
PHYSICAL REVIE%' 8 VOLUME 50, NUMBER 2 1 JULY 1994-II

Dynamics of a Vicsek fractal: The boundary effect and the interplay among the local symmetry,
the self-similarity, and the structure of the fractal
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The role of the boundary condition on the transverse vibrations of an nth-stage Vicsek fractal as
n ~ 00 was studied using nearest-neighbor interactions. Our findings indicate that, although the inter-

play among the local symmetry, the self-similarity, and the structure is the underlying reason for the
unusual properties of the Vicsek fractal, the boundary condition has definitely left its imprint on almost
every feature of the dynamics of the system.

I. INTRODUCTION

In the last decade, studies on the properties of complex
systems have demonstrated that the concept of fractal
may serve as a common link to represent complicated
phenomena in diverse scientific disciplines. This realiza-
tion has generated a concerted eff'ort to understand the ei-
genvalue spectrum and the eigenstates of fractal struc-
tures. The results of these studies have uncovered many
unusual features, including the existence of anomalous
density of states ' and the superlocalization of some
eigenstates. However, because of the difficulties asso-
ciated with an appropriate description of the local prop-
erties of the eigenstates in terms of some smooth func-
tion, there is yet no proper prescription to define and
determine the characteristic length of the eigenstates on
random fractals. On the other hand, the prospect of ob-
taining an exact solution to the eigenvalue problem of
some standard fractals prompted the studies on nonran-
dom fractals. It turned out that these fractals possess
unusual and exotic features of their own. In a detailed
analysis of the dynamics of a Sierpinski gasket, Rammal
found that the frequency spectrum of a Sierpinski gasket
is composed of two distinct pure point spectra; one com-
posed of "molecular" modes with nonvanishing ampli-
tudes only at a set of finite sites and other composed of
"hierarchical" modes with nonvanishing amplitudes only
inside a triangle surrounding a given hole in the gasket.
Recently, in a series of papers, we studied the dynamics
of a Vicsek fractal. ' The Vicsek fractal is a treelike
structure. It differs from the Sierpinski gasket in that it is
a loopless structure. Any branch of the Vicsek fractal
can be severed from the main body by simply cutting one
connecting bond. Using renorrnalization-group ap-
proach, You et al. have also studied the electronic and
vibrational properties of the Vicsek fractal. " In particu-
lar, they show that the average density of states consists
of hierarchies of isolated peaks following elegant recur-
sive structural rules.

In our earlier study, we had investigated the transverse
vibrations of the Vicsek fractal for the fixed-end bound-
ary condition using nearest-neighbor interactions. ' One
of the outstanding features of the eigenfrequency spec-
trum was that a threefold degenerate mode, once it

emerged repeated itself at the same eigenfrequency in all
the subsequent stages while its degree of degeneracy in-
creased from a given stage to the next. We had referred
such modes as persistent modes in our earlier papers. In
Ref. 9, we had used an analysis based on local symmetry
and self-similarity to characterize the degenerate and the
nondegenerate components of the frequency spectrum,
the origin of the persistent degenerate modes, and the
general pattern of evolution of the frequency spectrum
from a given stage to the next. This analysis led to an ex-
act calculation of the vibrational density of states (DOS)
of the Vicsek fractal as n ~ av, where an approach simi-
lar to the decimation technique was used. ' The results
of these calculations demonstrated that the frequency
spectrum of the Vicsek fractal was very unusual. It had
highly degenerate atomiclike levels superimposed on a
cantorlike, point dense background. The persistent de-
generate modes were all found to be superlocalized, while
the nondegenerate modes were found to be extended in
nature. Furthermore, the extended nondegenerate modes
were found to exist side by side with the superlocalized
persistent degenerate modes. This result is unlike that of
a disordered system where one would find a single demar-
cation frequency separating the extended states from the
localized states.

One of the purposes of this paper is to investigate in
detail the role of the boundary condition on various as-
pects of the vibrational dynamics of the Vicsek fractal.
Also, we use a somewhat different treatment from our
earlier paper so that the interplay among the local sym-
metry, the self-similarity, the loopless structure, and the
boundary condition on the nature of the frequency spec-
trum can be appreciated readily. The key lies in express-
ing the dynamical matrix properly where all these effects
can be incorporated simultaneously. In this new treat-
ment, the conditions for the existence of persistent modes
and the pattern of evolution of persistent degenerate
modes emerge out very simply. Finally, the differences
between the results for fixed-end and free-end boundary
conditions also become very apparent. Some preliminary
results of this calculation were reported elsewhere. '

In Sec. II, we present the structure of the dynamical
matrix and investigate in detail the effects of local sym-
metry, self-similarity, and the boundary condition on the
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dynamics of the Vicsek fractal. In Sec. II C, we present
the conditions for the existence of the persistent modes,
which also yield the rule governing the pattern of evolu-
tion of the degree of degeneracy of these modes. In Sec.
III, the nature of the eigenvectors corresponding to per-
sistent degenerate modes is given. Section IV presents an
analytical formula that gives a simple way to count the
number of distinguishable threefold and nondegenerate
modes. This formula is central to the prediction of the
pattern of the frequency spectrum of a fractal of any
stage, since all the persistent modes of a given stage are
descendants of either a threefold degenerate mode or a
nondegenerate mode of one of the previous stages. Sec-
tion V presents a method to compute the frequencies cor-
responding to nondegenerate and threefold degenerate
modes of any stage. %e also present an exact analytical
formula for the intensities of the persistent degenerate
modes as n ~ 00, using which the exact frequency spec-
trum can be calculated. Section VI contains the calcula-
tion of the spectral dimension of the Vicsek fractal. Fi-
nally, our results are summarized in Sec. VII.

II. LOOPLESS STRUCTURE, LOCAL SYMMETRY,
SELF-SIMILARITY AND THE BOUNDARY CONDITION

A. Structure of the dynamical matrix

H'„,
V H'„ 0 0 0

H„= V 0 H'„ 0 0

V 0 0 H'„

V 0 0 0 Hn-i

Figure 1 shows the first and second stages of the Vicsek
fractal. The nth stage Vicsek fractal can be constructed
by connecting five (n —1)th-stage fractals. The construc-
tion follows the pattern such that one of the (n —1)th-
stage components (clusters) serves as the central com-
ponent of the nth-stage fractal, while the other four
(n —l)th-stage components are connected only to the
central component (cluster). The dynamical matrix of
the nth-stage fractal describing the transverse vibrations
with nearest-neighbor interactions can then be written as

(a)

0000
0

(b)

0000
0

0 0000 000
0 0

0
000

0

FIG. 1. First and second stages of the Vicsek fractal with the
free-end boundary condition.

where H'„,(the dynamical matrix of the central com-
ponent) and H'„ i (the dynamical matrix of the side com-
ponent) may differ slightly from H„„the dynamical
matrix of the (n —1)th-stage fractal, due to the connec-
tions. The matrix V describes the interaction between
the central cluster and one of the side clusters It has.
only one nonvanishing element corresponding to the in-
teraction between the site in the central cluster and the
site in the side cluster. In partitioning the dynamical ma-
trix H„in the form as given in Eq. (1), we are emphasiz-

ing the self-similarity, i.e., the nth-stage fractal is con-
structed by assembling five copies of the (n —1)th-stage
fractal. The dimensions of the matrices describing H„
and the four identical H'„,'s are X„,=5" ', the same
as the dimension of the dynamical matrix H„&of the
(n —1)th-stage fractal.

In the case of the free-end boundary condition, the
dynamical matrix of the erst stage Vicsek fractal is given
by

4y/m —y/m —y/m
—y/m y/m 0

8&= —y/m 0 y/m
—y/m 0 0
—y/m 0 0

—y/m
0
0

y/m
0

—y/m —y/m
0 0
0 0

y/m 0
0 y/m

where y is the force constant and m is the mass of the particle. The dynamical matrix of the second stage can then be
constructed according to Eq. (1) as
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0

0

V 0 0 Hi 0

V 0 0 0 H'

with

H) V V V

V H' 0 0

Hq= V 0 H) 0

B. Local symmetry

In this section, we highlight only the interplay between
the local symmetry and the structure of the fractal, which
leads to an important classification of the degenerate and
nondegenerate modes. For this purpose, it is more con-
venient to rewrite the dynamical matrix H„ofthe nth-

stage fractal as

V V V V

4 —1 —1 —1 —1
V H„O 0 0

—1 2

H)= —1 0
—1 0
—1 0

0
2

0
0

0
0
2

0

0
0
0
2

(4)

0

0 H„

H„= V 0 H„O
V 0 0 H„O
V 0

and

4 —1 —1 —1 —1

—1 2

Hi= —1 0
—1 0
—1 0

0
1

0
0

0

1

0

0
0
0
1

(5)

and

H'„ i
=H„(+H'„ (6)

H'„)=H„)+H'„'
where H„',is a matrix of the same dimension as H„
but with only four nonvanishing elements, which are
along the diagonal and are associated with the four sites
in the central cluster connected directly to the side clus-
ters and H'„'

&
is a matrix with only one nonvanishing

element, which is along the diagonal and is associated
with the site in the side cluster in question connecting
directly to the central cluster. The magnitudes of these
elements are all equal to 1 in the reduced unit of
ylrn=1. Equations (6) and (7) contain the boundary
effect imposed on the fractal. For example, in the case of
the fixed-end boundary condition H'„,=H'„',=0, while
in the case of the free-end boundary condition
H„' t=H„" &%0. In fact, expressing the dynamical ma-
trix as given in Eq. (1), together with Eqs. (6) and (7), can
bring out clearly the interplay among all the factors such
as the treelike structure, the local symmetry, the self-
similarity and the boundary condition on the vibrational
dynamics of a Vicsek fractal.

In writing down Eqs. (4) and (5), the dynamical matrices
have been expressed in the reduced unit of y lrn =1. A
comparison of Eq. (2) with Eqs. (4) and (5) shows that Hf
differs from H& only in the diagonal elements correspond-
ing to the four sites in the central cluster directly con-
nected to the four side clusters. Similarly, HI is seen to
be different from H& only in one diagonal element associ-
ated with the site, which connects the side cluster in
question directly to the central cluster. In general, one
can write

W W W W W & W W

U
',C)C

w w w w w w w w w m

W W W
I
I
I
I
I

I
I
I
I
I

'C
U

n
U

4

',C )oC

FIG. 2. A schematic representation of the nth-stage fractal in
terms of the nth-stage clusters. The subsystem shown inside the
ellipse, highlighted by the broken line, is one of the four
equivalent side branches of the nth-stage fractal. The matrix
describing these side branches is depicted in the text as 8„.
Two of the branches of the (n —1)th-state clusters are highlight-
ed to facilitate the discussions in the text.

where h, =4 is a scalar quantity describing the particle at
the central site, H„the dynamical matrix of one of the
four equivalent side branches surrounding the central
site, and V the matrix giving the interaction of the cen-
tral site with one of the side branches. The dimension of
the matrix describing each side branch, H„,is ,'(N„—1)—.

The situation can be best illustrated by the drawing in
Fig. 2 where an nth-stage fractal is shown. The subsys-
tems shown in the central and outer square boxes de-
scribe the (n —1)th-state clusters and their corresponding
system matrices are given by H„',and H'„,, respective-
ly. On the other hand, the subsystem shown in the ellip-
tical box outlined by the broken line is one of the four
equivalent branches of the nth-stage fractal with its sys-
tem matrix described by 8„.Thus the nth-stage fractal
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(H„—co I„)5„(a)+Vu„'=0 (a=a, b, c,d ), (10)

where the eigenvector u„describing the displacement
field of the nth-stage fractal is broken down into

ur=(u„',5„(a),5„(b),5„(c),5„(d) )

with u„'being the displacement at the central site, and
5„(a) the displacement field of the side branch a
(a =a, b, c,d ) surrounding the central site.

Consider the case when c0; is an eigenfrequency of H„
with u„'=k%0. Then Eq. (10) will yield

5„(a)= —[(H„—co;I„) 'V ]k = A (a=a, b, c,d ) .

According to Eq. (11), the eigenvector corresponding to
~; must be

can be viewed as having a treelike structure with four
equivalent side branches (broken ellipse) connected via
the central site. Similarly, the (n —1)th-stage cluster
consists of four equivalent side branches (solid ellipses)
connected at its central site. The self-similar nature of
the fractal at successive stages can be seen by the
equivalence in the structures of the successive stages,
which is also re6ected by the equivalence in the struc-
tures of the branches associated with successive stages.

The eigenvalue problem of the nth stage,
(H„—co I„)u„=0,can be written as

(4—~ )u„'+V5„(a)+V5„(b)+V5„(c)+V5„(d)=0,

only one condition [Eq. (15)] relating them, Eq. (11}then
indicates that there can be many possible eigenvectors u„
when these four fields are combined to form the eigenvec-
tor corresponding to co, Hence, co; must be a degenerate
mode of H„.Thus, if co; is a degenerate mode of H„,u„'
must vanish, and co; must also be an eigenmode of H„.

The simplest degenerate mode of H„is when co; hap-
pens to be a nondegenerate mode of H„.In this case, the
four displacement fields 5„(a)[( a=a, b, c,d)] must be
proportional to each other because they all represent
eigenvectors to the same nondegenerate eigenvalue.
However, with the relation Eq. (15) among these four
fields, there can be only three independent solutions when
they are combined to form the eigenvector u„for H„ac-
cording to Eq. (11). Hence co, is a threefold degenerate
mode of H„when it is also a nondegenerate mode of H„.

The analysis presented above depends only on the
structure of the dynamical matrix and the local symme-

try, not on the details of the dynamical matrix. There-
fore, the conclusion drawn in this section is independent
of the boundary condition.

C. Boundary condition

In this section we highlight the effect of the boundary
condition on the origin, nature, and the evolution of per-
sistent modes. As pointed out earlier, this can be best ac-
complished by partitioning the matrix in the form given

by Eq. (1), where the interplay among the local symme-

try, the self-similarity, the treelike structure, and the
boundary condition can be readily treated.

Let co; be an eigenfrequency of H„,so that

u =(k Ar A Ar A ) (13)
(H~ —t co~tl„l)u„]=0 (16)

Since A is proportional to k [see Eq. (12)],u„is therefore
proportional to k. Hence, u„is unique up to a constant
factor k. The eigenfrequency co; must be a nondegenerate
mode. If, on the other hand, u„'=0, then Eq. (10) re-

quires

Consider the operation (H„—~;l„)u„whereu„is a dis-

placement field of the nth stage fractal. The vector u„
can be expressed as

u„=(u„ ,(0),u„ ,(1},u„ ,(2),u„ ,(3),u„ ,(4)),
(H„co2I„)5„(a)=0—for a=a, b, c,d, (14}

(17)

and Eq. (9) reduces to a scalar equation,

u„(a,1)+u„(b,1 }+u„(c,1)+u„(d,1)=0, (15)

where u„(a,1) is the displacement at the site in the
branch a adjacent to and direet1y connected with the cen-
tral site. From Eqs. (11) and (14}, a nontrivial solution
for u„requires that co; must also be an eigenfrequency of
H„. Since 5„(a)(a=a, b, c,d} satisfies Eq. (14) with

where u„&(k) is the displacement field of the kth com-
ponent cluster (k =0—4), with k =0 denoting the central
(n —1)th-stage cluster. It should be noted that in Eq. (17}
the displacement field of the nth-stage fraetal is expressed
in terms of the displacement fields of component clusters

[u„&(k), k =0, 1,2, 3,4] rather than component
branches [5„(a),a=a, b, c,d]. Using Eqs. (1}, (6), and

(7), we can write

(H„—C0 I„)U„=

4

(H„,—co;I„,}u„&(0)+H'„,u„,(0)+ g Vu„,(k }
K=1

V u„,(0}+H„",u„,(1)+(H„,—co;I„,)u„,(1)

V u„,(0)+H'„',u„,(4)+(H„,—co;I„,)u„,(4)
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The structures of H'„ i, H'„' „andV's, are such that the
column vector H'„,u„ i(0)+gk,Vu„,(k) has only
four nonvanishing elements u„ i(O, k) —u„,(k, 1)
(k = 1,2, 3,4}, while the column vector V u„,(0)
+H'„' iu„ i( k ) has only one nonvanishing element
—u„,(O, k)+u„ i(k, l). Here u„,(O, k), k=1,2, 3,4,
denotes the displacement of the site in the central cluster
adjacent to the kth side cluster and u„,(k, 1) the dis-

placement of the site in kth side cluster adjacent to the
central cluster. From Eqs. (16) and (18), it can be seen
that, ifu„,(k ) (k =0, 1,2, 3,4) is an eigenvector of H„
corresponding to the eigenfrequency co;, and if the condi-
tion

nth-stage fractal.
In the case of the fixed-end boundary condition, since

H'„ i=H„" i=0, the condition for the persistent mode
to appear requires u„,(O, k) =0 and u„,(k, 1)=0
(k=1,2, 3,4). In this case, when the persistent mode of
degree of degeneracy D„&evolves into the next stage, it
will be subjected to eight conditions. Hence, the degree
of degeneracy of the mode in the nth stage will be
governed by D„=5D„,—8. This result was proved ear-
lier [Ref. 9, Eq. (25}] using a difFerent treatment. The
evolution of the degree of degeneracy of the degenerate
mode in this case will follow the pattern 3,8,32, 152. . .,
and so on.

u„ i(O, k )=u„ i(k, 1) (k =1,2, 3,4)

is satisfied, then

(H„—ro; I„)u„=O. (20)

In other words, an eigenfrequency co; of Ir„„beit a de-
generate mode {as in the case of fixed-end boundary con-
dition9) or a nondegenerate mode, will persist and become
an eigenfrequency of H„with its eigenvector u„given by
Eq. (17). The components of u„, namely, u„ i(k)
(k=0, . . . , 4), are eigenvectors of H„,corresponding
to the same eigenfrequency co; subject to the conditions
given by Eq. (19). The persistence of a nondegenerate
mode from one stage to the next is a new feature due to
the free-end boundary condition. It is not found in the
case with fixed-end boundary condition.

When five copies of the (n —1}th-stage clusters are as-
sembled to form the nth-stage fractal, the above discus-
sion indicates that every eigenmode co, of H„,will per-
sist and be an eigenmode of H„subject to the four condi-
tions given by Eq. (19). Hence if D„,is the degree of
degeneracy of an eigenmode r0; of H„„then this mode
will be an eigenmode of H„with a degree of degeneracy
D„given by

D„=SD„i —4 . (21)

In particular, if the mode is nondegenerate in a given
stage, it will persist as a nondegenerate mode in the sub-
sequent stages. On the other hand, since the lowest de-

gree of degeneracy of a degenerate mode is three, the
path of evolution of the degree of degeneracy of a degen-
erate mode will follow the pattern: 3,11,51,251,. . . .

The analysis given in this section is based on the struc-
ture, local symmetry, the self-similarity of the Vicsek
fractal and the boundary condition imposed on it. The
conclusion is therefore a consequence of the interplay
among these factors. The effect of the free-end boundary
condition is, however, clearly demonstrated by the rela-
tion given in Eq. (19). It determines the persistency of an
eigenfrequency from one stage to the next. It also con-
trols the pattern of evolution of the degree of degeneracy
of a persistent mode [see Eq. (21)]. Hence the role played
by the boundary condition is re6ected in the relation
defining the linkage between the central cluster and the
side clusters [Eq. (19) for the free-end case] as five copies
of the (n —1)th-stage cluster are assembled to form the

III. THE NATURE OF THE PERSISTENT MODES

A. Persistent nondegenerate modes

According to Eqs. (17} and (22}, when a nondegenerate
mode of H„ i persists and becomes a nondegenerate
mode of H„,the eigenvector u„will be a perfect patchup
of five identical eigenvectors of u„ i(k) of the five com-
ponent clusters of the (n —1)th-stage. The mode in ques-
tion must therefore be an extended mode.

B.The persistent degenerate mode

Let ro; be a threefold degenerate mode of H„,so that
it is also a nondegenerate mode of H„&.The eigenvec-
tor u„,for any degenerate mode can be written as

u„,=(O,m„,(a ),5„i(b ),a„i(c ),5„i(d )),
where the displacement of the central site is zero and
1I„ i(a) is the displacement field of the branch a. Be-
cause 5„,(a)'s (a =a,b,c,d ) are all eigenvectors corre-
sponding to the nondegenerate mode co; of H„&,they
must be proportional to each other. The constants of
proportionality among them are determined by the scalar
equation

u„,(a, 1 )+u„,(b, 1)+u„,(c, 1 )+u„,(d, 1 ) =0 .

(23)

Because of the equivalence of the four branches, a logical
choice will be to assign

u„ i(a, 1)=u„ i(b, 1)=u„,(c, l)= —1 .

Equation (23}then dictates that

u„,(d, 1)=3 .

(24)

(25)

Let ~; be a nondegenerate mode of H„ i. When this
mode persists into the nth stage, the component fields

i(k) (k=0, . . . , 4), must all be eigenvectors corre-
sponding to the nondegenerate mode c0; of H„ i [see Eq.
(16)]. Hence, they can differ only by multiplicative fac-
tors. Using the condition given by Eq. (19), the factor be-
tween any two of the eigenvectors must be one. Hence,
we obtain

u„ i(0)=u„ ,(1)=u„ ,(2)=u„ ,(3)=u„ ,(4) . (22)
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The ratio of the constants of proportionality among the
four branches is therefore

S„,(0,ao)=6 i(k Qk) (k=1 . . . , 4), (26)

where 5„,(0,ao) denotes the displacement field of the ao
branch of the central (0) cluster and 5„,(k, ak) is the
displacement field of the ak branch of the kth cluster ad-
jacent to the ao branch. The relation (26) in fact provides
two possibilities for linkage between any two bordering
clusters: (i} If the prominent hump of the original three-
fold mode in one of the cluster is in the region of linkage,
Eq. (26} requires that the prominent hump of the cluster,
which is linked to the cluster in question must also be in
the region of linkage. This alignment then gives rise to a
resonant mode at the bridging location corresponding to
the region of linkage. This is a new feature associated
with the free-end boundary condition. It is not found in
the case of the fixed-end boundary condition. (ii) If none
of the prominent humps of the bordering clusters is in the
region of linkage, Eq. (26) simply provides the link for the
persistent mode to extend from the prominent hump to
the rest of the system.

The condition of linkage given by Eq. (26), together
with Eq. (23), controls the magnitude of displacements of
the outward branches (unshaded lobes in Fig. 2}. These
conditions introduce a reduction in the magnitudes of the
displacement 6elds of the three outward branches with
respect to the branch that is already linked (shaded lobes
in Fig. 2). However, the reduction does not distort the
signature of the original threefold mode, which is carried
by all the component fields 5„,(k, a). As the fractal
evolves from one stage to the next, new links will be
formed and at each stage the magnitude of displacement
fields of the outward branches will be less than the previ-
ous stage, leading to the superlocalization of the per-
sistent mode.

Two eigenvectors corresponding to a persistent degen-
erate mode of the third stage are illustrated in Figs. 3(a)
and 3(b), respectively. The eigenfrequency of the mode
shown is eo = 1.0. This mode occurs in the first stage as a
threefold degenerate mode and it evolves into a 51-fold
degenerate mode in the third stage. The eigenvector
shown in Fig. 3(a) is a resonant mode at the bridging lo-
cation, which, although a superlocalized mode, is not

lu„,(a )I:lu„ i(b)l:lu„ i(c)I:Iu„—i(&}I=1:1:1:3.

Thus the eigenvector of a threefold degenerate mode
must consist of three identical patterns in any three of the
four equivalent branches and a prominent hump of the
same pattern in the fourth branch. The pattern of the
prominent hump is every way the same as the pattern in
the other three branches except its magnitude is
enhanced by a factor of three.

When the threefold degenerate mode of H„,persists
into the nth-stage as an 11-fold degenerate mode, the
condition given in Eq. (19), which is the condition for the
persistency of the mode establishes a relation of linkage
between the two bordering branches, one in the central
cluster and the other in the side cluster. Because co; is a
nondegenerate mode of H„„Eq.(19) then requires

(b)

FIG. 3. Two types of eigenvectors corresponding to a per-
sistent degenerate mode (co = 1.0) of the third state Vicsek frac-
tal with free-end boundary condition is illustrated. (a) shows a
resonating bridge-localized mode, while (b) shows an edge-
confined superlocalized mode.

found in the case of the fixed-end boundary condition. '
The superlocalized mode shown in Fig. 3(b) is similar to
the ones found in the case of the fixed-end boundary con-
dition. Figures 4(a) and 4(b) show eigenvectors corre-
sponding to nondegenerate modes. In Fig. 4(a), a nonde-
generate mode (co =5.41) that appears for the first time

(a)

(b)

FIG. 4. Eigenvectors corresponding to two selected nonde-

generate modes of the third-stage Vicsek fractal with free-end

boundary condition. (a) shows the eigenvector corresponding to
the nondegenerate mode at co =5.41, which appears for the first
time in the third stage, while (b) shows a persistent nondegen-
erate mode at co =5.38 that was also found in the second stage.
The eigenvector in (b) is a perfect patchup of five identical
eigenvectors of the previous stage. In both cases (a) and (b) the
eigenvector is an extended mode.
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in the third stage is shown, while Fig. 4(b) shows a per-
sistent nondegenerate mode (co =5.38} that occurred in
the second stage also. It can be seen that the nondegen-
erate modes are all extended.

IU. NUMBER OF DISTINGUISHABLE
NONDEGENERATE AND THREEFOLD

DEGENERATE MODES

From the discussion in Secs. II and III, it can be seen
that the frequency spectrum of an nth-stage fractal with
the free-end boundary condition is also composed of both
nondegenerate and degenerate modes, just like the case
with the fixed-end boundary condition. The nondegen-
erate component, however, consists of both persistent
nondegenerate modes from previous stages satisfying the
condition of persistency given by Eq. (19) and additional
nondegenerate modes, which are not present in the previ-
ous stages and do not satisfy Eq. (19). The degenerate
component consists of D, -fold, D2-fold, etc., and D„-fold
degenerate modes with D„=5D„,—4 and D, =3. The
D2-fold, D3-fold, etc., and D„-fold degenerate modes are
persistent modes evolved from the threefold degenerate
modes of previous stages. For example, a D„-folddegen-
erate mode exists as a threefold degenerate mode in the
first stage, and is present in the subsequent stages as D2-
fold, D3-fold, etc., and D„&-fold degenerate mode, re-
spectively. Thus, to determine the complete frequency
spectrum of the nth-stage fractal, one only needs to deter-
mine the nondegenerate modes and the threefold degen-
erate modes.

Let d3(n} be the number of threefold degenerate
modes of the nth stage. Since the threefold degenerate
mode of H„ is also a nondegenerate mode of H„,we
have'

V. FREQUENCY SPECfRUM

(4—co )u —g v, =0, (31)

(1—co )v —u =0 (a=a, b, c,d), (32)

where u is the displacement at the central site and v 's

are the displacements of the four outer sites. The equa-
tions of motion of the second stage Vicsek fractal can be
reduced into those of a five-particle system with renor-
malized force constants linking the central site and the
four central sites of the outer clusters. The equation of
motion for the second stage is then given by

(4—a2)u —~z g v =0, (33)

(4—Pz)v —Irzu =0 (a=a, b, c,d), (34)

where we again designate by u the displacement at the
central site and by v 's the displacements at the central
sites of the outer clusters. In Eqs. (33}and (34},we have

a2 —N +

p2= co~+

4(2—co )

(1—co) (3—co )

(2—a) )

(1—co )(3—co )

3 +
(1—co )

(35)

(36)

The eigenfrequencies of the Vicsek fractal of a given
stage are completely determined once the eigenfrequen-
cies corresponding to the additional nondegener ate
modes and the threefold degenerate modes are calculated.
This task can be accomplished by following the same re-
normalization procedure as given in the Ref. 10.

The equation of motion for the transverse vibrations of
the first stage Vicsek fractal with the free-end boundary
condition can be expressed as

d3(n )=—,
' [(N„—1)—[d3(1)X(D„+1)

+ +d (n —1)X(Dz+1)]I,

1
K2=

(1—co )(3—aF)
(37}

(27)

where N„=5"is the number of particles in the nth stage.
Using Eq. (27}, it can be shown (see Appendix A) that
d3(n ) is given by the relation

The renormalized equations of motion connecting the
displacement of the central site (u ) and the central sites
of the outer clusters (v 's} of the nth stage with n ~ 3 can
be obtained by a similar procedure. This leads to the fol-
lowing sets of equations.

d3(n )=3" (28)
(4—a„)u=v„gv =0, (38)

The number of nondegenerate modes of the nth-stage,
d i (n ), is accordingly given by

di(n)=N„—[d3(1}XD„+ +d3(n)XDi I . (29)

d, (n}=d, (n —1)+d3(n) . (30)

Therefore, the number of additional nondegenerate
modes in the nth-stage [d, (n )—d i (n —1)],which are not
present in the previous stages is the same as d3(n ), the
number of threefold degenerate modes of the nth stage.

Equation (29) can be further simplified (see Appendix B)
to yield

2K~
2p„=a„,+ +4—

2a„,(4—P„ i)

(4—p„,) —a„
2 2(2 —a) )

1 —co (1—co )(3—co )

(4—P„}v—a.„u=0 (a=a, b, c,d)

with

4m~, (4—p„ i)a„=a„i+
(4—p„ i) —z„
3a„, 2,(4—P„,)

&n i (4—
p—

„ i ) —a.
„

(39)

(41)

(42)

(43)



C. S. JAYANTHI AND S. Y. WU

3
&n —i

(4—p„,) —a„ (44)

4K„
4—a„—n 4

u=0. (45)

Since for a nondegenerate mode, u %0 and

v, =vb =v, =vz, Eqs. (38) and (39) can be combined to
yield

0.50

0.40—
D

U
0.30—

Uz
0.20—

CY

The fact that u %0, therefore, leads to

4K„(co )
f„(co)=4—a„(co) — =0 .

4—p„(co')
(46}

0.10—

O.O0

0.0 1.0

J. j..
I I

2.0 3.0
I

4.0

LAL
I

5.0 6.0

The roots of Eq. (46) are then the eigenfrequencies of the
nondegenerate modes of the nth stage.

For a threefold degenerate mode, the condition u =0
reduces Eq. (39}to

(4—P„)v =0 .

Since v %0, Eq. (47) then requires

4—P„(co}=0 .

(47)

(48}

Thus the roots of Eq. (48) give the eigenfrequencies of the
threefold degenerate modes.

The nondegenerate and the threefold degenerate modes
of a given stage of the Vicsek fractal with the free-end
boundary condition can then be obtained as the roots of
Eqs. (46) and (48), respectively. It should be noted that
the parametric functions a„(co), p„(co), and s„(co) ap-
pearing in Eqs. (46) and (48) are computed recursively us-

ing Eqs. (40)—(46). This fact greatly facilitates the deter-
mination of the eigenfrequencies for the consecutive
stages.

The frequency spectrum of the Vicsek fractal with
free-end boundary condition as n ~ 00 can now be deter-
mined, since we know how to calculate the number of
distinguishable degenerate modes of a given degeneracy
(see Sec. IV} and their corresponding eigenfrequencies.
The intensity of degenerate modes with the ith-highest
degree of degeneracy is given by

FIG. 5. The frequency spectrum of the Vicsek fractal with

free-end boundary condition as n ~~.

crate atomiclike levels superimposed on a point dense,
cantor set-like background spectrum. It is also a spec-
trum exhibiting the side-by-side coexistence of the super-
localized modes and the extended modes, similar to the
situation found in the case with a fixed-end boundary con-
dition. ' However, the detailed structure of the frequen-

cy spectrum is different from that of the fixed-end bound-

ary condition.

VI. SPECTRAL DIMENSION

p„(co)dco =5p„+,(co')d co' .

Denoting co/co' =k and using the relation

p„(co)—+ A co
' (co—+0),

(53)

(54)

The spectral dimension of the Vicsek fractal with the
free-end boundary condition can be determined using a
scaling procedure suggested by Liu. ' Let p„(co)be the

frequency spectrum of the nth stage. Since the number of
eigenmodes in a given interval dao of the nth stage is
compressed into an interval dco' of the (n + 1)th stage, we

must have

I; =D„;+i/X„, (49) where d is the spectral dimension, we obtain

Hence,

—5n
—i(2+ 1/5n

—
t)' (50)

I; =—. 2+1

5i 5n
—i

(51)

where E„is the number of particles in the system and D„
denotes the degree of degeneracy. Using Eq. (21) repeat-
edly, we obtain

a =&nsylnk .

%e have determined the spectral dimension by com-

puting the ratio of the frequency intervals in the neigh-

borhood of ~=0 of two consecutive stages, which con-
tain the same number of eigenmodes. The value of k is
obtained as the limit of the ratio when n ~ ao. It is found
to have a value &15. The spectral dimension d is there-
fore equal to

When n ~ 00, Eq. (51) reduces to
ln3
ln5

(56)

I; =2/5' for i ((n . (52)

Using Eqs. (28), (46}, (48), and (52), the frequency spec-
trum of the Vicsek fractal as n~ao is constructed and
shown in Fig. 5. It consists of a series of highly degen-

This result agrees with the universal relation between the
fractal dimension (d ) and spectral dimension (Z), name-

ly, d =2d /(d + 1), as given in Ref. 14.
In the case of the fixed-end boundary condition, one
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can, in principle, define Z in the neighborhood of the fun-

damental frequency coo {which is nonzero) using the rela-

tion p(c0) =(co—coo) . However, one has to ensure that
the 6xed value for apo has been achieved to extract the
correct numerical value for d by considering larger and
larger sized fractals. Because of this, it is numerically
diScult to determine the exact value of the spectral di-
mension for the fixed-end boundary condition. However,
our crude estimate indicates that the value of k corre-
sponding to the fixed-end boundary condition is also in
the neighborhood of &15, and hence Z is approximately
the same as given in Eq. (56).

VII. SUMMARY

In this work, we have investigated in detail the role
played by the boundary condition on various aspects of
the dynamics of a Vicsek fractal by examining the inter-

play among the local symmetry, the self-similarity, and
the loopless structure of the fractal. We found that the
conditions for the occurrence of the persistent modes are
different for the cases of the fixed-end and the free-end
boundary conditions. Because of this, we find that both
nondegenerate and degenerate modes are persistent in the
case of free-end boundary condition, while only degen-
erate modes are persistent in the fixed-end boundary con-
dition. Furthermore, the nature and the pattern of evo-
lution of the persistent degenerate modes are different in
both cases. In the case of the free-end boundary condi-
tion, the persistent nondegenerate mode is a perfect
patchup of five identical displacement fields correspond-
ing to the parent nondegenerate mode. On the other
hand, there are two types of persistent degenerate modes.

One of them is an edge-confined superlocalized mode as
found in the case of fixed-end boundary case while the
other is a bridge-localized resonant mode. In both cases,
the frequency spectrum exhibits atomiclike levels super-
imposed on a point-dense background of the nondegen-
erate modes. Furthermore, in both cases, the extended
and localized modes occur side-by-side in frequency un-
like that of a disordered system But, the detailed struc-
tures of the frequency spectrum are different for the two
cases. Hence, the recursive structural rules as found in
Ref. 11 for the hierarchies of isolated peaks are expected
to be difFerent for the free-end boundary case. In con-
clusion, we find that, although the general features of the
frequency spectrum of a Vicsek fractal with the free-end
boundary condition are similar to that of the case with
the fixed-end boundary condition, ' there are substan-
tive difFerences. In fact, the signature of the boundary
condition is found in almost every feature of the dynam-
ics of a Vicsek fractal.

d (k)=3" (Al)

Equation (27) gives

APPENDIX A

The eigenvalues of a first stage Vicsek fractal can be
easily determined either froin Eqs. (46) and (48) or by
direct diagonlization. The five-mode spectrum consists of
two nondegenerate modes at co =0.0 and 5.0 and a three-
fold degenerate mode at ai2=1.0. Hence d, (1)=2 and
d3(1)= 1. Using Eqs. (21) and (27), we obtain d3(2) =3',
d3(3)=3, and so on. Let us assume that

d3(k+ 1)=—,
' [(Ni, +,—1)—[di(1)(D„+,+1)+ +d3(k —1)(D3+1)+di(k )(Di+1)]] .

Using the relations N&+, = 5N& and D„=5D„ i
—4, Eq. (A2) can be rewritten as

13(k+1)=—,
' [(Ni, —1)—[13(1)(Di,+1)+ +d, (k —1)(D2+1)]]+1+2[d,(l )+ d, (k —1)]
—

—,'(D2+ 1)d3(k ) .

Using Eqs. (21},(27},and (Al), we obtain

(A2)

(A3)

d3(k+1)=513(k)+1+3" ' 1— —3d3(k)=2d3(k)+3" '=3" . (A4)

Hence, by the mathematical induction.

d3{n )=3" (A5)

APPENDIX B

From Eq. {29},we have

d&(n}=N„—[d3{1}XD„+.. . +d3{n}XD,] . (B1)

Equation (B1) can be rewritten as

d, (n ) =—,
' X4X(N„—1)+1—

[ —,
' X4d3(1)(D„+1)—di(1)+ . . + , X413(n ——1)(D2+1)—d 3(n —1)] 13(n ) XD-, .

Using Eq. (27), we obtain

d, (n )=4d3(n )—3d3(n )+1+d3(1)+ . . +d3(n —1)=1+d3(1)+ . +d3(n —1)+d3(n)=d &(n
—1)+d&(n ) . (B2)
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