters of the Hamiltonian,
thus leaving its general structure, that is, tridiagonal in
the case of the one-dimensional (1D) tight-binding model,
unaffected. In coiled 2D and 3D chains, however, the
conformational multitude shows up in a special type of
site disorder which creates a fluctuation of non-nearest-
neighbor couplings and thus novel aspects in Frenkel ex-
citon dynamics. The effects of this disorder caused by the
polymer conformation and by the randomness of donor
acceptor sequences on the absorption line shapes of
coiled chains were investigated by us in a very recent pub-
lication. " In the present work we extend our objectives
to the computation of transient response functions of
trapped molecular chains. The basic idea of modeling the
above-mentioned conformational disorder is to generate
chain configurations via the Pivot —Monte Carlo algo-
rithm' and assign one of two different species of
chromophores —referred to as donors and acceptors-
randomly to the segments. Acceptors are assumed to be
coupled to an interstitional trap, which is modeled by a
purely imaginary trapping Hamiltonian. The next step is
then to calculate the specific Hamiltonian for this
configuration and compute the interesting excitation sur-

vival probabilities by expansion of the state vector in sta-
tionary solutions of the Schrodinger equation. Averaging
over the configuration space of the chains finally yields
the statistical average of the excitation survival functions.
In this procedure we are dealing with a particular form of
og diagonal -disorder which exhibits the most typical
features of coiled polymers, namely, nonbond, non-

nearest-neighbor contacts.
The aim of this study is to elucidate transient features

of coherent excitation transport in a binary site ensemble
of donors and acceptors attached to a 20 polymer chain.
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Special emphasis is devoted to the circumstances under
which the population relaxation of trapped chains shows
oscillatory or overdamped behavior. Important questions
which will be addressed in this context deal with the
efFects of disorder, energetic intrachain parameter P, and
strength of electronic coupling as well as the inhuence of
statistical mechanical averaging on the oscillatory
behavior of the survival probability for both donors and
acceptors.

The format of the paper is as follows. In Sec. II we de-
scribe the system under investigation and formulate our
approach to the computation of occupation and survival
probabilities of interest. Section III de6nes a particular
system of binary 2D chain conformations and gives the
results of various simulation runs. In Sec. IV we summa-
rize the most important Sndings.

II. PHYSICAL MODEL AND APPLIED METHODS

For the present purpose the polymer chain shall be
given by the N steps of a self-avoiding random walk on a
square lattice with nearest-neighbor distance a. Neglect-
ing the phonon bath, such a system of chromophores can
be described by the Frenkel Hamiltonian

Ig(t) &
= g yk(t)ak I0) .

k

(4)

Schrodingers equation for one-particle states is then
given by

dgk(t)
iA = QHk($, (t),

1

chromophores. J then denotes the coupling strength at
nearest-neighbor distance.

The polymer is imbedded in a random potential of a
disordered matrix (at low temperatures), so that the sk

are subject to a diagonal disorder (inhomogeneous
broadening} for which a Gaussian distribution is a sound

theoretical result. ' Therefore the e.k are drawn from the
distribution

—( —)2n 2

p(ek, e, o )= —e
0' 2K

with average c and width 0.
In this work we consider only one-exciton states and

write them with the help of the excitonic vacuum state
~0) in the form

X skakak+ X Jk, lakal t X rkakak
k=1 k, 1=1 k=1

with matrix elements of the Hamiltonian [Eq. (1)]
(1)

+k, l bk, I( sk t lk }+( 1 ~k, I )Jk, I

which does not account for thermal degrees of freedom
and the electronic structure of the chromophores. This
model assumes that only one molecular state interacts
with other molecules. In the Srst two terms, which form
the unquenched Frenkel Hamiltonian H", the operators
a and a denote creation and annihilation operators for
an exciton at the kth chromophore and sk is the unper-
turbed energy level of the corresponding state. The last
term containing the damping constant yk accounts for
the irreversible removal of the exciton from the system
due to interstitional trapping and emission of a photon.

The coupling strength Jk &
between site k and l is as-

sumed to be of dipolar origin and is written in the form

Ja

(2)

where rk speciSes the spatial coordinates of site A:, r, is a
cutoff radius, and a is the distance between two adjacent

l

p„(t)=g„(t)g„'(t)=g gckct'uk „u&'„e
k I

Using the abbreviations

ck=ak+ibk, d(=a;a +b;b

u'"'=v'"'+iw" d'j'=b a ab-i j i j &

E =R(co —ta ), d'j'"=v'"'v~'"' +w'"'w'"'
k k k ~

dlP =w v(r) v w.
EJ / J& 4 I J l J

Kij
—K] +KJ

Eq. (8) can be rewritten as

(8)

The state vector can be expanded in the one-exciton
eigenbasis of the Hamiltonian according to

g„(t)= g c(u( „e
I

so that the occupation probabilities p„(t) take the form

p„(t)= g I (d'(d'j" dj''d j'")costo;—t+ (dj'dj'" +. d't'd 4'")sinto; t je

= gd", d3"e '+2 g (d(dP dgdP}costs; t—+ g (dgdj'"+.d(d "4si}cno;.t e (10)

Since the Hamiltonian is not Hermitian, the eigenener-
gies EJ- are in general not real and the occupation proba-
bilities p„(t) are exponentially damped oscillations.

This approach to the occupation probabilities, and

hence to the donor and acceptor response functions, re-
quires the explicit computation of all eigenvalues and
eigenvectors. Furthermore, the initial value problem
g(t =0}=g has to be solved in order to determine the
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coeScients c& from Eq. (7). For chains not too long
( & 50—100), both tasks can be successfully solved by us-
ing NAG-LIB routines from the computer library.

For the primary excitation process, we will consider
two types of initial conditions, referred to as localized
and delocalized, respectively. In the first case the excita-
tion is initially localized to one donor chromophore. This
situation can be the result of an incoherent excitation
mechanism due to a transition from a higher-energy level
of the chromophore, electronic level crossing, etc. In or-
der to minimize the structural information of the system
under investigation, we assume that all donor molecules
are equally likely excited at t =0 so that the experimen-
tally observed quantities are averages over all equivalent
initial excitation conditions. However, this only affects
the coeScients c„, and hence d f, d g and the averaged oc-
cupation probabilities have the same form as Eq. (10),
with d'f, d z~ replaced by the averaged quantities
(d'i'), c, (d'j'), c. This procedure is, of course, equivalent
to solving the Van Neumann-Liouville equation with the
Hamiltonian [Eq. (1)] for the density matrix p„(t) under
the corresponding initial condition p„(0)=p„
( =5„„/ND if n denotes a donor and 0 otherwise), but the
latter requires the diagonalization of an 1V -dimensional
matrix, whereas with our approach the dimension of the
eigenvalue problem scales linear with the chain length.
In terms of computation time, this ratio is N /N . When
applying this model to a concrete experimental situation,
this average might be simplified if, e.g., only very few
donors, or even only one donor, can be initially excited.

The other extreme of the de1oca1ized initial condition
corresponds to initial excitation due to direct absorption
of a photon into the one-exciton absorption band as com-
puted in Ref. 11. In this case the exciton-photon interac-
tion Hamiltonian determines the (normalized) initial exci-
ton state and predicts Pk(t =0)=1/&N for sample sizes
much smaller than the optical wavelengths, which corre-
spond to the k=0 exciton in a periodic aggregate.

So far, we have described the computation of the occu-
pation probabilities of sites on a single chain, but the
macroscopic observables in experiments with diluted po-
lymer blends are averages over all possible realizations of
chain conformations, so that a configurational average
has to be carried out.

In order to generate a manifold of chain conforma-
tions, we use an implementation of the Pivot algorithm'
on a square lattice, as outlined in a previous publica-
tion. " This is a dynamic method which generates a
chain geometry from a given one by a suitable Markhov
process, so that a detailed balance relation is satisfied.
The spatial extension of the polymer is controlled by an
energy parameter P, which characterizes the interaction
of the polymer with its surroundings and is chosen such
that (}((~~ corresponds to a contact-free chain. As also
pointed out in Ref. 11, the randomness of the chain con-
formations entails a randomness of off-diagonal matrix
elements and hence a structural randomness of the Ham-
iltonian.

All together the averaged occupation probabilities p„(t)
are given by

p ( (((x(dj (~gdje +2 x ((d()~cd/ (d} (~Ld((|OUI(t
i)j

+ g ( ( d g )icd P + ( d'( ) icd 4'" )sinco;J t e
conf

where the symbol ( . )ic denotes averaging over all
equivalent localized initial conditions and ( )„„r
represents the average over a representative ensemble of
chain configurations, generated by the Pivot algorithm.
In case of delocalized initial conditions, the average
( ),c degenerates into the corresponding quantity it-
self.

III. RKSUI.TS

In the following numerical simulations with coiled
chains, special emphasis is given to the short-time
behavior. The W segments of a generated chain are ran-
domly occupied by one of two species of chromophores,
referred to as donors (D) and acceptors ( A). The latter
are assumed to be optically inactive and thus are not in-
vo1ved in the primary excitation process. Without loss of
generality we choose a basis in which i =1, . . . , ND
refers to donors and i =ND+1, . . . , ND+X„=X to ac-
ceptors. Both species may be diagonally disordered ac-
cording to the Gaussian distribution [Eq. (3)] with pa-

PD(r)= g p, (t), P„(t)= g p, (r} .
i =MD+1

(12)

In order to obtain the averaged quantities Pn(t), P&(t),
the averages in Eq. (11}have to be carried out.

Prior to presenting our results, we demonstrate that
the initial slope of the occupation probabilities of donors
and acceptors is 0 for both types of initial conditions.

rameters c.a, crD for donors and c, z, ez for acceptors.
Furthermore, the damping constants y; have the values

yD for donors (i = 1, . . . , ND ) and y „ for acceptors
(i =ND+1, . . . , ND+N„). Finally, the nearest-
neighbor coupling constant J from Eq. (2) now depends
on the specific transfer process (donor-donor, acceptor-
acceptor, donor-acceptor} and can have the values J~n,
J~~ «JD~.

For this situation donor (acceptor) survival probability
PD(t) [Pz(t)] is defined as the probability of finding the
exciton at one of the donor [acceptor] sites at time t:
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.d0k
dt " dt

X~+X~
(Hk, I%i 4k Hk, Ilk Pl ) ~

1=1

Pk(t) 2 D A=
~

Im fk(t) g Hk &g&(t) +2ykpk(t) .
dt /=1

(13)

In the case of a real Hamiltonian H" [Eq. (1)] and under
the assumption of real initial conditions, the derivatives
of the occupation probabilities at t =0 take the values

dPD(0) =2 g y„p„(0), (14)
k=i

Starting from Schrodingers' equation (5), one concludes

dp,. /dt~, o=0, because

Pk d
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1.0 ' ' ' ' ' ' ' ' ' ' 1.0

0 9" a.9

condition (thick solid line) is compared to the average
over all 10 initial conditions for the same configuration
(dashed line). The effect of the configurational manifold
can be seen in the dotted line, where 1000 chains were
used for averaging. As with most other situations, the
decay profiles are characterized by a pronounced initial
oscillation followed by a multiexponential decay with su-

perimposed, damped oscillations. This initial oscillation
in Pn(t), P& (t) compares very well to the response func-

tions for a donor-acceptor dimer with otherwise the same
parameters. For the thin solid line, delocalized initial
conditions were used (see Sec. III B). This figure clearly

dP„(0) =0. (15)

This also holds for complex initial conditions, as long as
acceptors are not excited at t =0. If yk is nonzero only
for acceptor chromophores, then dPD(t)/dt~, o=0 be-
cause we assumed that only donors get initially excited
(localized or delocalized).

Unless stated differently we will present results for
chains of length 20 (Nn =E„=10),restrict ourselves to
nearest-neighbor interaction (r, /a = 1 ), and assume
donors to be unquenched (yn/J =10 and y„/J
=0.1). The fluorescence of the donors is not taken into
account here, since it only produces an exponential factor
in Pn, P„. Since fluorescence lifetimes are usually by
several orders of magnitude larger than characteristic
times of excitation energy transport, this does not afFect
the results presented below, but therefore y„actually
corresponds to the difFerence of donor and acceptor
damping constants. Except for the first figure, the
response functions are averaged over all 10 equivalent ini-
tial conditions and over 1000 configurations. Energies
are given in units of J, and we use a scaled time tJ/fi.
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0 7 w . . ..... . ~ .. .... ..~ . . .. . . .a. .. .. . . ~ ........ .a. ... . ...~ ... . . . . . ~ . .... . . .&. .. ......g. . . .. . .. .t' g
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A. Localized initial conditions 0.OS;. .05

Below, we present results for initial conditions such
that the excitation is initially localized on a single donor
and the average over the positions of the initially excited
donor has been carried out. As will be shown below, this
is the worst case situation for observing excitation oscilla-
tions in the decay profiles, wherefore all relevant parame-
ter variations are described here.

As a Srst result, we show the partial suppression of os-
cillations in the survival probabilities Pn(t), P„(t) be-
cause of conformationally averaging for equal coupling
strengths Jzz =J~~ =J~„=J and isoenergetic donors
and acceptors (E,. =eD=ED=10J, i =1, . . . , XD,
c; =a~ =a~ =5J, i =XD+1, XD+X~, and o~ =o ~
=0). In Fig. 1 the response function of a single
configuration for one randomly chosen localized initial

oooj . : ", : . :::;coo
0 1 2 3 "t S 6 7 8 9 10

t J/h

FIG. l. Effect of averaging on the survival probabilities for
(a) donors and (b) acceptors. The thick solid lines show

Pz(t), PA(t) for one random con5guration and one randomly
chosen localized initial condition. Using the delocalized initial
condition for the same chain with otherwise identical parame-
ters yields the thin solid graphs (see Sec. IIIB). The dashed
lines were obtained after averaging over all possible localized in-

itial conditions on the same chain. Finally, the dotted lines
show the survival probabilities averaged over all localized initial
conditions and 1000 con6gurations.
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shows that averaging over initial conditions has a more
severe efFect on the destruction of osciBations than
con6gurational averaging.

Figure 2 shows the effect of different acceptor energies
on the survival probabilities, the other parameters being
the same as before. In the case that acceptor energies are
equal to donor energies, the excitation transport from
donors to acceptors is most eScient. The donor popula-
tion decays rapidly, which accounts for the pronounced
population of the acceptors on the chain, and both
response signals decay, showing slight oscillatory contri-
butions only. With decreasing acceptor energy, i.e., in-
creasing difFerence ~ea —s„~, the transport to the accep-
tors becomes more and more ineScient, as the donor de-
cay slows down and acceptors get less and less populated.
The explanation for this behavior is obviously the
reAection of the exciton —initially residing on a donor-
at the boundaries of connecting donor subunits of the
chain because of inhornogeneities, i.e., difFerent acceptor

0 1 2 3 t 5 6 7 8 9 10
1.0:. '1 0

energies.
In the remainder of this section, the acceptor energy

has been set again to the lower value c„/J=5. The
consequences of chain coiling —characterized by P—on
PD(t) and P„(t), respectively, are shown in Fig. 3 for
values (1

= ao, 0.4,0, —0.4, the remaining parameters be-
ing the same as in Fig. 1. The limit P= ac corresponds to
an ensemble of contact-free chains, and so the top graph
in Fig. 3(a) and the bottom graph in Fig. 3(b) are averages
over all possible donor-acceptor configurations on a
linear chain because r, /a =1. With decreasing P the
number of non-nearest-neighbor contacts increases and
the transport efficiency of the exciton from donors to ac-
ceptors becomes better [as Pr (t) is shifted to smaller and

P„(t) to larger amplitudes]. This is the same behavior as
one expects from an incoherent transport mechanism.
Note that the oscillations in Pn(t) and P„(t) decrease in

amplitude with increasing number of non-nearest-
neighbor contacts.

Another possibility to increase the eSciency of trap-
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FIG. 2. Averaged survival probabilities for {a) donors and (b)
acceptors as a function of acceptor energy c,„.

FIG. 3. Dependence of the averaged survival probabilities
for (a) donors and (b) acceptors on chain coiling, i.e., P.
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ping is the inclusion of diagonal disorder. In Fig. 4, P is
set again to 0 and the other parameters have the same
values as in Fig. 1, while the width of the distribution of
self-energies for donors and acceptors is simultaneously
varied (crz =IT „=o). With increasing o oscillations in

PD(t) and Pz(t) get suppressed and the transport of the
exciton to the acceptors increases. This happens in a
more pronounced fashion than in Fig. 3 already in the
first oscillation. We also compared PD(t), P„(t) of isoen-
ergetic sites to isoenergetic donors and distributed accep-
tors as well as to distributed donors and isoenergetic ac-
ceptors. The behavior is in agreement with the previous
situation, as an increase in diagonal disorder increases the
eSciency of the transport into acceptors and damps oscil-
latory admixtures. In general, diagonally disordered ac-
ceptors increase the transport eSciency more than diago-
nally disordered donors.

Figure 5 shows the effect of different coupling

strengths JD~ between donors and acceptors. The pa-
rameters are eD/J =a~ /J =10, o D =tr „=0, and
J=J~D =J„„.In the case of weak donor acceptor cou-

pling, the exciton remains on the donor subunits of the
chains and acceptors get hardly populated, so that PD(t)
decays slowly. When increasing the coupling strength
beyond J~„/J = 1, marked oscillations show up and their
amplitude and frequency increases with Jzz. The dotted
graphs correspond to JD„/J =2 and the dashed graphs
to JD„/J =5. Furthermore, the amplitude of the first os-

cillation and the accompanying steep initial slope in-
crease with Ja„as well, but the decays are not accelerat-
ed. The fastest decay occurs at Jn„=J because JD„AJ
represents also inhomogeneities which hinder the donor
acceptor transport due to rejections.

The response functions for chain lengths 20 and 100 at
an identical donor-acceptor ratio ND/X„=9 are com-

0
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FIG. 4. Averaged survival probabilities for (a) donors and (b)
acceptors as a function of diagonal disorder cr =o.D =cr &.
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pared to each other in Fig. 6, the other parameters are
taken again from Fig. 1. Obviously, the short-time dy-
namics is not affected at all by the chain length, although
this has nothing to do with the convergence of certain ob-
servables with increasing chain length, as observed in
Ref. 11. It is rather a consequence of the short-time scale
on which we observe the response functions. The initially
created exciton is just under the influence of the immedi-
ate surroundings, i.e., its next neighbors, because of its
6nite group velocity.

B. Delocalized initial conditions

The preceding section showed the major tendencies of
the transient donor and acceptor response functions un-
der worst case conditions with respect to oscillatory dy-
namics. Here we repeat some of these computations for
the delocalized initial condition relevant for direct ab-

0 1 2 3 't 5 6 7 8 9 i0

sorption of a photon into the one-exciton absorption
band.

ltQX, , k =l, . . . , X, ,0.
0, k =KB+1, . . . , XD+Xq.

For the sake of comparison, the variation of (() with pa-
rameters taken from Fig. 3 is depicted in Fig. 7. The
basic tendencies remain unchanged, but the amplitudes
have changed. In contrast to localized initial conditions,
the response functions are not averaged over the initial
position of the excitation, which results in larger ampli-
tudes of the superimposed oscillations for the donor as
well as for the acceptor response. This can also be seen in
Fig. 1: At one randomly chosen chain conformation, the
response functions are shown for one randomly chosen
localized initial condition (thick solid line), the average
over all localized initial conditions (dashed line), and for
the delocalized initial condition (thin solid line). On the
short-time scale investigated in this study, the decay is
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equally fast for both types of initial conditions. The same
holds for Fig. 8, where the width of inhomogeneous
broadening cr is varied in analogy to Fig. 4. Comparison
with the corresponding localized initial conditions Figs. 7
and 4 shows that a differentiation with respect to the ex-
citation mechanism is not possible.

IV. SUMMARY

In the present work the short-time dynamics of excita-
tion energy transport in configurationally disordered
chains was investigated by numerical techniques applied
to Schrodinger's equation for quenched Frenkel excitons

FIG. 8. Dependence of the averaged survival probabilities
for (a) donors and (b) acceptors on cr for delocalized initial con-
ditions.

in the absence of a heat bath. Donor [acceptor] response
functions PD(t) [P„(t)]to 5-pulse excitation were com-

puted as the probability of finding the exciton at any arbi-
trary donor [acceptor] site at time t. We used two types
of initial conditions in order to describe different excita-
tion mechanisms of the chromophoric system. In the
case of localized initial conditions, one arbitrary donor is
initially excited because of an incoherent transition from
a higher state or electronic level crossing. This situation
is interesting because it uses a minimum of information
about the system and involves an additional average over
the location of the initially localized exciton. In the case
of direct absorption of a photon into the one-exciton ab-
sorption band, delocalized initial conditions [Eq. (16)] are
appropriate. In order to compute macroscopically ob-
servable quantities, the so-obtained donor and acceptor
response functions were averaged over the manifo1d of
possible chain conformations, realizations of diagonal
disorder, and location of the initially created exciton in
the case of localized initial conditions.

The central concern of this paper was the dependence
of these averaged donor and acceptor response functions
on various model parameters as well as the question of
whether or not oscillatory behavior can still be observed
even after averaging over the addressed types of disorder.

The presented results clearly show for both types of in-
itial conditions that the efBciency of the exciton transport
from donor to acceptor subunits is best under homogene-
ous conditions (isoenergetic self energies eD, e„, identical
coupling strengths JDD =Jn„=J„„=J). It furthermore
increases with increasing degree of coiling (P) and diago-
nal disorder (oD, o „). Another striking finding is that
the twofold averaging over the configuration space of the
chains and the location of the initial excitation still leave
a significant amount of oscillations in the decay profiles.
The choice of initial conditions only affects the ampli-
tudes of superimposed oscillations in the response func-
tions, which are larger in the delocalized case because no
average over different initial conditions is carried out.

These findings suggest that oscillatory phenomena
could be observed by ultrafast detection techniques in fu-
ture experiments, thus opening the possibility to verify a
coherent transport mechanism. For systems with a
higher degree of order (known excitation center, well-
defined donor-acceptor sequence, etc.), these effects be-
come much more pronounced and the presented model is
general enough to be adapted to a variety of such experi-
mentally interesting situations.
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